blob: 98756156d29878b8df182497214b9640d45ac79d [file] [log] [blame]
/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* mmap.c
*
* Code to deal with the mess that is clustered mmap.
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/signal.h>
#include <linux/rbtree.h>
#define MLOG_MASK_PREFIX ML_FILE_IO
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "aops.h"
#include "dlmglue.h"
#include "file.h"
#include "inode.h"
#include "mmap.h"
static inline int ocfs2_vm_op_block_sigs(sigset_t *blocked, sigset_t *oldset)
{
/* The best way to deal with signals in the vm path is
* to block them upfront, rather than allowing the
* locking paths to return -ERESTARTSYS. */
sigfillset(blocked);
/* We should technically never get a bad return value
* from sigprocmask */
return sigprocmask(SIG_BLOCK, blocked, oldset);
}
static inline int ocfs2_vm_op_unblock_sigs(sigset_t *oldset)
{
return sigprocmask(SIG_SETMASK, oldset, NULL);
}
static int ocfs2_fault(struct vm_area_struct *area, struct vm_fault *vmf)
{
sigset_t blocked, oldset;
int error, ret;
mlog_entry("(area=%p, page offset=%lu)\n", area, vmf->pgoff);
error = ocfs2_vm_op_block_sigs(&blocked, &oldset);
if (error < 0) {
mlog_errno(error);
ret = VM_FAULT_SIGBUS;
goto out;
}
ret = filemap_fault(area, vmf);
error = ocfs2_vm_op_unblock_sigs(&oldset);
if (error < 0)
mlog_errno(error);
out:
mlog_exit_ptr(vmf->page);
return ret;
}
static int __ocfs2_page_mkwrite(struct inode *inode, struct buffer_head *di_bh,
struct page *page)
{
int ret;
struct address_space *mapping = inode->i_mapping;
loff_t pos = page_offset(page);
unsigned int len = PAGE_CACHE_SIZE;
pgoff_t last_index;
struct page *locked_page = NULL;
void *fsdata;
loff_t size = i_size_read(inode);
/*
* Another node might have truncated while we were waiting on
* cluster locks.
*/
last_index = size >> PAGE_CACHE_SHIFT;
if (page->index > last_index) {
ret = -EINVAL;
goto out;
}
/*
* The i_size check above doesn't catch the case where nodes
* truncated and then re-extended the file. We'll re-check the
* page mapping after taking the page lock inside of
* ocfs2_write_begin_nolock().
*/
if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
ret = -EINVAL;
goto out;
}
/*
* Call ocfs2_write_begin() and ocfs2_write_end() to take
* advantage of the allocation code there. We pass a write
* length of the whole page (chopped to i_size) to make sure
* the whole thing is allocated.
*
* Since we know the page is up to date, we don't have to
* worry about ocfs2_write_begin() skipping some buffer reads
* because the "write" would invalidate their data.
*/
if (page->index == last_index)
len = size & ~PAGE_CACHE_MASK;
ret = ocfs2_write_begin_nolock(mapping, pos, len, 0, &locked_page,
&fsdata, di_bh, page);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
ret = ocfs2_write_end_nolock(mapping, pos, len, len, locked_page,
fsdata);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
BUG_ON(ret != len);
ret = 0;
out:
return ret;
}
static int ocfs2_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
struct buffer_head *di_bh = NULL;
sigset_t blocked, oldset;
int ret, ret2;
ret = ocfs2_vm_op_block_sigs(&blocked, &oldset);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
/*
* The cluster locks taken will block a truncate from another
* node. Taking the data lock will also ensure that we don't
* attempt page truncation as part of a downconvert.
*/
ret = ocfs2_meta_lock(inode, &di_bh, 1);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
/*
* The alloc sem should be enough to serialize with
* ocfs2_truncate_file() changing i_size as well as any thread
* modifying the inode btree.
*/
down_write(&OCFS2_I(inode)->ip_alloc_sem);
ret = ocfs2_data_lock(inode, 1);
if (ret < 0) {
mlog_errno(ret);
goto out_meta_unlock;
}
ret = __ocfs2_page_mkwrite(inode, di_bh, page);
ocfs2_data_unlock(inode, 1);
out_meta_unlock:
up_write(&OCFS2_I(inode)->ip_alloc_sem);
brelse(di_bh);
ocfs2_meta_unlock(inode, 1);
out:
ret2 = ocfs2_vm_op_unblock_sigs(&oldset);
if (ret2 < 0)
mlog_errno(ret2);
return ret;
}
static struct vm_operations_struct ocfs2_file_vm_ops = {
.fault = ocfs2_fault,
.page_mkwrite = ocfs2_page_mkwrite,
};
int ocfs2_mmap(struct file *file, struct vm_area_struct *vma)
{
int ret = 0, lock_level = 0;
ret = ocfs2_meta_lock_atime(file->f_dentry->d_inode,
file->f_vfsmnt, &lock_level);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ocfs2_meta_unlock(file->f_dentry->d_inode, lock_level);
out:
vma->vm_ops = &ocfs2_file_vm_ops;
vma->vm_flags |= VM_CAN_NONLINEAR;
return 0;
}