blob: 128a804c42f406b6c6b1f32f57110ff6b0810b41 [file] [log] [blame]
/*
* USB hub driver.
*
* (C) Copyright 1999 Linus Torvalds
* (C) Copyright 1999 Johannes Erdfelt
* (C) Copyright 1999 Gregory P. Smith
* (C) Copyright 2001 Brad Hards (bhards@bigpond.net.au)
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/completion.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <linux/usb.h>
#include <linux/usbdevice_fs.h>
#include <linux/usb/hcd.h>
#include <linux/usb/otg.h>
#include <linux/usb/quirks.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/freezer.h>
#include <linux/random.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>
#include "usb.h"
/* if we are in debug mode, always announce new devices */
#ifdef DEBUG
#ifndef CONFIG_USB_ANNOUNCE_NEW_DEVICES
#define CONFIG_USB_ANNOUNCE_NEW_DEVICES
#endif
#endif
struct usb_hub {
struct device *intfdev; /* the "interface" device */
struct usb_device *hdev;
struct kref kref;
struct urb *urb; /* for interrupt polling pipe */
/* buffer for urb ... with extra space in case of babble */
char (*buffer)[8];
union {
struct usb_hub_status hub;
struct usb_port_status port;
} *status; /* buffer for status reports */
struct mutex status_mutex; /* for the status buffer */
int error; /* last reported error */
int nerrors; /* track consecutive errors */
struct list_head event_list; /* hubs w/data or errs ready */
unsigned long event_bits[1]; /* status change bitmask */
unsigned long change_bits[1]; /* ports with logical connect
status change */
unsigned long busy_bits[1]; /* ports being reset or
resumed */
unsigned long removed_bits[1]; /* ports with a "removed"
device present */
unsigned long wakeup_bits[1]; /* ports that have signaled
remote wakeup */
#if USB_MAXCHILDREN > 31 /* 8*sizeof(unsigned long) - 1 */
#error event_bits[] is too short!
#endif
struct usb_hub_descriptor *descriptor; /* class descriptor */
struct usb_tt tt; /* Transaction Translator */
unsigned mA_per_port; /* current for each child */
unsigned limited_power:1;
unsigned quiescing:1;
unsigned disconnected:1;
unsigned has_indicators:1;
u8 indicator[USB_MAXCHILDREN];
struct delayed_work leds;
struct delayed_work init_work;
struct dev_state **port_owners;
};
static inline int hub_is_superspeed(struct usb_device *hdev)
{
return (hdev->descriptor.bDeviceProtocol == USB_HUB_PR_SS);
}
/* Protect struct usb_device->state and ->children members
* Note: Both are also protected by ->dev.sem, except that ->state can
* change to USB_STATE_NOTATTACHED even when the semaphore isn't held. */
static DEFINE_SPINLOCK(device_state_lock);
/* khubd's worklist and its lock */
static DEFINE_SPINLOCK(hub_event_lock);
static LIST_HEAD(hub_event_list); /* List of hubs needing servicing */
/* Wakes up khubd */
static DECLARE_WAIT_QUEUE_HEAD(khubd_wait);
static struct task_struct *khubd_task;
/* cycle leds on hubs that aren't blinking for attention */
static bool blinkenlights = 0;
module_param (blinkenlights, bool, S_IRUGO);
MODULE_PARM_DESC (blinkenlights, "true to cycle leds on hubs");
/*
* Device SATA8000 FW1.0 from DATAST0R Technology Corp requires about
* 10 seconds to send reply for the initial 64-byte descriptor request.
*/
/* define initial 64-byte descriptor request timeout in milliseconds */
static int initial_descriptor_timeout = USB_CTRL_GET_TIMEOUT;
module_param(initial_descriptor_timeout, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(initial_descriptor_timeout,
"initial 64-byte descriptor request timeout in milliseconds "
"(default 5000 - 5.0 seconds)");
/*
* As of 2.6.10 we introduce a new USB device initialization scheme which
* closely resembles the way Windows works. Hopefully it will be compatible
* with a wider range of devices than the old scheme. However some previously
* working devices may start giving rise to "device not accepting address"
* errors; if that happens the user can try the old scheme by adjusting the
* following module parameters.
*
* For maximum flexibility there are two boolean parameters to control the
* hub driver's behavior. On the first initialization attempt, if the
* "old_scheme_first" parameter is set then the old scheme will be used,
* otherwise the new scheme is used. If that fails and "use_both_schemes"
* is set, then the driver will make another attempt, using the other scheme.
*/
static bool old_scheme_first = 0;
module_param(old_scheme_first, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(old_scheme_first,
"start with the old device initialization scheme");
static bool use_both_schemes = 1;
module_param(use_both_schemes, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(use_both_schemes,
"try the other device initialization scheme if the "
"first one fails");
/* Mutual exclusion for EHCI CF initialization. This interferes with
* port reset on some companion controllers.
*/
DECLARE_RWSEM(ehci_cf_port_reset_rwsem);
EXPORT_SYMBOL_GPL(ehci_cf_port_reset_rwsem);
#define HUB_DEBOUNCE_TIMEOUT 1500
#define HUB_DEBOUNCE_STEP 25
#define HUB_DEBOUNCE_STABLE 100
static int usb_reset_and_verify_device(struct usb_device *udev);
static inline char *portspeed(struct usb_hub *hub, int portstatus)
{
if (hub_is_superspeed(hub->hdev))
return "5.0 Gb/s";
if (portstatus & USB_PORT_STAT_HIGH_SPEED)
return "480 Mb/s";
else if (portstatus & USB_PORT_STAT_LOW_SPEED)
return "1.5 Mb/s";
else
return "12 Mb/s";
}
/* Note that hdev or one of its children must be locked! */
static struct usb_hub *hdev_to_hub(struct usb_device *hdev)
{
if (!hdev || !hdev->actconfig)
return NULL;
return usb_get_intfdata(hdev->actconfig->interface[0]);
}
static int usb_device_supports_lpm(struct usb_device *udev)
{
/* USB 2.1 (and greater) devices indicate LPM support through
* their USB 2.0 Extended Capabilities BOS descriptor.
*/
if (udev->speed == USB_SPEED_HIGH) {
if (udev->bos->ext_cap &&
(USB_LPM_SUPPORT &
le32_to_cpu(udev->bos->ext_cap->bmAttributes)))
return 1;
return 0;
}
/* All USB 3.0 must support LPM, but we need their max exit latency
* information from the SuperSpeed Extended Capabilities BOS descriptor.
*/
if (!udev->bos->ss_cap) {
dev_warn(&udev->dev, "No LPM exit latency info found. "
"Power management will be impacted.\n");
return 0;
}
if (udev->parent->lpm_capable)
return 1;
dev_warn(&udev->dev, "Parent hub missing LPM exit latency info. "
"Power management will be impacted.\n");
return 0;
}
/*
* Set the Maximum Exit Latency (MEL) for the host to initiate a transition from
* either U1 or U2.
*/
static void usb_set_lpm_mel(struct usb_device *udev,
struct usb3_lpm_parameters *udev_lpm_params,
unsigned int udev_exit_latency,
struct usb_hub *hub,
struct usb3_lpm_parameters *hub_lpm_params,
unsigned int hub_exit_latency)
{
unsigned int total_mel;
unsigned int device_mel;
unsigned int hub_mel;
/*
* Calculate the time it takes to transition all links from the roothub
* to the parent hub into U0. The parent hub must then decode the
* packet (hub header decode latency) to figure out which port it was
* bound for.
*
* The Hub Header decode latency is expressed in 0.1us intervals (0x1
* means 0.1us). Multiply that by 100 to get nanoseconds.
*/
total_mel = hub_lpm_params->mel +
(hub->descriptor->u.ss.bHubHdrDecLat * 100);
/*
* How long will it take to transition the downstream hub's port into
* U0? The greater of either the hub exit latency or the device exit
* latency.
*
* The BOS U1/U2 exit latencies are expressed in 1us intervals.
* Multiply that by 1000 to get nanoseconds.
*/
device_mel = udev_exit_latency * 1000;
hub_mel = hub_exit_latency * 1000;
if (device_mel > hub_mel)
total_mel += device_mel;
else
total_mel += hub_mel;
udev_lpm_params->mel = total_mel;
}
/*
* Set the maximum Device to Host Exit Latency (PEL) for the device to initiate
* a transition from either U1 or U2.
*/
static void usb_set_lpm_pel(struct usb_device *udev,
struct usb3_lpm_parameters *udev_lpm_params,
unsigned int udev_exit_latency,
struct usb_hub *hub,
struct usb3_lpm_parameters *hub_lpm_params,
unsigned int hub_exit_latency,
unsigned int port_to_port_exit_latency)
{
unsigned int first_link_pel;
unsigned int hub_pel;
/*
* First, the device sends an LFPS to transition the link between the
* device and the parent hub into U0. The exit latency is the bigger of
* the device exit latency or the hub exit latency.
*/
if (udev_exit_latency > hub_exit_latency)
first_link_pel = udev_exit_latency * 1000;
else
first_link_pel = hub_exit_latency * 1000;
/*
* When the hub starts to receive the LFPS, there is a slight delay for
* it to figure out that one of the ports is sending an LFPS. Then it
* will forward the LFPS to its upstream link. The exit latency is the
* delay, plus the PEL that we calculated for this hub.
*/
hub_pel = port_to_port_exit_latency * 1000 + hub_lpm_params->pel;
/*
* According to figure C-7 in the USB 3.0 spec, the PEL for this device
* is the greater of the two exit latencies.
*/
if (first_link_pel > hub_pel)
udev_lpm_params->pel = first_link_pel;
else
udev_lpm_params->pel = hub_pel;
}
/*
* Set the System Exit Latency (SEL) to indicate the total worst-case time from
* when a device initiates a transition to U0, until when it will receive the
* first packet from the host controller.
*
* Section C.1.5.1 describes the four components to this:
* - t1: device PEL
* - t2: time for the ERDY to make it from the device to the host.
* - t3: a host-specific delay to process the ERDY.
* - t4: time for the packet to make it from the host to the device.
*
* t3 is specific to both the xHCI host and the platform the host is integrated
* into. The Intel HW folks have said it's negligible, FIXME if a different
* vendor says otherwise.
*/
static void usb_set_lpm_sel(struct usb_device *udev,
struct usb3_lpm_parameters *udev_lpm_params)
{
struct usb_device *parent;
unsigned int num_hubs;
unsigned int total_sel;
/* t1 = device PEL */
total_sel = udev_lpm_params->pel;
/* How many external hubs are in between the device & the root port. */
for (parent = udev->parent, num_hubs = 0; parent->parent;
parent = parent->parent)
num_hubs++;
/* t2 = 2.1us + 250ns * (num_hubs - 1) */
if (num_hubs > 0)
total_sel += 2100 + 250 * (num_hubs - 1);
/* t4 = 250ns * num_hubs */
total_sel += 250 * num_hubs;
udev_lpm_params->sel = total_sel;
}
static void usb_set_lpm_parameters(struct usb_device *udev)
{
struct usb_hub *hub;
unsigned int port_to_port_delay;
unsigned int udev_u1_del;
unsigned int udev_u2_del;
unsigned int hub_u1_del;
unsigned int hub_u2_del;
if (!udev->lpm_capable || udev->speed != USB_SPEED_SUPER)
return;
hub = hdev_to_hub(udev->parent);
/* It doesn't take time to transition the roothub into U0, since it
* doesn't have an upstream link.
*/
if (!hub)
return;
udev_u1_del = udev->bos->ss_cap->bU1devExitLat;
udev_u2_del = udev->bos->ss_cap->bU2DevExitLat;
hub_u1_del = udev->parent->bos->ss_cap->bU1devExitLat;
hub_u2_del = udev->parent->bos->ss_cap->bU2DevExitLat;
usb_set_lpm_mel(udev, &udev->u1_params, udev_u1_del,
hub, &udev->parent->u1_params, hub_u1_del);
usb_set_lpm_mel(udev, &udev->u2_params, udev_u2_del,
hub, &udev->parent->u2_params, hub_u2_del);
/*
* Appendix C, section C.2.2.2, says that there is a slight delay from
* when the parent hub notices the downstream port is trying to
* transition to U0 to when the hub initiates a U0 transition on its
* upstream port. The section says the delays are tPort2PortU1EL and
* tPort2PortU2EL, but it doesn't define what they are.
*
* The hub chapter, sections 10.4.2.4 and 10.4.2.5 seem to be talking
* about the same delays. Use the maximum delay calculations from those
* sections. For U1, it's tHubPort2PortExitLat, which is 1us max. For
* U2, it's tHubPort2PortExitLat + U2DevExitLat - U1DevExitLat. I
* assume the device exit latencies they are talking about are the hub
* exit latencies.
*
* What do we do if the U2 exit latency is less than the U1 exit
* latency? It's possible, although not likely...
*/
port_to_port_delay = 1;
usb_set_lpm_pel(udev, &udev->u1_params, udev_u1_del,
hub, &udev->parent->u1_params, hub_u1_del,
port_to_port_delay);
if (hub_u2_del > hub_u1_del)
port_to_port_delay = 1 + hub_u2_del - hub_u1_del;
else
port_to_port_delay = 1 + hub_u1_del;
usb_set_lpm_pel(udev, &udev->u2_params, udev_u2_del,
hub, &udev->parent->u2_params, hub_u2_del,
port_to_port_delay);
/* Now that we've got PEL, calculate SEL. */
usb_set_lpm_sel(udev, &udev->u1_params);
usb_set_lpm_sel(udev, &udev->u2_params);
}
/* USB 2.0 spec Section 11.24.4.5 */
static int get_hub_descriptor(struct usb_device *hdev, void *data)
{
int i, ret, size;
unsigned dtype;
if (hub_is_superspeed(hdev)) {
dtype = USB_DT_SS_HUB;
size = USB_DT_SS_HUB_SIZE;
} else {
dtype = USB_DT_HUB;
size = sizeof(struct usb_hub_descriptor);
}
for (i = 0; i < 3; i++) {
ret = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB,
dtype << 8, 0, data, size,
USB_CTRL_GET_TIMEOUT);
if (ret >= (USB_DT_HUB_NONVAR_SIZE + 2))
return ret;
}
return -EINVAL;
}
/*
* USB 2.0 spec Section 11.24.2.1
*/
static int clear_hub_feature(struct usb_device *hdev, int feature)
{
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
USB_REQ_CLEAR_FEATURE, USB_RT_HUB, feature, 0, NULL, 0, 1000);
}
/*
* USB 2.0 spec Section 11.24.2.2
*/
static int clear_port_feature(struct usb_device *hdev, int port1, int feature)
{
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
USB_REQ_CLEAR_FEATURE, USB_RT_PORT, feature, port1,
NULL, 0, 1000);
}
/*
* USB 2.0 spec Section 11.24.2.13
*/
static int set_port_feature(struct usb_device *hdev, int port1, int feature)
{
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
USB_REQ_SET_FEATURE, USB_RT_PORT, feature, port1,
NULL, 0, 1000);
}
/*
* USB 2.0 spec Section 11.24.2.7.1.10 and table 11-7
* for info about using port indicators
*/
static void set_port_led(
struct usb_hub *hub,
int port1,
int selector
)
{
int status = set_port_feature(hub->hdev, (selector << 8) | port1,
USB_PORT_FEAT_INDICATOR);
if (status < 0)
dev_dbg (hub->intfdev,
"port %d indicator %s status %d\n",
port1,
({ char *s; switch (selector) {
case HUB_LED_AMBER: s = "amber"; break;
case HUB_LED_GREEN: s = "green"; break;
case HUB_LED_OFF: s = "off"; break;
case HUB_LED_AUTO: s = "auto"; break;
default: s = "??"; break;
}; s; }),
status);
}
#define LED_CYCLE_PERIOD ((2*HZ)/3)
static void led_work (struct work_struct *work)
{
struct usb_hub *hub =
container_of(work, struct usb_hub, leds.work);
struct usb_device *hdev = hub->hdev;
unsigned i;
unsigned changed = 0;
int cursor = -1;
if (hdev->state != USB_STATE_CONFIGURED || hub->quiescing)
return;
for (i = 0; i < hub->descriptor->bNbrPorts; i++) {
unsigned selector, mode;
/* 30%-50% duty cycle */
switch (hub->indicator[i]) {
/* cycle marker */
case INDICATOR_CYCLE:
cursor = i;
selector = HUB_LED_AUTO;
mode = INDICATOR_AUTO;
break;
/* blinking green = sw attention */
case INDICATOR_GREEN_BLINK:
selector = HUB_LED_GREEN;
mode = INDICATOR_GREEN_BLINK_OFF;
break;
case INDICATOR_GREEN_BLINK_OFF:
selector = HUB_LED_OFF;
mode = INDICATOR_GREEN_BLINK;
break;
/* blinking amber = hw attention */
case INDICATOR_AMBER_BLINK:
selector = HUB_LED_AMBER;
mode = INDICATOR_AMBER_BLINK_OFF;
break;
case INDICATOR_AMBER_BLINK_OFF:
selector = HUB_LED_OFF;
mode = INDICATOR_AMBER_BLINK;
break;
/* blink green/amber = reserved */
case INDICATOR_ALT_BLINK:
selector = HUB_LED_GREEN;
mode = INDICATOR_ALT_BLINK_OFF;
break;
case INDICATOR_ALT_BLINK_OFF:
selector = HUB_LED_AMBER;
mode = INDICATOR_ALT_BLINK;
break;
default:
continue;
}
if (selector != HUB_LED_AUTO)
changed = 1;
set_port_led(hub, i + 1, selector);
hub->indicator[i] = mode;
}
if (!changed && blinkenlights) {
cursor++;
cursor %= hub->descriptor->bNbrPorts;
set_port_led(hub, cursor + 1, HUB_LED_GREEN);
hub->indicator[cursor] = INDICATOR_CYCLE;
changed++;
}
if (changed)
schedule_delayed_work(&hub->leds, LED_CYCLE_PERIOD);
}
/* use a short timeout for hub/port status fetches */
#define USB_STS_TIMEOUT 1000
#define USB_STS_RETRIES 5
/*
* USB 2.0 spec Section 11.24.2.6
*/
static int get_hub_status(struct usb_device *hdev,
struct usb_hub_status *data)
{
int i, status = -ETIMEDOUT;
for (i = 0; i < USB_STS_RETRIES &&
(status == -ETIMEDOUT || status == -EPIPE); i++) {
status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_HUB, 0, 0,
data, sizeof(*data), USB_STS_TIMEOUT);
}
return status;
}
/*
* USB 2.0 spec Section 11.24.2.7
*/
static int get_port_status(struct usb_device *hdev, int port1,
struct usb_port_status *data)
{
int i, status = -ETIMEDOUT;
for (i = 0; i < USB_STS_RETRIES &&
(status == -ETIMEDOUT || status == -EPIPE); i++) {
status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, 0, port1,
data, sizeof(*data), USB_STS_TIMEOUT);
}
return status;
}
static int hub_port_status(struct usb_hub *hub, int port1,
u16 *status, u16 *change)
{
int ret;
mutex_lock(&hub->status_mutex);
ret = get_port_status(hub->hdev, port1, &hub->status->port);
if (ret < 4) {
dev_err(hub->intfdev,
"%s failed (err = %d)\n", __func__, ret);
if (ret >= 0)
ret = -EIO;
} else {
*status = le16_to_cpu(hub->status->port.wPortStatus);
*change = le16_to_cpu(hub->status->port.wPortChange);
ret = 0;
}
mutex_unlock(&hub->status_mutex);
return ret;
}
static void kick_khubd(struct usb_hub *hub)
{
unsigned long flags;
spin_lock_irqsave(&hub_event_lock, flags);
if (!hub->disconnected && list_empty(&hub->event_list)) {
list_add_tail(&hub->event_list, &hub_event_list);
/* Suppress autosuspend until khubd runs */
usb_autopm_get_interface_no_resume(
to_usb_interface(hub->intfdev));
wake_up(&khubd_wait);
}
spin_unlock_irqrestore(&hub_event_lock, flags);
}
void usb_kick_khubd(struct usb_device *hdev)
{
struct usb_hub *hub = hdev_to_hub(hdev);
if (hub)
kick_khubd(hub);
}
/*
* Let the USB core know that a USB 3.0 device has sent a Function Wake Device
* Notification, which indicates it had initiated remote wakeup.
*
* USB 3.0 hubs do not report the port link state change from U3 to U0 when the
* device initiates resume, so the USB core will not receive notice of the
* resume through the normal hub interrupt URB.
*/
void usb_wakeup_notification(struct usb_device *hdev,
unsigned int portnum)
{
struct usb_hub *hub;
if (!hdev)
return;
hub = hdev_to_hub(hdev);
if (hub) {
set_bit(portnum, hub->wakeup_bits);
kick_khubd(hub);
}
}
EXPORT_SYMBOL_GPL(usb_wakeup_notification);
/* completion function, fires on port status changes and various faults */
static void hub_irq(struct urb *urb)
{
struct usb_hub *hub = urb->context;
int status = urb->status;
unsigned i;
unsigned long bits;
switch (status) {
case -ENOENT: /* synchronous unlink */
case -ECONNRESET: /* async unlink */
case -ESHUTDOWN: /* hardware going away */
return;
default: /* presumably an error */
/* Cause a hub reset after 10 consecutive errors */
dev_dbg (hub->intfdev, "transfer --> %d\n", status);
if ((++hub->nerrors < 10) || hub->error)
goto resubmit;
hub->error = status;
/* FALL THROUGH */
/* let khubd handle things */
case 0: /* we got data: port status changed */
bits = 0;
for (i = 0; i < urb->actual_length; ++i)
bits |= ((unsigned long) ((*hub->buffer)[i]))
<< (i*8);
hub->event_bits[0] = bits;
break;
}
hub->nerrors = 0;
/* Something happened, let khubd figure it out */
kick_khubd(hub);
resubmit:
if (hub->quiescing)
return;
if ((status = usb_submit_urb (hub->urb, GFP_ATOMIC)) != 0
&& status != -ENODEV && status != -EPERM)
dev_err (hub->intfdev, "resubmit --> %d\n", status);
}
/* USB 2.0 spec Section 11.24.2.3 */
static inline int
hub_clear_tt_buffer (struct usb_device *hdev, u16 devinfo, u16 tt)
{
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
HUB_CLEAR_TT_BUFFER, USB_RT_PORT, devinfo,
tt, NULL, 0, 1000);
}
/*
* enumeration blocks khubd for a long time. we use keventd instead, since
* long blocking there is the exception, not the rule. accordingly, HCDs
* talking to TTs must queue control transfers (not just bulk and iso), so
* both can talk to the same hub concurrently.
*/
static void hub_tt_work(struct work_struct *work)
{
struct usb_hub *hub =
container_of(work, struct usb_hub, tt.clear_work);
unsigned long flags;
int limit = 100;
spin_lock_irqsave (&hub->tt.lock, flags);
while (--limit && !list_empty (&hub->tt.clear_list)) {
struct list_head *next;
struct usb_tt_clear *clear;
struct usb_device *hdev = hub->hdev;
const struct hc_driver *drv;
int status;
next = hub->tt.clear_list.next;
clear = list_entry (next, struct usb_tt_clear, clear_list);
list_del (&clear->clear_list);
/* drop lock so HCD can concurrently report other TT errors */
spin_unlock_irqrestore (&hub->tt.lock, flags);
status = hub_clear_tt_buffer (hdev, clear->devinfo, clear->tt);
if (status)
dev_err (&hdev->dev,
"clear tt %d (%04x) error %d\n",
clear->tt, clear->devinfo, status);
/* Tell the HCD, even if the operation failed */
drv = clear->hcd->driver;
if (drv->clear_tt_buffer_complete)
(drv->clear_tt_buffer_complete)(clear->hcd, clear->ep);
kfree(clear);
spin_lock_irqsave(&hub->tt.lock, flags);
}
spin_unlock_irqrestore (&hub->tt.lock, flags);
}
/**
* usb_hub_clear_tt_buffer - clear control/bulk TT state in high speed hub
* @urb: an URB associated with the failed or incomplete split transaction
*
* High speed HCDs use this to tell the hub driver that some split control or
* bulk transaction failed in a way that requires clearing internal state of
* a transaction translator. This is normally detected (and reported) from
* interrupt context.
*
* It may not be possible for that hub to handle additional full (or low)
* speed transactions until that state is fully cleared out.
*/
int usb_hub_clear_tt_buffer(struct urb *urb)
{
struct usb_device *udev = urb->dev;
int pipe = urb->pipe;
struct usb_tt *tt = udev->tt;
unsigned long flags;
struct usb_tt_clear *clear;
/* we've got to cope with an arbitrary number of pending TT clears,
* since each TT has "at least two" buffers that can need it (and
* there can be many TTs per hub). even if they're uncommon.
*/
if ((clear = kmalloc (sizeof *clear, GFP_ATOMIC)) == NULL) {
dev_err (&udev->dev, "can't save CLEAR_TT_BUFFER state\n");
/* FIXME recover somehow ... RESET_TT? */
return -ENOMEM;
}
/* info that CLEAR_TT_BUFFER needs */
clear->tt = tt->multi ? udev->ttport : 1;
clear->devinfo = usb_pipeendpoint (pipe);
clear->devinfo |= udev->devnum << 4;
clear->devinfo |= usb_pipecontrol (pipe)
? (USB_ENDPOINT_XFER_CONTROL << 11)
: (USB_ENDPOINT_XFER_BULK << 11);
if (usb_pipein (pipe))
clear->devinfo |= 1 << 15;
/* info for completion callback */
clear->hcd = bus_to_hcd(udev->bus);
clear->ep = urb->ep;
/* tell keventd to clear state for this TT */
spin_lock_irqsave (&tt->lock, flags);
list_add_tail (&clear->clear_list, &tt->clear_list);
schedule_work(&tt->clear_work);
spin_unlock_irqrestore (&tt->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(usb_hub_clear_tt_buffer);
/* If do_delay is false, return the number of milliseconds the caller
* needs to delay.
*/
static unsigned hub_power_on(struct usb_hub *hub, bool do_delay)
{
int port1;
unsigned pgood_delay = hub->descriptor->bPwrOn2PwrGood * 2;
unsigned delay;
u16 wHubCharacteristics =
le16_to_cpu(hub->descriptor->wHubCharacteristics);
/* Enable power on each port. Some hubs have reserved values
* of LPSM (> 2) in their descriptors, even though they are
* USB 2.0 hubs. Some hubs do not implement port-power switching
* but only emulate it. In all cases, the ports won't work
* unless we send these messages to the hub.
*/
if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2)
dev_dbg(hub->intfdev, "enabling power on all ports\n");
else
dev_dbg(hub->intfdev, "trying to enable port power on "
"non-switchable hub\n");
for (port1 = 1; port1 <= hub->descriptor->bNbrPorts; port1++)
set_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER);
/* Wait at least 100 msec for power to become stable */
delay = max(pgood_delay, (unsigned) 100);
if (do_delay)
msleep(delay);
return delay;
}
static int hub_hub_status(struct usb_hub *hub,
u16 *status, u16 *change)
{
int ret;
mutex_lock(&hub->status_mutex);
ret = get_hub_status(hub->hdev, &hub->status->hub);
if (ret < 0)
dev_err (hub->intfdev,
"%s failed (err = %d)\n", __func__, ret);
else {
*status = le16_to_cpu(hub->status->hub.wHubStatus);
*change = le16_to_cpu(hub->status->hub.wHubChange);
ret = 0;
}
mutex_unlock(&hub->status_mutex);
return ret;
}
static int hub_port_disable(struct usb_hub *hub, int port1, int set_state)
{
struct usb_device *hdev = hub->hdev;
int ret = 0;
if (hdev->children[port1-1] && set_state)
usb_set_device_state(hdev->children[port1-1],
USB_STATE_NOTATTACHED);
if (!hub->error && !hub_is_superspeed(hub->hdev))
ret = clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE);
if (ret)
dev_err(hub->intfdev, "cannot disable port %d (err = %d)\n",
port1, ret);
return ret;
}
/*
* Disable a port and mark a logical connect-change event, so that some
* time later khubd will disconnect() any existing usb_device on the port
* and will re-enumerate if there actually is a device attached.
*/
static void hub_port_logical_disconnect(struct usb_hub *hub, int port1)
{
dev_dbg(hub->intfdev, "logical disconnect on port %d\n", port1);
hub_port_disable(hub, port1, 1);
/* FIXME let caller ask to power down the port:
* - some devices won't enumerate without a VBUS power cycle
* - SRP saves power that way
* - ... new call, TBD ...
* That's easy if this hub can switch power per-port, and
* khubd reactivates the port later (timer, SRP, etc).
* Powerdown must be optional, because of reset/DFU.
*/
set_bit(port1, hub->change_bits);
kick_khubd(hub);
}
/**
* usb_remove_device - disable a device's port on its parent hub
* @udev: device to be disabled and removed
* Context: @udev locked, must be able to sleep.
*
* After @udev's port has been disabled, khubd is notified and it will
* see that the device has been disconnected. When the device is
* physically unplugged and something is plugged in, the events will
* be received and processed normally.
*/
int usb_remove_device(struct usb_device *udev)
{
struct usb_hub *hub;
struct usb_interface *intf;
if (!udev->parent) /* Can't remove a root hub */
return -EINVAL;
hub = hdev_to_hub(udev->parent);
intf = to_usb_interface(hub->intfdev);
usb_autopm_get_interface(intf);
set_bit(udev->portnum, hub->removed_bits);
hub_port_logical_disconnect(hub, udev->portnum);
usb_autopm_put_interface(intf);
return 0;
}
enum hub_activation_type {
HUB_INIT, HUB_INIT2, HUB_INIT3, /* INITs must come first */
HUB_POST_RESET, HUB_RESUME, HUB_RESET_RESUME,
};
static void hub_init_func2(struct work_struct *ws);
static void hub_init_func3(struct work_struct *ws);
static void hub_activate(struct usb_hub *hub, enum hub_activation_type type)
{
struct usb_device *hdev = hub->hdev;
struct usb_hcd *hcd;
int ret;
int port1;
int status;
bool need_debounce_delay = false;
unsigned delay;
/* Continue a partial initialization */
if (type == HUB_INIT2)
goto init2;
if (type == HUB_INIT3)
goto init3;
/* The superspeed hub except for root hub has to use Hub Depth
* value as an offset into the route string to locate the bits
* it uses to determine the downstream port number. So hub driver
* should send a set hub depth request to superspeed hub after
* the superspeed hub is set configuration in initialization or
* reset procedure.
*
* After a resume, port power should still be on.
* For any other type of activation, turn it on.
*/
if (type != HUB_RESUME) {
if (hdev->parent && hub_is_superspeed(hdev)) {
ret = usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
HUB_SET_DEPTH, USB_RT_HUB,
hdev->level - 1, 0, NULL, 0,
USB_CTRL_SET_TIMEOUT);
if (ret < 0)
dev_err(hub->intfdev,
"set hub depth failed\n");
}
/* Speed up system boot by using a delayed_work for the
* hub's initial power-up delays. This is pretty awkward
* and the implementation looks like a home-brewed sort of
* setjmp/longjmp, but it saves at least 100 ms for each
* root hub (assuming usbcore is compiled into the kernel
* rather than as a module). It adds up.
*
* This can't be done for HUB_RESUME or HUB_RESET_RESUME
* because for those activation types the ports have to be
* operational when we return. In theory this could be done
* for HUB_POST_RESET, but it's easier not to.
*/
if (type == HUB_INIT) {
delay = hub_power_on(hub, false);
PREPARE_DELAYED_WORK(&hub->init_work, hub_init_func2);
schedule_delayed_work(&hub->init_work,
msecs_to_jiffies(delay));
/* Suppress autosuspend until init is done */
usb_autopm_get_interface_no_resume(
to_usb_interface(hub->intfdev));
return; /* Continues at init2: below */
} else if (type == HUB_RESET_RESUME) {
/* The internal host controller state for the hub device
* may be gone after a host power loss on system resume.
* Update the device's info so the HW knows it's a hub.
*/
hcd = bus_to_hcd(hdev->bus);
if (hcd->driver->update_hub_device) {
ret = hcd->driver->update_hub_device(hcd, hdev,
&hub->tt, GFP_NOIO);
if (ret < 0) {
dev_err(hub->intfdev, "Host not "
"accepting hub info "
"update.\n");
dev_err(hub->intfdev, "LS/FS devices "
"and hubs may not work "
"under this hub\n.");
}
}
hub_power_on(hub, true);
} else {
hub_power_on(hub, true);
}
}
init2:
/* Check each port and set hub->change_bits to let khubd know
* which ports need attention.
*/
for (port1 = 1; port1 <= hdev->maxchild; ++port1) {
struct usb_device *udev = hdev->children[port1-1];
u16 portstatus, portchange;
portstatus = portchange = 0;
status = hub_port_status(hub, port1, &portstatus, &portchange);
if (udev || (portstatus & USB_PORT_STAT_CONNECTION))
dev_dbg(hub->intfdev,
"port %d: status %04x change %04x\n",
port1, portstatus, portchange);
/* After anything other than HUB_RESUME (i.e., initialization
* or any sort of reset), every port should be disabled.
* Unconnected ports should likewise be disabled (paranoia),
* and so should ports for which we have no usb_device.
*/
if ((portstatus & USB_PORT_STAT_ENABLE) && (
type != HUB_RESUME ||
!(portstatus & USB_PORT_STAT_CONNECTION) ||
!udev ||
udev->state == USB_STATE_NOTATTACHED)) {
/*
* USB3 protocol ports will automatically transition
* to Enabled state when detect an USB3.0 device attach.
* Do not disable USB3 protocol ports.
*/
if (!hub_is_superspeed(hdev)) {
clear_port_feature(hdev, port1,
USB_PORT_FEAT_ENABLE);
portstatus &= ~USB_PORT_STAT_ENABLE;
} else {
/* Pretend that power was lost for USB3 devs */
portstatus &= ~USB_PORT_STAT_ENABLE;
}
}
/* Clear status-change flags; we'll debounce later */
if (portchange & USB_PORT_STAT_C_CONNECTION) {
need_debounce_delay = true;
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_CONNECTION);
}
if (portchange & USB_PORT_STAT_C_ENABLE) {
need_debounce_delay = true;
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_ENABLE);
}
if ((portchange & USB_PORT_STAT_C_BH_RESET) &&
hub_is_superspeed(hub->hdev)) {
need_debounce_delay = true;
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_BH_PORT_RESET);
}
/* We can forget about a "removed" device when there's a
* physical disconnect or the connect status changes.
*/
if (!(portstatus & USB_PORT_STAT_CONNECTION) ||
(portchange & USB_PORT_STAT_C_CONNECTION))
clear_bit(port1, hub->removed_bits);
if (!udev || udev->state == USB_STATE_NOTATTACHED) {
/* Tell khubd to disconnect the device or
* check for a new connection
*/
if (udev || (portstatus & USB_PORT_STAT_CONNECTION))
set_bit(port1, hub->change_bits);
} else if (portstatus & USB_PORT_STAT_ENABLE) {
bool port_resumed = (portstatus &
USB_PORT_STAT_LINK_STATE) ==
USB_SS_PORT_LS_U0;
/* The power session apparently survived the resume.
* If there was an overcurrent or suspend change
* (i.e., remote wakeup request), have khubd
* take care of it. Look at the port link state
* for USB 3.0 hubs, since they don't have a suspend
* change bit, and they don't set the port link change
* bit on device-initiated resume.
*/
if (portchange || (hub_is_superspeed(hub->hdev) &&
port_resumed))
set_bit(port1, hub->change_bits);
} else if (udev->persist_enabled) {
#ifdef CONFIG_PM
udev->reset_resume = 1;
#endif
set_bit(port1, hub->change_bits);
} else {
/* The power session is gone; tell khubd */
usb_set_device_state(udev, USB_STATE_NOTATTACHED);
set_bit(port1, hub->change_bits);
}
}
/* If no port-status-change flags were set, we don't need any
* debouncing. If flags were set we can try to debounce the
* ports all at once right now, instead of letting khubd do them
* one at a time later on.
*
* If any port-status changes do occur during this delay, khubd
* will see them later and handle them normally.
*/
if (need_debounce_delay) {
delay = HUB_DEBOUNCE_STABLE;
/* Don't do a long sleep inside a workqueue routine */
if (type == HUB_INIT2) {
PREPARE_DELAYED_WORK(&hub->init_work, hub_init_func3);
schedule_delayed_work(&hub->init_work,
msecs_to_jiffies(delay));
return; /* Continues at init3: below */
} else {
msleep(delay);
}
}
init3:
hub->quiescing = 0;
status = usb_submit_urb(hub->urb, GFP_NOIO);
if (status < 0)
dev_err(hub->intfdev, "activate --> %d\n", status);
if (hub->has_indicators && blinkenlights)
schedule_delayed_work(&hub->leds, LED_CYCLE_PERIOD);
/* Scan all ports that need attention */
kick_khubd(hub);
/* Allow autosuspend if it was suppressed */
if (type <= HUB_INIT3)
usb_autopm_put_interface_async(to_usb_interface(hub->intfdev));
}
/* Implement the continuations for the delays above */
static void hub_init_func2(struct work_struct *ws)
{
struct usb_hub *hub = container_of(ws, struct usb_hub, init_work.work);
hub_activate(hub, HUB_INIT2);
}
static void hub_init_func3(struct work_struct *ws)
{
struct usb_hub *hub = container_of(ws, struct usb_hub, init_work.work);
hub_activate(hub, HUB_INIT3);
}
enum hub_quiescing_type {
HUB_DISCONNECT, HUB_PRE_RESET, HUB_SUSPEND
};
static void hub_quiesce(struct usb_hub *hub, enum hub_quiescing_type type)
{
struct usb_device *hdev = hub->hdev;
int i;
cancel_delayed_work_sync(&hub->init_work);
/* khubd and related activity won't re-trigger */
hub->quiescing = 1;
if (type != HUB_SUSPEND) {
/* Disconnect all the children */
for (i = 0; i < hdev->maxchild; ++i) {
if (hdev->children[i])
usb_disconnect(&hdev->children[i]);
}
}
/* Stop khubd and related activity */
usb_kill_urb(hub->urb);
if (hub->has_indicators)
cancel_delayed_work_sync(&hub->leds);
if (hub->tt.hub)
cancel_work_sync(&hub->tt.clear_work);
}
/* caller has locked the hub device */
static int hub_pre_reset(struct usb_interface *intf)
{
struct usb_hub *hub = usb_get_intfdata(intf);
hub_quiesce(hub, HUB_PRE_RESET);
return 0;
}
/* caller has locked the hub device */
static int hub_post_reset(struct usb_interface *intf)
{
struct usb_hub *hub = usb_get_intfdata(intf);
hub_activate(hub, HUB_POST_RESET);
return 0;
}
static int hub_configure(struct usb_hub *hub,
struct usb_endpoint_descriptor *endpoint)
{
struct usb_hcd *hcd;
struct usb_device *hdev = hub->hdev;
struct device *hub_dev = hub->intfdev;
u16 hubstatus, hubchange;
u16 wHubCharacteristics;
unsigned int pipe;
int maxp, ret;
char *message = "out of memory";
hub->buffer = kmalloc(sizeof(*hub->buffer), GFP_KERNEL);
if (!hub->buffer) {
ret = -ENOMEM;
goto fail;
}
hub->status = kmalloc(sizeof(*hub->status), GFP_KERNEL);
if (!hub->status) {
ret = -ENOMEM;
goto fail;
}
mutex_init(&hub->status_mutex);
hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);
if (!hub->descriptor) {
ret = -ENOMEM;
goto fail;
}
/* Request the entire hub descriptor.
* hub->descriptor can handle USB_MAXCHILDREN ports,
* but the hub can/will return fewer bytes here.
*/
ret = get_hub_descriptor(hdev, hub->descriptor);
if (ret < 0) {
message = "can't read hub descriptor";
goto fail;
} else if (hub->descriptor->bNbrPorts > USB_MAXCHILDREN) {
message = "hub has too many ports!";
ret = -ENODEV;
goto fail;
}
hdev->maxchild = hub->descriptor->bNbrPorts;
dev_info (hub_dev, "%d port%s detected\n", hdev->maxchild,
(hdev->maxchild == 1) ? "" : "s");
hdev->children = kzalloc(hdev->maxchild *
sizeof(struct usb_device *), GFP_KERNEL);
hub->port_owners = kzalloc(hdev->maxchild * sizeof(struct dev_state *),
GFP_KERNEL);
if (!hdev->children || !hub->port_owners) {
ret = -ENOMEM;
goto fail;
}
wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics);
/* FIXME for USB 3.0, skip for now */
if ((wHubCharacteristics & HUB_CHAR_COMPOUND) &&
!(hub_is_superspeed(hdev))) {
int i;
char portstr [USB_MAXCHILDREN + 1];
for (i = 0; i < hdev->maxchild; i++)
portstr[i] = hub->descriptor->u.hs.DeviceRemovable
[((i + 1) / 8)] & (1 << ((i + 1) % 8))
? 'F' : 'R';
portstr[hdev->maxchild] = 0;
dev_dbg(hub_dev, "compound device; port removable status: %s\n", portstr);
} else
dev_dbg(hub_dev, "standalone hub\n");
switch (wHubCharacteristics & HUB_CHAR_LPSM) {
case HUB_CHAR_COMMON_LPSM:
dev_dbg(hub_dev, "ganged power switching\n");
break;
case HUB_CHAR_INDV_PORT_LPSM:
dev_dbg(hub_dev, "individual port power switching\n");
break;
case HUB_CHAR_NO_LPSM:
case HUB_CHAR_LPSM:
dev_dbg(hub_dev, "no power switching (usb 1.0)\n");
break;
}
switch (wHubCharacteristics & HUB_CHAR_OCPM) {
case HUB_CHAR_COMMON_OCPM:
dev_dbg(hub_dev, "global over-current protection\n");
break;
case HUB_CHAR_INDV_PORT_OCPM:
dev_dbg(hub_dev, "individual port over-current protection\n");
break;
case HUB_CHAR_NO_OCPM:
case HUB_CHAR_OCPM:
dev_dbg(hub_dev, "no over-current protection\n");
break;
}
spin_lock_init (&hub->tt.lock);
INIT_LIST_HEAD (&hub->tt.clear_list);
INIT_WORK(&hub->tt.clear_work, hub_tt_work);
switch (hdev->descriptor.bDeviceProtocol) {
case USB_HUB_PR_FS:
break;
case USB_HUB_PR_HS_SINGLE_TT:
dev_dbg(hub_dev, "Single TT\n");
hub->tt.hub = hdev;
break;
case USB_HUB_PR_HS_MULTI_TT:
ret = usb_set_interface(hdev, 0, 1);
if (ret == 0) {
dev_dbg(hub_dev, "TT per port\n");
hub->tt.multi = 1;
} else
dev_err(hub_dev, "Using single TT (err %d)\n",
ret);
hub->tt.hub = hdev;
break;
case USB_HUB_PR_SS:
/* USB 3.0 hubs don't have a TT */
break;
default:
dev_dbg(hub_dev, "Unrecognized hub protocol %d\n",
hdev->descriptor.bDeviceProtocol);
break;
}
/* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns */
switch (wHubCharacteristics & HUB_CHAR_TTTT) {
case HUB_TTTT_8_BITS:
if (hdev->descriptor.bDeviceProtocol != 0) {
hub->tt.think_time = 666;
dev_dbg(hub_dev, "TT requires at most %d "
"FS bit times (%d ns)\n",
8, hub->tt.think_time);
}
break;
case HUB_TTTT_16_BITS:
hub->tt.think_time = 666 * 2;
dev_dbg(hub_dev, "TT requires at most %d "
"FS bit times (%d ns)\n",
16, hub->tt.think_time);
break;
case HUB_TTTT_24_BITS:
hub->tt.think_time = 666 * 3;
dev_dbg(hub_dev, "TT requires at most %d "
"FS bit times (%d ns)\n",
24, hub->tt.think_time);
break;
case HUB_TTTT_32_BITS:
hub->tt.think_time = 666 * 4;
dev_dbg(hub_dev, "TT requires at most %d "
"FS bit times (%d ns)\n",
32, hub->tt.think_time);
break;
}
/* probe() zeroes hub->indicator[] */
if (wHubCharacteristics & HUB_CHAR_PORTIND) {
hub->has_indicators = 1;
dev_dbg(hub_dev, "Port indicators are supported\n");
}
dev_dbg(hub_dev, "power on to power good time: %dms\n",
hub->descriptor->bPwrOn2PwrGood * 2);
/* power budgeting mostly matters with bus-powered hubs,
* and battery-powered root hubs (may provide just 8 mA).
*/
ret = usb_get_status(hdev, USB_RECIP_DEVICE, 0, &hubstatus);
if (ret < 2) {
message = "can't get hub status";
goto fail;
}
le16_to_cpus(&hubstatus);
if (hdev == hdev->bus->root_hub) {
if (hdev->bus_mA == 0 || hdev->bus_mA >= 500)
hub->mA_per_port = 500;
else {
hub->mA_per_port = hdev->bus_mA;
hub->limited_power = 1;
}
} else if ((hubstatus & (1 << USB_DEVICE_SELF_POWERED)) == 0) {
dev_dbg(hub_dev, "hub controller current requirement: %dmA\n",
hub->descriptor->bHubContrCurrent);
hub->limited_power = 1;
if (hdev->maxchild > 0) {
int remaining = hdev->bus_mA -
hub->descriptor->bHubContrCurrent;
if (remaining < hdev->maxchild * 100)
dev_warn(hub_dev,
"insufficient power available "
"to use all downstream ports\n");
hub->mA_per_port = 100; /* 7.2.1.1 */
}
} else { /* Self-powered external hub */
/* FIXME: What about battery-powered external hubs that
* provide less current per port? */
hub->mA_per_port = 500;
}
if (hub->mA_per_port < 500)
dev_dbg(hub_dev, "%umA bus power budget for each child\n",
hub->mA_per_port);
/* Update the HCD's internal representation of this hub before khubd
* starts getting port status changes for devices under the hub.
*/
hcd = bus_to_hcd(hdev->bus);
if (hcd->driver->update_hub_device) {
ret = hcd->driver->update_hub_device(hcd, hdev,
&hub->tt, GFP_KERNEL);
if (ret < 0) {
message = "can't update HCD hub info";
goto fail;
}
}
ret = hub_hub_status(hub, &hubstatus, &hubchange);
if (ret < 0) {
message = "can't get hub status";
goto fail;
}
/* local power status reports aren't always correct */
if (hdev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_SELFPOWER)
dev_dbg(hub_dev, "local power source is %s\n",
(hubstatus & HUB_STATUS_LOCAL_POWER)
? "lost (inactive)" : "good");
if ((wHubCharacteristics & HUB_CHAR_OCPM) == 0)
dev_dbg(hub_dev, "%sover-current condition exists\n",
(hubstatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");
/* set up the interrupt endpoint
* We use the EP's maxpacket size instead of (PORTS+1+7)/8
* bytes as USB2.0[11.12.3] says because some hubs are known
* to send more data (and thus cause overflow). For root hubs,
* maxpktsize is defined in hcd.c's fake endpoint descriptors
* to be big enough for at least USB_MAXCHILDREN ports. */
pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress);
maxp = usb_maxpacket(hdev, pipe, usb_pipeout(pipe));
if (maxp > sizeof(*hub->buffer))
maxp = sizeof(*hub->buffer);
hub->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!hub->urb) {
ret = -ENOMEM;
goto fail;
}
usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq,
hub, endpoint->bInterval);
/* maybe cycle the hub leds */
if (hub->has_indicators && blinkenlights)
hub->indicator [0] = INDICATOR_CYCLE;
hub_activate(hub, HUB_INIT);
return 0;
fail:
dev_err (hub_dev, "config failed, %s (err %d)\n",
message, ret);
/* hub_disconnect() frees urb and descriptor */
return ret;
}
static void hub_release(struct kref *kref)
{
struct usb_hub *hub = container_of(kref, struct usb_hub, kref);
usb_put_intf(to_usb_interface(hub->intfdev));
kfree(hub);
}
static unsigned highspeed_hubs;
static void hub_disconnect(struct usb_interface *intf)
{
struct usb_hub *hub = usb_get_intfdata(intf);
struct usb_device *hdev = interface_to_usbdev(intf);
/* Take the hub off the event list and don't let it be added again */
spin_lock_irq(&hub_event_lock);
if (!list_empty(&hub->event_list)) {
list_del_init(&hub->event_list);
usb_autopm_put_interface_no_suspend(intf);
}
hub->disconnected = 1;
spin_unlock_irq(&hub_event_lock);
/* Disconnect all children and quiesce the hub */
hub->error = 0;
hub_quiesce(hub, HUB_DISCONNECT);
usb_set_intfdata (intf, NULL);
hub->hdev->maxchild = 0;
if (hub->hdev->speed == USB_SPEED_HIGH)
highspeed_hubs--;
usb_free_urb(hub->urb);
kfree(hdev->children);
kfree(hub->port_owners);
kfree(hub->descriptor);
kfree(hub->status);
kfree(hub->buffer);
kref_put(&hub->kref, hub_release);
}
static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
struct usb_host_interface *desc;
struct usb_endpoint_descriptor *endpoint;
struct usb_device *hdev;
struct usb_hub *hub;
desc = intf->cur_altsetting;
hdev = interface_to_usbdev(intf);
/* Hubs have proper suspend/resume support. */
usb_enable_autosuspend(hdev);
if (hdev->level == MAX_TOPO_LEVEL) {
dev_err(&intf->dev,
"Unsupported bus topology: hub nested too deep\n");
return -E2BIG;
}
#ifdef CONFIG_USB_OTG_BLACKLIST_HUB
if (hdev->parent) {
dev_warn(&intf->dev, "ignoring external hub\n");
return -ENODEV;
}
#endif
/* Some hubs have a subclass of 1, which AFAICT according to the */
/* specs is not defined, but it works */
if ((desc->desc.bInterfaceSubClass != 0) &&
(desc->desc.bInterfaceSubClass != 1)) {
descriptor_error:
dev_err (&intf->dev, "bad descriptor, ignoring hub\n");
return -EIO;
}
/* Multiple endpoints? What kind of mutant ninja-hub is this? */
if (desc->desc.bNumEndpoints != 1)
goto descriptor_error;
endpoint = &desc->endpoint[0].desc;
/* If it's not an interrupt in endpoint, we'd better punt! */
if (!usb_endpoint_is_int_in(endpoint))
goto descriptor_error;
/* We found a hub */
dev_info (&intf->dev, "USB hub found\n");
hub = kzalloc(sizeof(*hub), GFP_KERNEL);
if (!hub) {
dev_dbg (&intf->dev, "couldn't kmalloc hub struct\n");
return -ENOMEM;
}
kref_init(&hub->kref);
INIT_LIST_HEAD(&hub->event_list);
hub->intfdev = &intf->dev;
hub->hdev = hdev;
INIT_DELAYED_WORK(&hub->leds, led_work);
INIT_DELAYED_WORK(&hub->init_work, NULL);
usb_get_intf(intf);
usb_set_intfdata (intf, hub);
intf->needs_remote_wakeup = 1;
if (hdev->speed == USB_SPEED_HIGH)
highspeed_hubs++;
if (hub_configure(hub, endpoint) >= 0)
return 0;
hub_disconnect (intf);
return -ENODEV;
}
static int
hub_ioctl(struct usb_interface *intf, unsigned int code, void *user_data)
{
struct usb_device *hdev = interface_to_usbdev (intf);
/* assert ifno == 0 (part of hub spec) */
switch (code) {
case USBDEVFS_HUB_PORTINFO: {
struct usbdevfs_hub_portinfo *info = user_data;
int i;
spin_lock_irq(&device_state_lock);
if (hdev->devnum <= 0)
info->nports = 0;
else {
info->nports = hdev->maxchild;
for (i = 0; i < info->nports; i++) {
if (hdev->children[i] == NULL)
info->port[i] = 0;
else
info->port[i] =
hdev->children[i]->devnum;
}
}
spin_unlock_irq(&device_state_lock);
return info->nports + 1;
}
default:
return -ENOSYS;
}
}
/*
* Allow user programs to claim ports on a hub. When a device is attached
* to one of these "claimed" ports, the program will "own" the device.
*/
static int find_port_owner(struct usb_device *hdev, unsigned port1,
struct dev_state ***ppowner)
{
if (hdev->state == USB_STATE_NOTATTACHED)
return -ENODEV;
if (port1 == 0 || port1 > hdev->maxchild)
return -EINVAL;
/* This assumes that devices not managed by the hub driver
* will always have maxchild equal to 0.
*/
*ppowner = &(hdev_to_hub(hdev)->port_owners[port1 - 1]);
return 0;
}
/* In the following three functions, the caller must hold hdev's lock */
int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
struct dev_state *owner)
{
int rc;
struct dev_state **powner;
rc = find_port_owner(hdev, port1, &powner);
if (rc)
return rc;
if (*powner)
return -EBUSY;
*powner = owner;
return rc;
}
int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
struct dev_state *owner)
{
int rc;
struct dev_state **powner;
rc = find_port_owner(hdev, port1, &powner);
if (rc)
return rc;
if (*powner != owner)
return -ENOENT;
*powner = NULL;
return rc;
}
void usb_hub_release_all_ports(struct usb_device *hdev, struct dev_state *owner)
{
int n;
struct dev_state **powner;
n = find_port_owner(hdev, 1, &powner);
if (n == 0) {
for (; n < hdev->maxchild; (++n, ++powner)) {
if (*powner == owner)
*powner = NULL;
}
}
}
/* The caller must hold udev's lock */
bool usb_device_is_owned(struct usb_device *udev)
{
struct usb_hub *hub;
if (udev->state == USB_STATE_NOTATTACHED || !udev->parent)
return false;
hub = hdev_to_hub(udev->parent);
return !!hub->port_owners[udev->portnum - 1];
}
static void recursively_mark_NOTATTACHED(struct usb_device *udev)
{
int i;
for (i = 0; i < udev->maxchild; ++i) {
if (udev->children[i])
recursively_mark_NOTATTACHED(udev->children[i]);
}
if (udev->state == USB_STATE_SUSPENDED)
udev->active_duration -= jiffies;
udev->state = USB_STATE_NOTATTACHED;
}
/**
* usb_set_device_state - change a device's current state (usbcore, hcds)
* @udev: pointer to device whose state should be changed
* @new_state: new state value to be stored
*
* udev->state is _not_ fully protected by the device lock. Although
* most transitions are made only while holding the lock, the state can
* can change to USB_STATE_NOTATTACHED at almost any time. This
* is so that devices can be marked as disconnected as soon as possible,
* without having to wait for any semaphores to be released. As a result,
* all changes to any device's state must be protected by the
* device_state_lock spinlock.
*
* Once a device has been added to the device tree, all changes to its state
* should be made using this routine. The state should _not_ be set directly.
*
* If udev->state is already USB_STATE_NOTATTACHED then no change is made.
* Otherwise udev->state is set to new_state, and if new_state is
* USB_STATE_NOTATTACHED then all of udev's descendants' states are also set
* to USB_STATE_NOTATTACHED.
*/
void usb_set_device_state(struct usb_device *udev,
enum usb_device_state new_state)
{
unsigned long flags;
int wakeup = -1;
spin_lock_irqsave(&device_state_lock, flags);
if (udev->state == USB_STATE_NOTATTACHED)
; /* do nothing */
else if (new_state != USB_STATE_NOTATTACHED) {
/* root hub wakeup capabilities are managed out-of-band
* and may involve silicon errata ... ignore them here.
*/
if (udev->parent) {
if (udev->state == USB_STATE_SUSPENDED
|| new_state == USB_STATE_SUSPENDED)
; /* No change to wakeup settings */
else if (new_state == USB_STATE_CONFIGURED)
wakeup = udev->actconfig->desc.bmAttributes
& USB_CONFIG_ATT_WAKEUP;
else
wakeup = 0;
}
if (udev->state == USB_STATE_SUSPENDED &&
new_state != USB_STATE_SUSPENDED)
udev->active_duration -= jiffies;
else if (new_state == USB_STATE_SUSPENDED &&
udev->state != USB_STATE_SUSPENDED)
udev->active_duration += jiffies;
udev->state = new_state;
} else
recursively_mark_NOTATTACHED(udev);
spin_unlock_irqrestore(&device_state_lock, flags);
if (wakeup >= 0)
device_set_wakeup_capable(&udev->dev, wakeup);
}
EXPORT_SYMBOL_GPL(usb_set_device_state);
/*
* Choose a device number.
*
* Device numbers are used as filenames in usbfs. On USB-1.1 and
* USB-2.0 buses they are also used as device addresses, however on
* USB-3.0 buses the address is assigned by the controller hardware
* and it usually is not the same as the device number.
*
* WUSB devices are simple: they have no hubs behind, so the mapping
* device <-> virtual port number becomes 1:1. Why? to simplify the
* life of the device connection logic in
* drivers/usb/wusbcore/devconnect.c. When we do the initial secret
* handshake we need to assign a temporary address in the unauthorized
* space. For simplicity we use the first virtual port number found to
* be free [drivers/usb/wusbcore/devconnect.c:wusbhc_devconnect_ack()]
* and that becomes it's address [X < 128] or its unauthorized address
* [X | 0x80].
*
* We add 1 as an offset to the one-based USB-stack port number
* (zero-based wusb virtual port index) for two reasons: (a) dev addr
* 0 is reserved by USB for default address; (b) Linux's USB stack
* uses always #1 for the root hub of the controller. So USB stack's
* port #1, which is wusb virtual-port #0 has address #2.
*
* Devices connected under xHCI are not as simple. The host controller
* supports virtualization, so the hardware assigns device addresses and
* the HCD must setup data structures before issuing a set address
* command to the hardware.
*/
static void choose_devnum(struct usb_device *udev)
{
int devnum;
struct usb_bus *bus = udev->bus;
/* If khubd ever becomes multithreaded, this will need a lock */
if (udev->wusb) {
devnum = udev->portnum + 1;
BUG_ON(test_bit(devnum, bus->devmap.devicemap));
} else {
/* Try to allocate the next devnum beginning at
* bus->devnum_next. */
devnum = find_next_zero_bit(bus->devmap.devicemap, 128,
bus->devnum_next);
if (devnum >= 128)
devnum = find_next_zero_bit(bus->devmap.devicemap,
128, 1);
bus->devnum_next = ( devnum >= 127 ? 1 : devnum + 1);
}
if (devnum < 128) {
set_bit(devnum, bus->devmap.devicemap);
udev->devnum = devnum;
}
}
static void release_devnum(struct usb_device *udev)
{
if (udev->devnum > 0) {
clear_bit(udev->devnum, udev->bus->devmap.devicemap);
udev->devnum = -1;
}
}
static void update_devnum(struct usb_device *udev, int devnum)
{
/* The address for a WUSB device is managed by wusbcore. */
if (!udev->wusb)
udev->devnum = devnum;
}
static void hub_free_dev(struct usb_device *udev)
{
struct usb_hcd *hcd = bus_to_hcd(udev->bus);
/* Root hubs aren't real devices, so don't free HCD resources */
if (hcd->driver->free_dev && udev->parent)
hcd->driver->free_dev(hcd, udev);
}
/**
* usb_disconnect - disconnect a device (usbcore-internal)
* @pdev: pointer to device being disconnected
* Context: !in_interrupt ()
*
* Something got disconnected. Get rid of it and all of its children.
*
* If *pdev is a normal device then the parent hub must already be locked.
* If *pdev is a root hub then this routine will acquire the
* usb_bus_list_lock on behalf of the caller.
*
* Only hub drivers (including virtual root hub drivers for host
* controllers) should ever call this.
*
* This call is synchronous, and may not be used in an interrupt context.
*/
void usb_disconnect(struct usb_device **pdev)
{
struct usb_device *udev = *pdev;
int i;
/* mark the device as inactive, so any further urb submissions for
* this device (and any of its children) will fail immediately.
* this quiesces everything except pending urbs.
*/
usb_set_device_state(udev, USB_STATE_NOTATTACHED);
dev_info(&udev->dev, "USB disconnect, device number %d\n",
udev->devnum);
usb_lock_device(udev);
/* Free up all the children before we remove this device */
for (i = 0; i < udev->maxchild; i++) {
if (udev->children[i])
usb_disconnect(&udev->children[i]);
}
/* deallocate hcd/hardware state ... nuking all pending urbs and
* cleaning up all state associated with the current configuration
* so that the hardware is now fully quiesced.
*/
dev_dbg (&udev->dev, "unregistering device\n");
usb_disable_device(udev, 0);
usb_hcd_synchronize_unlinks(udev);
usb_remove_ep_devs(&udev->ep0);
usb_unlock_device(udev);
/* Unregister the device. The device driver is responsible
* for de-configuring the device and invoking the remove-device
* notifier chain (used by usbfs and possibly others).
*/
device_del(&udev->dev);
/* Free the device number and delete the parent's children[]
* (or root_hub) pointer.
*/
release_devnum(udev);
/* Avoid races with recursively_mark_NOTATTACHED() */
spin_lock_irq(&device_state_lock);
*pdev = NULL;
spin_unlock_irq(&device_state_lock);
hub_free_dev(udev);
put_device(&udev->dev);
}
#ifdef CONFIG_USB_ANNOUNCE_NEW_DEVICES
static void show_string(struct usb_device *udev, char *id, char *string)
{
if (!string)
return;
dev_printk(KERN_INFO, &udev->dev, "%s: %s\n", id, string);
}
static void announce_device(struct usb_device *udev)
{
dev_info(&udev->dev, "New USB device found, idVendor=%04x, idProduct=%04x\n",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
dev_info(&udev->dev,
"New USB device strings: Mfr=%d, Product=%d, SerialNumber=%d\n",
udev->descriptor.iManufacturer,
udev->descriptor.iProduct,
udev->descriptor.iSerialNumber);
show_string(udev, "Product", udev->product);
show_string(udev, "Manufacturer", udev->manufacturer);
show_string(udev, "SerialNumber", udev->serial);
}
#else
static inline void announce_device(struct usb_device *udev) { }
#endif
#ifdef CONFIG_USB_OTG
#include "otg_whitelist.h"
#endif
/**
* usb_enumerate_device_otg - FIXME (usbcore-internal)
* @udev: newly addressed device (in ADDRESS state)
*
* Finish enumeration for On-The-Go devices
*/
static int usb_enumerate_device_otg(struct usb_device *udev)
{
int err = 0;
#ifdef CONFIG_USB_OTG
/*
* OTG-aware devices on OTG-capable root hubs may be able to use SRP,
* to wake us after we've powered off VBUS; and HNP, switching roles
* "host" to "peripheral". The OTG descriptor helps figure this out.
*/
if (!udev->bus->is_b_host
&& udev->config
&& udev->parent == udev->bus->root_hub) {
struct usb_otg_descriptor *desc = NULL;
struct usb_bus *bus = udev->bus;
/* descriptor may appear anywhere in config */
if (__usb_get_extra_descriptor (udev->rawdescriptors[0],
le16_to_cpu(udev->config[0].desc.wTotalLength),
USB_DT_OTG, (void **) &desc) == 0) {
if (desc->bmAttributes & USB_OTG_HNP) {
unsigned port1 = udev->portnum;
dev_info(&udev->dev,
"Dual-Role OTG device on %sHNP port\n",
(port1 == bus->otg_port)
? "" : "non-");
/* enable HNP before suspend, it's simpler */
if (port1 == bus->otg_port)
bus->b_hnp_enable = 1;
err = usb_control_msg(udev,
usb_sndctrlpipe(udev, 0),
USB_REQ_SET_FEATURE, 0,
bus->b_hnp_enable
? USB_DEVICE_B_HNP_ENABLE
: USB_DEVICE_A_ALT_HNP_SUPPORT,
0, NULL, 0, USB_CTRL_SET_TIMEOUT);
if (err < 0) {
/* OTG MESSAGE: report errors here,
* customize to match your product.
*/
dev_info(&udev->dev,
"can't set HNP mode: %d\n",
err);
bus->b_hnp_enable = 0;
}
}
}
}
if (!is_targeted(udev)) {
/* Maybe it can talk to us, though we can't talk to it.
* (Includes HNP test device.)
*/
if (udev->bus->b_hnp_enable || udev->bus->is_b_host) {
err = usb_port_suspend(udev, PMSG_SUSPEND);
if (err < 0)
dev_dbg(&udev->dev, "HNP fail, %d\n", err);
}
err = -ENOTSUPP;
goto fail;
}
fail:
#endif
return err;
}
/**
* usb_enumerate_device - Read device configs/intfs/otg (usbcore-internal)
* @udev: newly addressed device (in ADDRESS state)
*
* This is only called by usb_new_device() and usb_authorize_device()
* and FIXME -- all comments that apply to them apply here wrt to
* environment.
*
* If the device is WUSB and not authorized, we don't attempt to read
* the string descriptors, as they will be errored out by the device
* until it has been authorized.
*/
static int usb_enumerate_device(struct usb_device *udev)
{
int err;
if (udev->config == NULL) {
err = usb_get_configuration(udev);
if (err < 0) {
dev_err(&udev->dev, "can't read configurations, error %d\n",
err);
return err;
}
}
if (udev->wusb == 1 && udev->authorized == 0) {
udev->product = kstrdup("n/a (unauthorized)", GFP_KERNEL);
udev->manufacturer = kstrdup("n/a (unauthorized)", GFP_KERNEL);
udev->serial = kstrdup("n/a (unauthorized)", GFP_KERNEL);
}
else {
/* read the standard strings and cache them if present */
udev->product = usb_cache_string(udev, udev->descriptor.iProduct);
udev->manufacturer = usb_cache_string(udev,
udev->descriptor.iManufacturer);
udev->serial = usb_cache_string(udev, udev->descriptor.iSerialNumber);
}
err = usb_enumerate_device_otg(udev);
if (err < 0)
return err;
usb_detect_interface_quirks(udev);
return 0;
}
static void set_usb_port_removable(struct usb_device *udev)
{
struct usb_device *hdev = udev->parent;
struct usb_hub *hub;
u8 port = udev->portnum;
u16 wHubCharacteristics;
bool removable = true;
if (!hdev)
return;
hub = hdev_to_hub(udev->parent);
wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics);
if (!(wHubCharacteristics & HUB_CHAR_COMPOUND))
return;
if (hub_is_superspeed(hdev)) {
if (hub->descriptor->u.ss.DeviceRemovable & (1 << port))
removable = false;
} else {
if (hub->descriptor->u.hs.DeviceRemovable[port / 8] & (1 << (port % 8)))
removable = false;
}
if (removable)
udev->removable = USB_DEVICE_REMOVABLE;
else
udev->removable = USB_DEVICE_FIXED;
}
/**
* usb_new_device - perform initial device setup (usbcore-internal)
* @udev: newly addressed device (in ADDRESS state)
*
* This is called with devices which have been detected but not fully
* enumerated. The device descriptor is available, but not descriptors
* for any device configuration. The caller must have locked either
* the parent hub (if udev is a normal device) or else the
* usb_bus_list_lock (if udev is a root hub). The parent's pointer to
* udev has already been installed, but udev is not yet visible through
* sysfs or other filesystem code.
*
* It will return if the device is configured properly or not. Zero if
* the interface was registered with the driver core; else a negative
* errno value.
*
* This call is synchronous, and may not be used in an interrupt context.
*
* Only the hub driver or root-hub registrar should ever call this.
*/
int usb_new_device(struct usb_device *udev)
{
int err;
if (udev->parent) {
/* Initialize non-root-hub device wakeup to disabled;
* device (un)configuration controls wakeup capable
* sysfs power/wakeup controls wakeup enabled/disabled
*/
device_init_wakeup(&udev->dev, 0);
}
/* Tell the runtime-PM framework the device is active */
pm_runtime_set_active(&udev->dev);
pm_runtime_get_noresume(&udev->dev);
pm_runtime_use_autosuspend(&udev->dev);
pm_runtime_enable(&udev->dev);
/* By default, forbid autosuspend for all devices. It will be
* allowed for hubs during binding.
*/
usb_disable_autosuspend(udev);
err = usb_enumerate_device(udev); /* Read descriptors */
if (err < 0)
goto fail;
dev_dbg(&udev->dev, "udev %d, busnum %d, minor = %d\n",
udev->devnum, udev->bus->busnum,
(((udev->bus->busnum-1) * 128) + (udev->devnum-1)));
/* export the usbdev device-node for libusb */
udev->dev.devt = MKDEV(USB_DEVICE_MAJOR,
(((udev->bus->busnum-1) * 128) + (udev->devnum-1)));
/* Tell the world! */
announce_device(udev);
if (udev->serial)
add_device_randomness(udev->serial, strlen(udev->serial));
if (udev->product)
add_device_randomness(udev->product, strlen(udev->product));
if (udev->manufacturer)
add_device_randomness(udev->manufacturer,
strlen(udev->manufacturer));
device_enable_async_suspend(&udev->dev);
/*
* check whether the hub marks this port as non-removable. Do it
* now so that platform-specific data can override it in
* device_add()
*/
if (udev->parent)
set_usb_port_removable(udev);
/* Register the device. The device driver is responsible
* for configuring the device and invoking the add-device
* notifier chain (used by usbfs and possibly others).
*/
err = device_add(&udev->dev);
if (err) {
dev_err(&udev->dev, "can't device_add, error %d\n", err);
goto fail;
}
(void) usb_create_ep_devs(&udev->dev, &udev->ep0, udev);
usb_mark_last_busy(udev);
pm_runtime_put_sync_autosuspend(&udev->dev);
return err;
fail:
usb_set_device_state(udev, USB_STATE_NOTATTACHED);
pm_runtime_disable(&udev->dev);
pm_runtime_set_suspended(&udev->dev);
return err;
}
/**
* usb_deauthorize_device - deauthorize a device (usbcore-internal)
* @usb_dev: USB device
*
* Move the USB device to a very basic state where interfaces are disabled
* and the device is in fact unconfigured and unusable.
*
* We share a lock (that we have) with device_del(), so we need to
* defer its call.
*/
int usb_deauthorize_device(struct usb_device *usb_dev)
{
usb_lock_device(usb_dev);
if (usb_dev->authorized == 0)
goto out_unauthorized;
usb_dev->authorized = 0;
usb_set_configuration(usb_dev, -1);
kfree(usb_dev->product);
usb_dev->product = kstrdup("n/a (unauthorized)", GFP_KERNEL);
kfree(usb_dev->manufacturer);
usb_dev->manufacturer = kstrdup("n/a (unauthorized)", GFP_KERNEL);
kfree(usb_dev->serial);
usb_dev->serial = kstrdup("n/a (unauthorized)", GFP_KERNEL);
usb_destroy_configuration(usb_dev);
usb_dev->descriptor.bNumConfigurations = 0;
out_unauthorized:
usb_unlock_device(usb_dev);
return 0;
}
int usb_authorize_device(struct usb_device *usb_dev)
{
int result = 0, c;
usb_lock_device(usb_dev);
if (usb_dev->authorized == 1)
goto out_authorized;
result = usb_autoresume_device(usb_dev);
if (result < 0) {
dev_err(&usb_dev->dev,
"can't autoresume for authorization: %d\n", result);
goto error_autoresume;
}
result = usb_get_device_descriptor(usb_dev, sizeof(usb_dev->descriptor));
if (result < 0) {
dev_err(&usb_dev->dev, "can't re-read device descriptor for "
"authorization: %d\n", result);
goto error_device_descriptor;
}
kfree(usb_dev->product);
usb_dev->product = NULL;
kfree(usb_dev->manufacturer);
usb_dev->manufacturer = NULL;
kfree(usb_dev->serial);
usb_dev->serial = NULL;
usb_dev->authorized = 1;
result = usb_enumerate_device(usb_dev);
if (result < 0)
goto error_enumerate;
/* Choose and set the configuration. This registers the interfaces
* with the driver core and lets interface drivers bind to them.
*/
c = usb_choose_configuration(usb_dev);
if (c >= 0) {
result = usb_set_configuration(usb_dev, c);
if (result) {
dev_err(&usb_dev->dev,
"can't set config #%d, error %d\n", c, result);
/* This need not be fatal. The user can try to
* set other configurations. */
}
}
dev_info(&usb_dev->dev, "authorized to connect\n");
error_enumerate:
error_device_descriptor:
usb_autosuspend_device(usb_dev);
error_autoresume:
out_authorized:
usb_unlock_device(usb_dev); // complements locktree
return result;
}
/* Returns 1 if @hub is a WUSB root hub, 0 otherwise */
static unsigned hub_is_wusb(struct usb_hub *hub)
{
struct usb_hcd *hcd;
if (hub->hdev->parent != NULL) /* not a root hub? */
return 0;
hcd = container_of(hub->hdev->bus, struct usb_hcd, self);
return hcd->wireless;
}
#define PORT_RESET_TRIES 5
#define SET_ADDRESS_TRIES 2
#define GET_DESCRIPTOR_TRIES 2
#define SET_CONFIG_TRIES (2 * (use_both_schemes + 1))
#define USE_NEW_SCHEME(i) ((i) / 2 == (int)old_scheme_first)
#define HUB_ROOT_RESET_TIME 50 /* times are in msec */
#define HUB_SHORT_RESET_TIME 10
#define HUB_BH_RESET_TIME 50
#define HUB_LONG_RESET_TIME 200
#define HUB_RESET_TIMEOUT 500
static int hub_port_reset(struct usb_hub *hub, int port1,
struct usb_device *udev, unsigned int delay, bool warm);
/* Is a USB 3.0 port in the Inactive or Complinance Mode state?
* Port worm reset is required to recover
*/
static bool hub_port_warm_reset_required(struct usb_hub *hub, u16 portstatus)
{
return hub_is_superspeed(hub->hdev) &&
(((portstatus & USB_PORT_STAT_LINK_STATE) ==
USB_SS_PORT_LS_SS_INACTIVE) ||
((portstatus & USB_PORT_STAT_LINK_STATE) ==
USB_SS_PORT_LS_COMP_MOD)) ;
}
static int hub_port_wait_reset(struct usb_hub *hub, int port1,
struct usb_device *udev, unsigned int delay, bool warm)
{
int delay_time, ret;
u16 portstatus;
u16 portchange;
for (delay_time = 0;
delay_time < HUB_RESET_TIMEOUT;
delay_time += delay) {
/* wait to give the device a chance to reset */
msleep(delay);
/* read and decode port status */
ret = hub_port_status(hub, port1, &portstatus, &portchange);
if (ret < 0)
return ret;
/*
* Some buggy devices require a warm reset to be issued even
* when the port appears not to be connected.
*/
if (!warm) {
/*
* Some buggy devices can cause an NEC host controller
* to transition to the "Error" state after a hot port
* reset. This will show up as the port state in
* "Inactive", and the port may also report a
* disconnect. Forcing a warm port reset seems to make
* the device work.
*
* See https://bugzilla.kernel.org/show_bug.cgi?id=41752
*/
if (hub_port_warm_reset_required(hub, portstatus)) {
int ret;
if ((portchange & USB_PORT_STAT_C_CONNECTION))
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_CONNECTION);
if (portchange & USB_PORT_STAT_C_LINK_STATE)
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_PORT_LINK_STATE);
if (portchange & USB_PORT_STAT_C_RESET)
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_RESET);
dev_dbg(hub->intfdev, "hot reset failed, warm reset port %d\n",
port1);
ret = hub_port_reset(hub, port1,
udev, HUB_BH_RESET_TIME,
true);
if ((portchange & USB_PORT_STAT_C_CONNECTION))
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_CONNECTION);
return ret;
}
/* Device went away? */
if (!(portstatus & USB_PORT_STAT_CONNECTION))
return -ENOTCONN;
/* bomb out completely if the connection bounced */
if ((portchange & USB_PORT_STAT_C_CONNECTION))
return -ENOTCONN;
/* if we`ve finished resetting, then break out of
* the loop
*/
if (!(portstatus & USB_PORT_STAT_RESET) &&
(portstatus & USB_PORT_STAT_ENABLE)) {
if (hub_is_wusb(hub))
udev->speed = USB_SPEED_WIRELESS;
else if (hub_is_superspeed(hub->hdev))
udev->speed = USB_SPEED_SUPER;
else if (portstatus & USB_PORT_STAT_HIGH_SPEED)
udev->speed = USB_SPEED_HIGH;
else if (portstatus & USB_PORT_STAT_LOW_SPEED)
udev->speed = USB_SPEED_LOW;
else
udev->speed = USB_SPEED_FULL;
return 0;
}
} else {
if (portchange & USB_PORT_STAT_C_BH_RESET)
return 0;
}
/* switch to the long delay after two short delay failures */
if (delay_time >= 2 * HUB_SHORT_RESET_TIME)
delay = HUB_LONG_RESET_TIME;
dev_dbg (hub->intfdev,
"port %d not %sreset yet, waiting %dms\n",
port1, warm ? "warm " : "", delay);
}
return -EBUSY;
}
static void hub_port_finish_reset(struct usb_hub *hub, int port1,
struct usb_device *udev, int *status, bool warm)
{
switch (*status) {
case 0:
if (!warm) {
struct usb_hcd *hcd;
/* TRSTRCY = 10 ms; plus some extra */
msleep(10 + 40);
update_devnum(udev, 0);
hcd = bus_to_hcd(udev->bus);
if (hcd->driver->reset_device) {
*status = hcd->driver->reset_device(hcd, udev);
if (*status < 0) {
dev_err(&udev->dev, "Cannot reset "
"HCD device state\n");
break;
}
}
}
/* FALL THROUGH */
case -ENOTCONN:
case -ENODEV:
clear_port_feature(hub->hdev,
port1, USB_PORT_FEAT_C_RESET);
/* FIXME need disconnect() for NOTATTACHED device */
if (warm) {
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_BH_PORT_RESET);
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_PORT_LINK_STATE);
} else {
usb_set_device_state(udev, *status
? USB_STATE_NOTATTACHED
: USB_STATE_DEFAULT);
}
break;
}
}
/* Handle port reset and port warm(BH) reset (for USB3 protocol ports) */
static int hub_port_reset(struct usb_hub *hub, int port1,
struct usb_device *udev, unsigned int delay, bool warm)
{
int i, status;
if (!warm) {
/* Block EHCI CF initialization during the port reset.
* Some companion controllers don't like it when they mix.
*/
down_read(&ehci_cf_port_reset_rwsem);
} else {
if (!hub_is_superspeed(hub->hdev)) {
dev_err(hub->intfdev, "only USB3 hub support "
"warm reset\n");
return -EINVAL;
}
}
/* Reset the port */
for (i = 0; i < PORT_RESET_TRIES; i++) {
status = set_port_feature(hub->hdev, port1, (warm ?
USB_PORT_FEAT_BH_PORT_RESET :
USB_PORT_FEAT_RESET));
if (status) {
dev_err(hub->intfdev,
"cannot %sreset port %d (err = %d)\n",
warm ? "warm " : "", port1, status);
} else {
status = hub_port_wait_reset(hub, port1, udev, delay,
warm);
if (status && status != -ENOTCONN)
dev_dbg(hub->intfdev,
"port_wait_reset: err = %d\n",
status);
}
/* return on disconnect or reset */
if (status == 0 || status == -ENOTCONN || status == -ENODEV) {
hub_port_finish_reset(hub, port1, udev, &status, warm);
goto done;
}
dev_dbg (hub->intfdev,
"port %d not enabled, trying %sreset again...\n",
port1, warm ? "warm " : "");
delay = HUB_LONG_RESET_TIME;
}
dev_err (hub->intfdev,
"Cannot enable port %i. Maybe the USB cable is bad?\n",
port1);
done:
if (!warm)
up_read(&ehci_cf_port_reset_rwsem);
return status;
}
/* Check if a port is power on */
static int port_is_power_on(struct usb_hub *hub, unsigned portstatus)
{
int ret = 0;
if (hub_is_superspeed(hub->hdev)) {
if (portstatus & USB_SS_PORT_STAT_POWER)
ret = 1;
} else {
if (portstatus & USB_PORT_STAT_POWER)
ret = 1;
}
return ret;
}
#ifdef CONFIG_PM
/* Check if a port is suspended(USB2.0 port) or in U3 state(USB3.0 port) */
static int port_is_suspended(struct usb_hub *hub, unsigned portstatus)
{
int ret = 0;
if (hub_is_superspeed(hub->hdev)) {
if ((portstatus & USB_PORT_STAT_LINK_STATE)
== USB_SS_PORT_LS_U3)
ret = 1;
} else {
if (portstatus & USB_PORT_STAT_SUSPEND)
ret = 1;
}
return ret;
}
/* Determine whether the device on a port is ready for a normal resume,
* is ready for a reset-resume, or should be disconnected.
*/
static int check_port_resume_type(struct usb_device *udev,
struct usb_hub *hub, int port1,
int status, unsigned portchange, unsigned portstatus)
{
/* Is the device still present? */
if (status || port_is_suspended(hub, portstatus) ||
!port_is_power_on(hub, portstatus) ||
!(portstatus & USB_PORT_STAT_CONNECTION)) {
if (status >= 0)
status = -ENODEV;
}
/* Can't do a normal resume if the port isn't enabled,
* so try a reset-resume instead.
*/
else if (!(portstatus & USB_PORT_STAT_ENABLE) && !udev->reset_resume) {
if (udev->persist_enabled)
udev->reset_resume = 1;
else
status = -ENODEV;
}
if (status) {
dev_dbg(hub->intfdev,
"port %d status %04x.%04x after resume, %d\n",
port1, portchange, portstatus, status);
} else if (udev->reset_resume) {
/* Late port handoff can set status-change bits */
if (portchange & USB_PORT_STAT_C_CONNECTION)
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_CONNECTION);
if (portchange & USB_PORT_STAT_C_ENABLE)
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_ENABLE);
}
return status;
}
int usb_disable_ltm(struct usb_device *udev)
{
struct usb_hcd *hcd = bus_to_hcd(udev->bus);
/* Check if the roothub and device supports LTM. */
if (!usb_device_supports_ltm(hcd->self.root_hub) ||
!usb_device_supports_ltm(udev))
return 0;
/* Clear Feature LTM Enable can only be sent if the device is
* configured.
*/
if (!udev->actconfig)
return 0;
return usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE,
USB_DEVICE_LTM_ENABLE, 0, NULL, 0,
USB_CTRL_SET_TIMEOUT);
}
EXPORT_SYMBOL_GPL(usb_disable_ltm);
void usb_enable_ltm(struct usb_device *udev)
{
struct usb_hcd *hcd = bus_to_hcd(udev->bus);
/* Check if the roothub and device supports LTM. */
if (!usb_device_supports_ltm(hcd->self.root_hub) ||
!usb_device_supports_ltm(udev))
return;
/* Set Feature LTM Enable can only be sent if the device is
* configured.
*/
if (!udev->actconfig)
return;
usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_SET_FEATURE, USB_RECIP_DEVICE,
USB_DEVICE_LTM_ENABLE, 0, NULL, 0,
USB_CTRL_SET_TIMEOUT);
}
EXPORT_SYMBOL_GPL(usb_enable_ltm);
#ifdef CONFIG_USB_SUSPEND
/*
* usb_port_suspend - suspend a usb device's upstream port
* @udev: device that's no longer in active use, not a root hub
* Context: must be able to sleep; device not locked; pm locks held
*
* Suspends a USB device that isn't in active use, conserving power.
* Devices may wake out of a suspend, if anything important happens,
* using the remote wakeup mechanism. They may also be taken out of
* suspend by the host, using usb_port_resume(). It's also routine
* to disconnect devices while they are suspended.
*
* This only affects the USB hardware for a device; its interfaces
* (and, for hubs, child devices) must already have been suspended.
*
* Selective port suspend reduces power; most suspended devices draw
* less than 500 uA. It's also used in OTG, along with remote wakeup.
* All devices below the suspended port are also suspended.
*
* Devices leave suspend state when the host wakes them up. Some devices
* also support "remote wakeup", where the device can activate the USB
* tree above them to deliver data, such as a keypress or packet. In
* some cases, this wakes the USB host.
*
* Suspending OTG devices may trigger HNP, if that's been enabled
* between a pair of dual-role devices. That will change roles, such
* as from A-Host to A-Peripheral or from B-Host back to B-Peripheral.
*
* Devices on USB hub ports have only one "suspend" state, corresponding
* to ACPI D2, "may cause the device to lose some context".
* State transitions include:
*
* - suspend, resume ... when the VBUS power link stays live
* - suspend, disconnect ... VBUS lost
*
* Once VBUS drop breaks the circuit, the port it's using has to go through
* normal re-enumeration procedures, starting with enabling VBUS power.
* Other than re-initializing the hub (plug/unplug, except for root hubs),
* Linux (2.6) currently has NO mechanisms to initiate that: no khubd
* timer, no SRP, no requests through sysfs.
*
* If CONFIG_USB_SUSPEND isn't enabled, devices only really suspend when
* the root hub for their bus goes into global suspend ... so we don't
* (falsely) update the device power state to say it suspended.
*
* Returns 0 on success, else negative errno.
*/
int usb_port_suspend(struct usb_device *udev, pm_message_t msg)
{
struct usb_hub *hub = hdev_to_hub(udev->parent);
int port1 = udev->portnum;
int status;
/* enable remote wakeup when appropriate; this lets the device
* wake up the upstream hub (including maybe the root hub).
*
* NOTE: OTG devices may issue remote wakeup (or SRP) even when
* we don't explicitly enable it here.
*/
if (udev->do_remote_wakeup) {
if (!hub_is_superspeed(hub->hdev)) {
status = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_SET_FEATURE, USB_RECIP_DEVICE,
USB_DEVICE_REMOTE_WAKEUP, 0,
NULL, 0,
USB_CTRL_SET_TIMEOUT);
} else {
/* Assume there's only one function on the USB 3.0
* device and enable remote wake for the first
* interface. FIXME if the interface association
* descriptor shows there's more than one function.
*/
status = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_SET_FEATURE,
USB_RECIP_INTERFACE,
USB_INTRF_FUNC_SUSPEND,
USB_INTRF_FUNC_SUSPEND_RW |
USB_INTRF_FUNC_SUSPEND_LP,
NULL, 0,
USB_CTRL_SET_TIMEOUT);
}
if (status) {
dev_dbg(&udev->dev, "won't remote wakeup, status %d\n",
status);
/* bail if autosuspend is requested */
if (PMSG_IS_AUTO(msg))
return status;
}
}
/* disable USB2 hardware LPM */
if (udev->usb2_hw_lpm_enabled == 1)
usb_set_usb2_hardware_lpm(udev, 0);
if (usb_disable_ltm(udev)) {
dev_err(&udev->dev, "%s Failed to disable LTM before suspend\n.",
__func__);
return -ENOMEM;
}
if (usb_unlocked_disable_lpm(udev)) {
dev_err(&udev->dev, "%s Failed to disable LPM before suspend\n.",
__func__);
return -ENOMEM;
}
/* see 7.1.7.6 */
if (hub_is_superspeed(hub->hdev))
status = set_port_feature(hub->hdev,
port1 | (USB_SS_PORT_LS_U3 << 3),
USB_PORT_FEAT_LINK_STATE);
else
status = set_port_feature(hub->hdev, port1,
USB_PORT_FEAT_SUSPEND);
if (status) {
dev_dbg(hub->intfdev, "can't suspend port %d, status %d\n",
port1, status);
/* paranoia: "should not happen" */
if (udev->do_remote_wakeup)
(void) usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE,
USB_DEVICE_REMOTE_WAKEUP, 0,
NULL, 0,
USB_CTRL_SET_TIMEOUT);
/* Try to enable USB2 hardware LPM again */
if (udev->usb2_hw_lpm_capable == 1)
usb_set_usb2_hardware_lpm(udev, 1);
/* Try to enable USB3 LTM and LPM again */
usb_enable_ltm(udev);
usb_unlocked_enable_lpm(udev);
/* System sleep transitions should never fail */
if (!PMSG_IS_AUTO(msg))
status = 0;
} else {
/* device has up to 10 msec to fully suspend */
dev_dbg(&udev->dev, "usb %ssuspend, wakeup %d\n",
(PMSG_IS_AUTO(msg) ? "auto-" : ""),
udev->do_remote_wakeup);
usb_set_device_state(udev, USB_STATE_SUSPENDED);
msleep(10);
}
usb_mark_last_busy(hub->hdev);
return status;
}
/*
* If the USB "suspend" state is in use (rather than "global suspend"),
* many devices will be individually taken out of suspend state using
* special "resume" signaling. This routine kicks in shortly after
* hardware resume signaling is finished, either because of selective
* resume (by host) or remote wakeup (by device) ... now see what changed
* in the tree that's rooted at this device.
*
* If @udev->reset_resume is set then the device is reset before the
* status check is done.
*/
static int finish_port_resume(struct usb_device *udev)
{
int status = 0;
u16 devstatus;
/* caller owns the udev device lock */
dev_dbg(&udev->dev, "%s\n",
udev->reset_resume ? "finish reset-resume" : "finish resume");
/* usb ch9 identifies four variants of SUSPENDED, based on what
* state the device resumes to. Linux currently won't see the
* first two on the host side; they'd be inside hub_port_init()
* during many timeouts, but khubd can't suspend until later.
*/
usb_set_device_state(udev, udev->actconfig
? USB_STATE_CONFIGURED
: USB_STATE_ADDRESS);
/* 10.5.4.5 says not to reset a suspended port if the attached
* device is enabled for remote wakeup. Hence the reset
* operation is carried out here, after the port has been
* resumed.
*/
if (udev->reset_resume)
retry_reset_resume:
status = usb_reset_and_verify_device(udev);
/* 10.5.4.5 says be sure devices in the tree are still there.
* For now let's assume the device didn't go crazy on resume,
* and device drivers will know about any resume quirks.
*/
if (status == 0) {
devstatus = 0;
status = usb_get_status(udev, USB_RECIP_DEVICE, 0, &devstatus);
if (status >= 0)
status = (status > 0 ? 0 : -ENODEV);
/* If a normal resume failed, try doing a reset-resume */
if (status && !udev->reset_resume && udev->persist_enabled) {
dev_dbg(&udev->dev, "retry with reset-resume\n");
udev->reset_resume = 1;
goto retry_reset_resume;
}
}
if (status) {
dev_dbg(&udev->dev, "gone after usb resume? status %d\n",
status);
} else if (udev->actconfig) {
le16_to_cpus(&devstatus);
if (devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) {
status = usb_control_msg(udev,
usb_sndctrlpipe(udev, 0),
USB_REQ_CLEAR_FEATURE,
USB_RECIP_DEVICE,
USB_DEVICE_REMOTE_WAKEUP, 0,
NULL, 0,
USB_CTRL_SET_TIMEOUT);
if (status)
dev_dbg(&udev->dev,
"disable remote wakeup, status %d\n",
status);
}
status = 0;
}
return status;
}
/*
* usb_port_resume - re-activate a suspended usb device's upstream port
* @udev: device to re-activate, not a root hub
* Context: must be able to sleep; device not locked; pm locks held
*
* This will re-activate the suspended device, increasing power usage
* while letting drivers communicate again with its endpoints.
* USB resume explicitly guarantees that the power session between
* the host and the device is the same as it was when the device
* suspended.
*
* If @udev->reset_resume is set then this routine won't check that the
* port is still enabled. Furthermore, finish_port_resume() above will
* reset @udev. The end result is that a broken power session can be
* recovered and @udev will appear to persist across a loss of VBUS power.
*
* For example, if a host controller doesn't maintain VBUS suspend current
* during a system sleep or is reset when the system wakes up, all the USB
* power sessions below it will be broken. This is especially troublesome
* for mass-storage devices containing mounted filesystems, since the
* device will appear to have disconnected and all the memory mappings
* to it will be lost. Using the USB_PERSIST facility, the device can be
* made to appear as if it had not disconnected.
*
* This facility can be dangerous. Although usb_reset_and_verify_device() makes
* every effort to insure that the same device is present after the
* reset as before, it cannot provide a 100% guarantee. Furthermore it's
* quite possible for a device to remain unaltered but its media to be
* changed. If the user replaces a flash memory card while the system is
* asleep, he will have only himself to blame when the filesystem on the
* new card is corrupted and the system crashes.
*
* Returns 0 on success, else negative errno.
*/
int usb_port_resume(struct usb_device *udev, pm_message_t msg)
{
struct usb_hub *hub = hdev_to_hub(udev->parent);
int port1 = udev->portnum;
int status;
u16 portchange, portstatus;
/* Skip the initial Clear-Suspend step for a remote wakeup */
status = hub_port_status(hub, port1, &portstatus, &portchange);
if (status == 0 && !port_is_suspended(hub, portstatus))
goto SuspendCleared;
// dev_dbg(hub->intfdev, "resume port %d\n", port1);
set_bit(port1, hub->busy_bits);
/* see 7.1.7.7; affects power usage, but not budgeting */
if (hub_is_superspeed(hub->hdev))
status = set_port_feature(hub->hdev,
port1 | (USB_SS_PORT_LS_U0 << 3),
USB_PORT_FEAT_LINK_STATE);
else
status = clear_port_feature(hub->hdev,
port1, USB_PORT_FEAT_SUSPEND);
if (status) {
dev_dbg(hub->intfdev, "can't resume port %d, status %d\n",
port1, status);
} else {
/* drive resume for at least 20 msec */
dev_dbg(&udev->dev, "usb %sresume\n",
(PMSG_IS_AUTO(msg) ? "auto-" : ""));
msleep(25);
/* Virtual root hubs can trigger on GET_PORT_STATUS to
* stop resume signaling. Then finish the resume
* sequence.
*/
status = hub_port_status(hub, port1, &portstatus, &portchange);
/* TRSMRCY = 10 msec */
msleep(10);
}
SuspendCleared:
if (status == 0) {
if (hub_is_superspeed(hub->hdev)) {
if (portchange & USB_PORT_STAT_C_LINK_STATE)
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_PORT_LINK_STATE);
} else {
if (portchange & USB_PORT_STAT_C_SUSPEND)
clear_port_feature(hub->hdev, port1,
USB_PORT_FEAT_C_SUSPEND);
}
}
clear_bit(port1, hub->busy_bits);
status = check_port_resume_type(udev,
hub, port1, status, portchange, portstatus);
if (status == 0)
status = finish_port_resume(udev);
if (status < 0) {
dev_dbg(&udev->dev, "can't resume, status %d\n", status);
hub_port_logical_disconnect(hub, port1);
} else {
/* Try to enable USB2 hardware LPM */
if (udev->usb2_hw_lpm_capable == 1)
usb_set_usb2_hardware_lpm(udev, 1);
/* Try to enable USB3 LTM and LPM */
usb_enable_ltm(udev);
usb_unlocked_enable_lpm(udev);
}
return status;
}
/* caller has locked udev */
int usb_remote_wakeup(struct usb_device *udev)
{
int status = 0;
if (udev->state == USB_STATE_SUSPENDED) {
dev_dbg(&udev->dev, "usb %sresume\n", "wakeup-");
status = usb_autoresume_device(udev);
if (status == 0) {
/* Let the drivers do their thing, then... */
usb_autosuspend_device(udev);
}
}
return status;
}
#else /* CONFIG_USB_SUSPEND */
/* When CONFIG_USB_SUSPEND isn't set, we never suspend or resume any ports. */
int usb_port_suspend(struct usb_device *udev, pm_message_t msg)
{
return 0;
}
/* However we may need to do a reset-resume */
int usb_port_resume(struct usb_device *udev, pm_message_t msg)
{
struct usb_hub *hub = hdev_to_hub(udev->parent);
int port1 = udev->portnum;
int status;
u16 portchange, portstatus;
status = hub_port_status(hub, port1, &portstatus, &portchange);
status = check_port_resume_type(udev,
hub, port1, status, portchange, portstatus);
if (status) {
dev_dbg(&udev->dev, "can't resume, status %d\n", status);
hub_port_logical_disconnect(hub, port1);
} else if (udev->reset_resume) {
dev_dbg(&udev->dev, "reset-resume\n");
status = usb_reset_and_verify_device(udev);
}
return status;
}
#endif
static int hub_suspend(struct usb_interface *intf, pm_message_t msg)
{
struct usb_hub *hub = usb_get_intfdata (intf);
struct usb_device *hdev = hub->hdev;
unsigned port1;
int status;
/* Warn if children aren't already suspended */
for (port1 = 1; port1 <= hdev->maxchild; port1++) {
struct usb_device *udev;
udev = hdev->children [port1-1];
if (udev && udev->can_submit) {
dev_warn(&intf->dev, "port %d nyet suspended\n", port1);
if (PMSG_IS_AUTO(msg))
return -EBUSY;
}
}
if (hub_is_superspeed(hdev) && hdev->do_remote_wakeup) {
/* Enable hub to send remote wakeup for all ports. */
for (port1 = 1; port1 <= hdev->maxchild; port1++) {
status = set_port_feature(hdev,
port1 |
USB_PORT_FEAT_REMOTE_WAKE_CONNECT |
USB_PORT_FEAT_REMOTE_WAKE_DISCONNECT |
USB_PORT_FEAT_REMOTE_WAKE_OVER_CURRENT,
USB_PORT_FEAT_REMOTE_WAKE_MASK);
}
}
dev_dbg(&intf->dev, "%s\n", __func__);
/* stop khubd and related activity */
hub_quiesce(hub, HUB_SUSPEND);
return 0;
}
static int hub_resume(struct usb_interface *intf)
{
struct usb_hub *hub = usb_get_intfdata(intf);
dev_dbg(&intf->dev, "%s\n", __func__);
hub_activate(hub, HUB_RESUME);
return 0;
}
static int hub_reset_resume(struct usb_interface *intf)
{
struct usb_hub *hub = usb_get_intfdata(intf);
dev_dbg(&intf->dev, "%s\n", __func__);
hub_activate(hub, HUB_RESET_RESUME);
return 0;
}
/**
* usb_root_hub_lost_power - called by HCD if the root hub lost Vbus power
* @rhdev: struct usb_device for the root hub
*
* The USB host controller driver calls this function when its root hub
* is resumed and Vbus power has been interrupted or the controller
* has been reset. The routine marks @rhdev as having lost power.
* When the hub driver is resumed it will take notice and carry out
* power-session recovery for all the "USB-PERSIST"-enabled child devices;
* the others will be disconnected.
*/
void usb_root_hub_lost_power(struct usb_device *rhdev)
{
dev_warn(&rhdev->dev, "root hub lost power or was reset\n");
rhdev->reset_resume = 1;
}
EXPORT_SYMBOL_GPL(usb_root_hub_lost_power);
static const char * const usb3_lpm_names[] = {
"U0",
"U1",
"U2",
"U3",
};
/*
* Send a Set SEL control transfer to the device, prior to enabling
* device-initiated U1 or U2. This lets the device know the exit latencies from
* the time the device initiates a U1 or U2 exit, to the time it will receive a
* packet from the host.
*
* This function will fail if the SEL or PEL values for udev are greater than
* the maximum allowed values for the link state to be enabled.
*/