blob: d0a2a2f9956471362e13093272955f42c0e4121b [file] [log] [blame]
* lppaca.h
* Copyright (C) 2001 Mike Corrigan IBM Corporation
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifdef __KERNEL__
* These definitions relate to hypervisors that only exist when using
* a server type processor
* This control block contains the data that is shared between the
* hypervisor and the OS.
#include <linux/cache.h>
#include <linux/threads.h>
#include <asm/types.h>
#include <asm/mmu.h>
* We only have to have statically allocated lppaca structs on
* legacy iSeries, which supports at most 64 cpus.
#define NR_LPPACAS 1
* The Hypervisor barfs if the lppaca crosses a page boundary. A 1k
* alignment is sufficient to prevent this
struct lppaca {
/* cacheline 1 contains read-only data */
__be32 desc; /* Eye catcher 0xD397D781 */
__be16 size; /* Size of this struct */
u8 reserved1[3];
u8 __old_status; /* Old status, including shared proc */
u8 reserved3[14];
volatile __be32 dyn_hw_node_id; /* Dynamic hardware node id */
volatile __be32 dyn_hw_proc_id; /* Dynamic hardware proc id */
u8 reserved4[56];
volatile u8 vphn_assoc_counts[8]; /* Virtual processor home node */
/* associativity change counters */
u8 reserved5[32];
/* cacheline 2 contains local read-write data */
u8 reserved6[48];
u8 cede_latency_hint;
u8 ebb_regs_in_use;
u8 reserved7[6];
u8 dtl_enable_mask; /* Dispatch Trace Log mask */
u8 donate_dedicated_cpu; /* Donate dedicated CPU cycles */
u8 fpregs_in_use;
u8 pmcregs_in_use;
u8 reserved8[28];
__be64 wait_state_cycles; /* Wait cycles for this proc */
u8 reserved9[28];
__be16 slb_count; /* # of SLBs to maintain */
u8 idle; /* Indicate OS is idle */
u8 vmxregs_in_use;
/* cacheline 3 is shared with other processors */
* This is the yield_count. An "odd" value (low bit on) means that
* the processor is yielded (either because of an OS yield or a
* hypervisor preempt). An even value implies that the processor is
* currently executing.
* NOTE: Even dedicated processor partitions can yield so this
* field cannot be used to determine if we are shared or dedicated.
volatile __be32 yield_count;
volatile __be32 dispersion_count; /* dispatch changed physical cpu */
volatile __be64 cmo_faults; /* CMO page fault count */
volatile __be64 cmo_fault_time; /* CMO page fault time */
u8 reserved10[104];
/* cacheline 4-5 */
__be32 page_ins; /* CMO Hint - # page ins by OS */
u8 reserved11[148];
volatile __be64 dtl_idx; /* Dispatch Trace Log head index */
u8 reserved12[96];
} __attribute__((__aligned__(0x400)));
extern struct lppaca lppaca[];
#define lppaca_of(cpu) (*paca[cpu].lppaca_ptr)
* We are using a non architected field to determine if a partition is
* shared or dedicated. This currently works on both KVM and PHYP, but
* we will have to transition to something better.
static inline bool lppaca_shared_proc(struct lppaca *l)
return !!(l->__old_status & LPPACA_OLD_SHARED_PROC);
* SLB shadow buffer structure as defined in the PAPR. The save_area
* contains adjacent ESID and VSID pairs for each shadowed SLB. The
* ESID is stored in the lower 64bits, then the VSID.
struct slb_shadow {
__be32 persistent; /* Number of persistent SLBs */
__be32 buffer_length; /* Total shadow buffer length */
__be64 reserved;
struct {
__be64 esid;
__be64 vsid;
} save_area[SLB_NUM_BOLTED];
} ____cacheline_aligned;
* Layout of entries in the hypervisor's dispatch trace log buffer.
struct dtl_entry {
u8 dispatch_reason;
u8 preempt_reason;
__be16 processor_id;
__be32 enqueue_to_dispatch_time;
__be32 ready_to_enqueue_time;
__be32 waiting_to_ready_time;
__be64 timebase;
__be64 fault_addr;
__be64 srr0;
__be64 srr1;
#define DISPATCH_LOG_BYTES 4096 /* bytes per cpu */
#define N_DISPATCH_LOG (DISPATCH_LOG_BYTES / sizeof(struct dtl_entry))
extern struct kmem_cache *dtl_cache;
* When CONFIG_VIRT_CPU_ACCOUNTING_NATIVE = y, the cpu accounting code controls
* reading from the dispatch trace log. If other code wants to consume
* DTL entries, it can set this pointer to a function that will get
* called once for each DTL entry that gets processed.
extern void (*dtl_consumer)(struct dtl_entry *entry, u64 index);
#endif /* CONFIG_PPC_BOOK3S */
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_LPPACA_H */