blob: 653b074035f7b165d04d1587d428097ecfac780a [file] [log] [blame]
/*
* Compressed RAM block device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
* Project home: http://compcache.googlecode.com
*/
#define KMSG_COMPONENT "zram"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#ifdef CONFIG_ZRAM_DEBUG
#define DEBUG
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/lzo.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include "zram_drv.h"
/* Globals */
static int zram_major;
struct zram *zram_devices;
/* Module params (documentation at end) */
static unsigned int num_devices;
static void zram_stat_inc(u32 *v)
{
*v = *v + 1;
}
static void zram_stat_dec(u32 *v)
{
*v = *v - 1;
}
static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
{
spin_lock(&zram->stat64_lock);
*v = *v + inc;
spin_unlock(&zram->stat64_lock);
}
static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
{
spin_lock(&zram->stat64_lock);
*v = *v - dec;
spin_unlock(&zram->stat64_lock);
}
static void zram_stat64_inc(struct zram *zram, u64 *v)
{
zram_stat64_add(zram, v, 1);
}
static int zram_test_flag(struct zram *zram, u32 index,
enum zram_pageflags flag)
{
return zram->table[index].flags & BIT(flag);
}
static void zram_set_flag(struct zram *zram, u32 index,
enum zram_pageflags flag)
{
zram->table[index].flags |= BIT(flag);
}
static void zram_clear_flag(struct zram *zram, u32 index,
enum zram_pageflags flag)
{
zram->table[index].flags &= ~BIT(flag);
}
static int page_zero_filled(void *ptr)
{
unsigned int pos;
unsigned long *page;
page = (unsigned long *)ptr;
for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
if (page[pos])
return 0;
}
return 1;
}
static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
{
if (!zram->disksize) {
pr_info(
"disk size not provided. You can use disksize_kb module "
"param to specify size.\nUsing default: (%u%% of RAM).\n",
default_disksize_perc_ram
);
zram->disksize = default_disksize_perc_ram *
(totalram_bytes / 100);
}
if (zram->disksize > 2 * (totalram_bytes)) {
pr_info(
"There is little point creating a zram of greater than "
"twice the size of memory since we expect a 2:1 compression "
"ratio. Note that zram uses about 0.1%% of the size of "
"the disk when not in use so a huge zram is "
"wasteful.\n"
"\tMemory Size: %zu kB\n"
"\tSize you selected: %llu kB\n"
"Continuing anyway ...\n",
totalram_bytes >> 10, zram->disksize
);
}
zram->disksize &= PAGE_MASK;
}
static void zram_free_page(struct zram *zram, size_t index)
{
unsigned long handle = zram->table[index].handle;
u16 size = zram->table[index].size;
if (unlikely(!handle)) {
/*
* No memory is allocated for zero filled pages.
* Simply clear zero page flag.
*/
if (zram_test_flag(zram, index, ZRAM_ZERO)) {
zram_clear_flag(zram, index, ZRAM_ZERO);
zram_stat_dec(&zram->stats.pages_zero);
}
return;
}
if (unlikely(size > max_zpage_size))
zram_stat_dec(&zram->stats.bad_compress);
zs_free(zram->mem_pool, handle);
if (size <= PAGE_SIZE / 2)
zram_stat_dec(&zram->stats.good_compress);
zram_stat64_sub(zram, &zram->stats.compr_size,
zram->table[index].size);
zram_stat_dec(&zram->stats.pages_stored);
zram->table[index].handle = 0;
zram->table[index].size = 0;
}
static void handle_zero_page(struct bio_vec *bvec)
{
struct page *page = bvec->bv_page;
void *user_mem;
user_mem = kmap_atomic(page);
memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
kunmap_atomic(user_mem);
flush_dcache_page(page);
}
static inline int is_partial_io(struct bio_vec *bvec)
{
return bvec->bv_len != PAGE_SIZE;
}
static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
u32 index, int offset, struct bio *bio)
{
int ret;
size_t clen;
struct page *page;
unsigned char *user_mem, *cmem, *uncmem = NULL;
page = bvec->bv_page;
if (zram_test_flag(zram, index, ZRAM_ZERO)) {
handle_zero_page(bvec);
return 0;
}
/* Requested page is not present in compressed area */
if (unlikely(!zram->table[index].handle)) {
pr_debug("Read before write: sector=%lu, size=%u",
(ulong)(bio->bi_sector), bio->bi_size);
handle_zero_page(bvec);
return 0;
}
if (is_partial_io(bvec)) {
/* Use a temporary buffer to decompress the page */
uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!uncmem) {
pr_info("Error allocating temp memory!\n");
return -ENOMEM;
}
}
user_mem = kmap_atomic(page);
if (!is_partial_io(bvec))
uncmem = user_mem;
clen = PAGE_SIZE;
cmem = zs_map_object(zram->mem_pool, zram->table[index].handle,
ZS_MM_RO);
ret = lzo1x_decompress_safe(cmem, zram->table[index].size,
uncmem, &clen);
if (is_partial_io(bvec)) {
memcpy(user_mem + bvec->bv_offset, uncmem + offset,
bvec->bv_len);
kfree(uncmem);
}
zs_unmap_object(zram->mem_pool, zram->table[index].handle);
kunmap_atomic(user_mem);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret != LZO_E_OK)) {
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
zram_stat64_inc(zram, &zram->stats.failed_reads);
return ret;
}
flush_dcache_page(page);
return 0;
}
static int zram_read_before_write(struct zram *zram, char *mem, u32 index)
{
int ret;
size_t clen = PAGE_SIZE;
unsigned char *cmem;
unsigned long handle = zram->table[index].handle;
if (zram_test_flag(zram, index, ZRAM_ZERO) || !handle) {
memset(mem, 0, PAGE_SIZE);
return 0;
}
cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
ret = lzo1x_decompress_safe(cmem, zram->table[index].size,
mem, &clen);
zs_unmap_object(zram->mem_pool, handle);
/* Should NEVER happen. Return bio error if it does. */
if (unlikely(ret != LZO_E_OK)) {
pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
zram_stat64_inc(zram, &zram->stats.failed_reads);
return ret;
}
return 0;
}
static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset)
{
int ret;
size_t clen;
unsigned long handle;
struct page *page;
unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
page = bvec->bv_page;
src = zram->compress_buffer;
if (is_partial_io(bvec)) {
/*
* This is a partial IO. We need to read the full page
* before to write the changes.
*/
uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!uncmem) {
pr_info("Error allocating temp memory!\n");
ret = -ENOMEM;
goto out;
}
ret = zram_read_before_write(zram, uncmem, index);
if (ret) {
kfree(uncmem);
goto out;
}
}
/*
* System overwrites unused sectors. Free memory associated
* with this sector now.
*/
if (zram->table[index].handle ||
zram_test_flag(zram, index, ZRAM_ZERO))
zram_free_page(zram, index);
user_mem = kmap_atomic(page);
if (is_partial_io(bvec))
memcpy(uncmem + offset, user_mem + bvec->bv_offset,
bvec->bv_len);
else
uncmem = user_mem;
if (page_zero_filled(uncmem)) {
kunmap_atomic(user_mem);
if (is_partial_io(bvec))
kfree(uncmem);
zram_stat_inc(&zram->stats.pages_zero);
zram_set_flag(zram, index, ZRAM_ZERO);
ret = 0;
goto out;
}
ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
zram->compress_workmem);
kunmap_atomic(user_mem);
if (is_partial_io(bvec))
kfree(uncmem);
if (unlikely(ret != LZO_E_OK)) {
pr_err("Compression failed! err=%d\n", ret);
goto out;
}
if (unlikely(clen > max_zpage_size))
zram_stat_inc(&zram->stats.bad_compress);
handle = zs_malloc(zram->mem_pool, clen);
if (!handle) {
pr_info("Error allocating memory for compressed "
"page: %u, size=%zu\n", index, clen);
ret = -ENOMEM;
goto out;
}
cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
memcpy(cmem, src, clen);
zs_unmap_object(zram->mem_pool, handle);
zram->table[index].handle = handle;
zram->table[index].size = clen;
/* Update stats */
zram_stat64_add(zram, &zram->stats.compr_size, clen);
zram_stat_inc(&zram->stats.pages_stored);
if (clen <= PAGE_SIZE / 2)
zram_stat_inc(&zram->stats.good_compress);
return 0;
out:
if (ret)
zram_stat64_inc(zram, &zram->stats.failed_writes);
return ret;
}
static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
int offset, struct bio *bio, int rw)
{
int ret;
if (rw == READ) {
down_read(&zram->lock);
ret = zram_bvec_read(zram, bvec, index, offset, bio);
up_read(&zram->lock);
} else {
down_write(&zram->lock);
ret = zram_bvec_write(zram, bvec, index, offset);
up_write(&zram->lock);
}
return ret;
}
static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
{
if (*offset + bvec->bv_len >= PAGE_SIZE)
(*index)++;
*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
}
static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
{
int i, offset;
u32 index;
struct bio_vec *bvec;
switch (rw) {
case READ:
zram_stat64_inc(zram, &zram->stats.num_reads);
break;
case WRITE:
zram_stat64_inc(zram, &zram->stats.num_writes);
break;
}
index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
bio_for_each_segment(bvec, bio, i) {
int max_transfer_size = PAGE_SIZE - offset;
if (bvec->bv_len > max_transfer_size) {
/*
* zram_bvec_rw() can only make operation on a single
* zram page. Split the bio vector.
*/
struct bio_vec bv;
bv.bv_page = bvec->bv_page;
bv.bv_len = max_transfer_size;
bv.bv_offset = bvec->bv_offset;
if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
goto out;
bv.bv_len = bvec->bv_len - max_transfer_size;
bv.bv_offset += max_transfer_size;
if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
goto out;
} else
if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
< 0)
goto out;
update_position(&index, &offset, bvec);
}
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return;
out:
bio_io_error(bio);
}
/*
* Check if request is within bounds and aligned on zram logical blocks.
*/
static inline int valid_io_request(struct zram *zram, struct bio *bio)
{
if (unlikely(
(bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
return 0;
}
/* I/O request is valid */
return 1;
}
/*
* Handler function for all zram I/O requests.
*/
static void zram_make_request(struct request_queue *queue, struct bio *bio)
{
struct zram *zram = queue->queuedata;
if (unlikely(!zram->init_done) && zram_init_device(zram))
goto error;
down_read(&zram->init_lock);
if (unlikely(!zram->init_done))
goto error_unlock;
if (!valid_io_request(zram, bio)) {
zram_stat64_inc(zram, &zram->stats.invalid_io);
goto error_unlock;
}
__zram_make_request(zram, bio, bio_data_dir(bio));
up_read(&zram->init_lock);
return;
error_unlock:
up_read(&zram->init_lock);
error:
bio_io_error(bio);
}
void __zram_reset_device(struct zram *zram)
{
size_t index;
zram->init_done = 0;
/* Free various per-device buffers */
kfree(zram->compress_workmem);
free_pages((unsigned long)zram->compress_buffer, 1);
zram->compress_workmem = NULL;
zram->compress_buffer = NULL;
/* Free all pages that are still in this zram device */
for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
unsigned long handle = zram->table[index].handle;
if (!handle)
continue;
zs_free(zram->mem_pool, handle);
}
vfree(zram->table);
zram->table = NULL;
zs_destroy_pool(zram->mem_pool);
zram->mem_pool = NULL;
/* Reset stats */
memset(&zram->stats, 0, sizeof(zram->stats));
zram->disksize = 0;
}
void zram_reset_device(struct zram *zram)
{
down_write(&zram->init_lock);
__zram_reset_device(zram);
up_write(&zram->init_lock);
}
int zram_init_device(struct zram *zram)
{
int ret;
size_t num_pages;
down_write(&zram->init_lock);
if (zram->init_done) {
up_write(&zram->init_lock);
return 0;
}
zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
if (!zram->compress_workmem) {
pr_err("Error allocating compressor working memory!\n");
ret = -ENOMEM;
goto fail_no_table;
}
zram->compress_buffer =
(void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
if (!zram->compress_buffer) {
pr_err("Error allocating compressor buffer space\n");
ret = -ENOMEM;
goto fail_no_table;
}
num_pages = zram->disksize >> PAGE_SHIFT;
zram->table = vzalloc(num_pages * sizeof(*zram->table));
if (!zram->table) {
pr_err("Error allocating zram address table\n");
ret = -ENOMEM;
goto fail_no_table;
}
set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
/* zram devices sort of resembles non-rotational disks */
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
zram->mem_pool = zs_create_pool("zram", GFP_NOIO | __GFP_HIGHMEM);
if (!zram->mem_pool) {
pr_err("Error creating memory pool\n");
ret = -ENOMEM;
goto fail;
}
zram->init_done = 1;
up_write(&zram->init_lock);
pr_debug("Initialization done!\n");
return 0;
fail_no_table:
/* To prevent accessing table entries during cleanup */
zram->disksize = 0;
fail:
__zram_reset_device(zram);
up_write(&zram->init_lock);
pr_err("Initialization failed: err=%d\n", ret);
return ret;
}
static void zram_slot_free_notify(struct block_device *bdev,
unsigned long index)
{
struct zram *zram;
zram = bdev->bd_disk->private_data;
zram_free_page(zram, index);
zram_stat64_inc(zram, &zram->stats.notify_free);
}
static const struct block_device_operations zram_devops = {
.swap_slot_free_notify = zram_slot_free_notify,
.owner = THIS_MODULE
};
static int create_device(struct zram *zram, int device_id)
{
int ret = 0;
init_rwsem(&zram->lock);
init_rwsem(&zram->init_lock);
spin_lock_init(&zram->stat64_lock);
zram->queue = blk_alloc_queue(GFP_KERNEL);
if (!zram->queue) {
pr_err("Error allocating disk queue for device %d\n",
device_id);
ret = -ENOMEM;
goto out;
}
blk_queue_make_request(zram->queue, zram_make_request);
zram->queue->queuedata = zram;
/* gendisk structure */
zram->disk = alloc_disk(1);
if (!zram->disk) {
blk_cleanup_queue(zram->queue);
pr_warn("Error allocating disk structure for device %d\n",
device_id);
ret = -ENOMEM;
goto out;
}
zram->disk->major = zram_major;
zram->disk->first_minor = device_id;
zram->disk->fops = &zram_devops;
zram->disk->queue = zram->queue;
zram->disk->private_data = zram;
snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
set_capacity(zram->disk, 0);
/*
* To ensure that we always get PAGE_SIZE aligned
* and n*PAGE_SIZED sized I/O requests.
*/
blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
blk_queue_logical_block_size(zram->disk->queue,
ZRAM_LOGICAL_BLOCK_SIZE);
blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
add_disk(zram->disk);
ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
if (ret < 0) {
pr_warn("Error creating sysfs group");
goto out;
}
zram->init_done = 0;
out:
return ret;
}
static void destroy_device(struct zram *zram)
{
sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
&zram_disk_attr_group);
if (zram->disk) {
del_gendisk(zram->disk);
put_disk(zram->disk);
}
if (zram->queue)
blk_cleanup_queue(zram->queue);
}
unsigned int zram_get_num_devices(void)
{
return num_devices;
}
static int __init zram_init(void)
{
int ret, dev_id;
if (num_devices > max_num_devices) {
pr_warn("Invalid value for num_devices: %u\n",
num_devices);
ret = -EINVAL;
goto out;
}
zram_major = register_blkdev(0, "zram");
if (zram_major <= 0) {
pr_warn("Unable to get major number\n");
ret = -EBUSY;
goto out;
}
if (!num_devices) {
pr_info("num_devices not specified. Using default: 1\n");
num_devices = 1;
}
/* Allocate the device array and initialize each one */
pr_info("Creating %u devices ...\n", num_devices);
zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
if (!zram_devices) {
ret = -ENOMEM;
goto unregister;
}
for (dev_id = 0; dev_id < num_devices; dev_id++) {
ret = create_device(&zram_devices[dev_id], dev_id);
if (ret)
goto free_devices;
}
return 0;
free_devices:
while (dev_id)
destroy_device(&zram_devices[--dev_id]);
kfree(zram_devices);
unregister:
unregister_blkdev(zram_major, "zram");
out:
return ret;
}
static void __exit zram_exit(void)
{
int i;
struct zram *zram;
for (i = 0; i < num_devices; i++) {
zram = &zram_devices[i];
destroy_device(zram);
if (zram->init_done)
zram_reset_device(zram);
}
unregister_blkdev(zram_major, "zram");
kfree(zram_devices);
pr_debug("Cleanup done!\n");
}
module_param(num_devices, uint, 0);
MODULE_PARM_DESC(num_devices, "Number of zram devices");
module_init(zram_init);
module_exit(zram_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Block Device");