| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <net/mac80211.h> |
| #include <net/ieee80211_radiotap.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/skbuff.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_arp.h> |
| #include <linux/wireless.h> |
| #include <linux/rtnetlink.h> |
| #include <net/iw_handler.h> |
| #include <linux/compiler.h> |
| #include <linux/bitmap.h> |
| #include <net/cfg80211.h> |
| #include <asm/unaligned.h> |
| |
| #include "ieee80211_common.h" |
| #include "ieee80211_i.h" |
| #include "ieee80211_rate.h" |
| #include "wep.h" |
| #include "wpa.h" |
| #include "tkip.h" |
| #include "wme.h" |
| #include "aes_ccm.h" |
| #include "ieee80211_led.h" |
| #include "ieee80211_cfg.h" |
| #include "debugfs.h" |
| #include "debugfs_netdev.h" |
| #include "debugfs_key.h" |
| |
| /* privid for wiphys to determine whether they belong to us or not */ |
| void *mac80211_wiphy_privid = &mac80211_wiphy_privid; |
| |
| /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ |
| /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ |
| static const unsigned char rfc1042_header[] = |
| { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; |
| |
| /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ |
| static const unsigned char bridge_tunnel_header[] = |
| { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; |
| |
| /* No encapsulation header if EtherType < 0x600 (=length) */ |
| static const unsigned char eapol_header[] = |
| { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e }; |
| |
| |
| /* |
| * For seeing transmitted packets on monitor interfaces |
| * we have a radiotap header too. |
| */ |
| struct ieee80211_tx_status_rtap_hdr { |
| struct ieee80211_radiotap_header hdr; |
| __le16 tx_flags; |
| u8 data_retries; |
| } __attribute__ ((packed)); |
| |
| |
| static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata, |
| struct ieee80211_hdr *hdr) |
| { |
| /* Set the sequence number for this frame. */ |
| hdr->seq_ctrl = cpu_to_le16(sdata->sequence); |
| |
| /* Increase the sequence number. */ |
| sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ; |
| } |
| |
| struct ieee80211_key_conf * |
| ieee80211_key_data2conf(struct ieee80211_local *local, |
| const struct ieee80211_key *data) |
| { |
| struct ieee80211_key_conf *conf; |
| |
| conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC); |
| if (!conf) |
| return NULL; |
| |
| conf->hw_key_idx = data->hw_key_idx; |
| conf->alg = data->alg; |
| conf->keylen = data->keylen; |
| conf->flags = 0; |
| if (data->force_sw_encrypt) |
| conf->flags |= IEEE80211_KEY_FORCE_SW_ENCRYPT; |
| conf->keyidx = data->keyidx; |
| if (data->default_tx_key) |
| conf->flags |= IEEE80211_KEY_DEFAULT_TX_KEY; |
| if (local->default_wep_only) |
| conf->flags |= IEEE80211_KEY_DEFAULT_WEP_ONLY; |
| memcpy(conf->key, data->key, data->keylen); |
| |
| return conf; |
| } |
| |
| struct ieee80211_key *ieee80211_key_alloc(struct ieee80211_sub_if_data *sdata, |
| int idx, size_t key_len, gfp_t flags) |
| { |
| struct ieee80211_key *key; |
| |
| key = kzalloc(sizeof(struct ieee80211_key) + key_len, flags); |
| if (!key) |
| return NULL; |
| kref_init(&key->kref); |
| return key; |
| } |
| |
| static void ieee80211_key_release(struct kref *kref) |
| { |
| struct ieee80211_key *key; |
| |
| key = container_of(kref, struct ieee80211_key, kref); |
| if (key->alg == ALG_CCMP) |
| ieee80211_aes_key_free(key->u.ccmp.tfm); |
| ieee80211_debugfs_key_remove(key); |
| kfree(key); |
| } |
| |
| void ieee80211_key_free(struct ieee80211_key *key) |
| { |
| if (key) |
| kref_put(&key->kref, ieee80211_key_release); |
| } |
| |
| static int rate_list_match(const int *rate_list, int rate) |
| { |
| int i; |
| |
| if (!rate_list) |
| return 0; |
| |
| for (i = 0; rate_list[i] >= 0; i++) |
| if (rate_list[i] == rate) |
| return 1; |
| |
| return 0; |
| } |
| |
| |
| void ieee80211_prepare_rates(struct ieee80211_local *local, |
| struct ieee80211_hw_mode *mode) |
| { |
| int i; |
| |
| for (i = 0; i < mode->num_rates; i++) { |
| struct ieee80211_rate *rate = &mode->rates[i]; |
| |
| rate->flags &= ~(IEEE80211_RATE_SUPPORTED | |
| IEEE80211_RATE_BASIC); |
| |
| if (local->supp_rates[mode->mode]) { |
| if (!rate_list_match(local->supp_rates[mode->mode], |
| rate->rate)) |
| continue; |
| } |
| |
| rate->flags |= IEEE80211_RATE_SUPPORTED; |
| |
| /* Use configured basic rate set if it is available. If not, |
| * use defaults that are sane for most cases. */ |
| if (local->basic_rates[mode->mode]) { |
| if (rate_list_match(local->basic_rates[mode->mode], |
| rate->rate)) |
| rate->flags |= IEEE80211_RATE_BASIC; |
| } else switch (mode->mode) { |
| case MODE_IEEE80211A: |
| if (rate->rate == 60 || rate->rate == 120 || |
| rate->rate == 240) |
| rate->flags |= IEEE80211_RATE_BASIC; |
| break; |
| case MODE_IEEE80211B: |
| if (rate->rate == 10 || rate->rate == 20) |
| rate->flags |= IEEE80211_RATE_BASIC; |
| break; |
| case MODE_ATHEROS_TURBO: |
| if (rate->rate == 120 || rate->rate == 240 || |
| rate->rate == 480) |
| rate->flags |= IEEE80211_RATE_BASIC; |
| break; |
| case MODE_IEEE80211G: |
| if (rate->rate == 10 || rate->rate == 20 || |
| rate->rate == 55 || rate->rate == 110) |
| rate->flags |= IEEE80211_RATE_BASIC; |
| break; |
| } |
| |
| /* Set ERP and MANDATORY flags based on phymode */ |
| switch (mode->mode) { |
| case MODE_IEEE80211A: |
| if (rate->rate == 60 || rate->rate == 120 || |
| rate->rate == 240) |
| rate->flags |= IEEE80211_RATE_MANDATORY; |
| break; |
| case MODE_IEEE80211B: |
| if (rate->rate == 10) |
| rate->flags |= IEEE80211_RATE_MANDATORY; |
| break; |
| case MODE_ATHEROS_TURBO: |
| break; |
| case MODE_IEEE80211G: |
| if (rate->rate == 10 || rate->rate == 20 || |
| rate->rate == 55 || rate->rate == 110 || |
| rate->rate == 60 || rate->rate == 120 || |
| rate->rate == 240) |
| rate->flags |= IEEE80211_RATE_MANDATORY; |
| break; |
| } |
| if (ieee80211_is_erp_rate(mode->mode, rate->rate)) |
| rate->flags |= IEEE80211_RATE_ERP; |
| } |
| } |
| |
| |
| static void ieee80211_key_threshold_notify(struct net_device *dev, |
| struct ieee80211_key *key, |
| struct sta_info *sta) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct sk_buff *skb; |
| struct ieee80211_msg_key_notification *msg; |
| |
| /* if no one will get it anyway, don't even allocate it. |
| * unlikely because this is only relevant for APs |
| * where the device must be open... */ |
| if (unlikely(!local->apdev)) |
| return; |
| |
| skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) + |
| sizeof(struct ieee80211_msg_key_notification)); |
| if (!skb) |
| return; |
| |
| skb_reserve(skb, sizeof(struct ieee80211_frame_info)); |
| msg = (struct ieee80211_msg_key_notification *) |
| skb_put(skb, sizeof(struct ieee80211_msg_key_notification)); |
| msg->tx_rx_count = key->tx_rx_count; |
| memcpy(msg->ifname, dev->name, IFNAMSIZ); |
| if (sta) |
| memcpy(msg->addr, sta->addr, ETH_ALEN); |
| else |
| memset(msg->addr, 0xff, ETH_ALEN); |
| |
| key->tx_rx_count = 0; |
| |
| ieee80211_rx_mgmt(local, skb, NULL, |
| ieee80211_msg_key_threshold_notification); |
| } |
| |
| |
| static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len) |
| { |
| u16 fc; |
| |
| if (len < 24) |
| return NULL; |
| |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| switch (fc & IEEE80211_FCTL_FTYPE) { |
| case IEEE80211_FTYPE_DATA: |
| switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { |
| case IEEE80211_FCTL_TODS: |
| return hdr->addr1; |
| case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): |
| return NULL; |
| case IEEE80211_FCTL_FROMDS: |
| return hdr->addr2; |
| case 0: |
| return hdr->addr3; |
| } |
| break; |
| case IEEE80211_FTYPE_MGMT: |
| return hdr->addr3; |
| case IEEE80211_FTYPE_CTL: |
| if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL) |
| return hdr->addr1; |
| else |
| return NULL; |
| } |
| |
| return NULL; |
| } |
| |
| int ieee80211_get_hdrlen(u16 fc) |
| { |
| int hdrlen = 24; |
| |
| switch (fc & IEEE80211_FCTL_FTYPE) { |
| case IEEE80211_FTYPE_DATA: |
| if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS)) |
| hdrlen = 30; /* Addr4 */ |
| /* |
| * The QoS Control field is two bytes and its presence is |
| * indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to |
| * hdrlen if that bit is set. |
| * This works by masking out the bit and shifting it to |
| * bit position 1 so the result has the value 0 or 2. |
| */ |
| hdrlen += (fc & IEEE80211_STYPE_QOS_DATA) |
| >> (ilog2(IEEE80211_STYPE_QOS_DATA)-1); |
| break; |
| case IEEE80211_FTYPE_CTL: |
| /* |
| * ACK and CTS are 10 bytes, all others 16. To see how |
| * to get this condition consider |
| * subtype mask: 0b0000000011110000 (0x00F0) |
| * ACK subtype: 0b0000000011010000 (0x00D0) |
| * CTS subtype: 0b0000000011000000 (0x00C0) |
| * bits that matter: ^^^ (0x00E0) |
| * value of those: 0b0000000011000000 (0x00C0) |
| */ |
| if ((fc & 0xE0) == 0xC0) |
| hdrlen = 10; |
| else |
| hdrlen = 16; |
| break; |
| } |
| |
| return hdrlen; |
| } |
| EXPORT_SYMBOL(ieee80211_get_hdrlen); |
| |
| int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) |
| { |
| const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data; |
| int hdrlen; |
| |
| if (unlikely(skb->len < 10)) |
| return 0; |
| hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)); |
| if (unlikely(hdrlen > skb->len)) |
| return 0; |
| return hdrlen; |
| } |
| EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); |
| |
| static int ieee80211_get_radiotap_len(struct sk_buff *skb) |
| { |
| struct ieee80211_radiotap_header *hdr = |
| (struct ieee80211_radiotap_header *) skb->data; |
| |
| return le16_to_cpu(hdr->it_len); |
| } |
| |
| #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP |
| static void ieee80211_dump_frame(const char *ifname, const char *title, |
| const struct sk_buff *skb) |
| { |
| const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| u16 fc; |
| int hdrlen; |
| |
| printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); |
| if (skb->len < 4) { |
| printk("\n"); |
| return; |
| } |
| |
| fc = le16_to_cpu(hdr->frame_control); |
| hdrlen = ieee80211_get_hdrlen(fc); |
| if (hdrlen > skb->len) |
| hdrlen = skb->len; |
| if (hdrlen >= 4) |
| printk(" FC=0x%04x DUR=0x%04x", |
| fc, le16_to_cpu(hdr->duration_id)); |
| if (hdrlen >= 10) |
| printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1)); |
| if (hdrlen >= 16) |
| printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2)); |
| if (hdrlen >= 24) |
| printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3)); |
| if (hdrlen >= 30) |
| printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4)); |
| printk("\n"); |
| } |
| #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ |
| static inline void ieee80211_dump_frame(const char *ifname, const char *title, |
| struct sk_buff *skb) |
| { |
| } |
| #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ |
| |
| |
| static int ieee80211_is_eapol(const struct sk_buff *skb) |
| { |
| const struct ieee80211_hdr *hdr; |
| u16 fc; |
| int hdrlen; |
| |
| if (unlikely(skb->len < 10)) |
| return 0; |
| |
| hdr = (const struct ieee80211_hdr *) skb->data; |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) |
| return 0; |
| |
| hdrlen = ieee80211_get_hdrlen(fc); |
| |
| if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) && |
| memcmp(skb->data + hdrlen, eapol_header, |
| sizeof(eapol_header)) == 0)) |
| return 1; |
| |
| return 0; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx) |
| { |
| struct rate_control_extra extra; |
| |
| memset(&extra, 0, sizeof(extra)); |
| extra.mode = tx->u.tx.mode; |
| extra.mgmt_data = tx->sdata && |
| tx->sdata->type == IEEE80211_IF_TYPE_MGMT; |
| extra.ethertype = tx->ethertype; |
| |
| tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb, |
| &extra); |
| if (unlikely(extra.probe != NULL)) { |
| tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| tx->u.tx.probe_last_frag = 1; |
| tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val; |
| tx->u.tx.rate = extra.probe; |
| } else { |
| tx->u.tx.control->alt_retry_rate = -1; |
| } |
| if (!tx->u.tx.rate) |
| return TXRX_DROP; |
| if (tx->u.tx.mode->mode == MODE_IEEE80211G && |
| tx->sdata->use_protection && tx->fragmented && |
| extra.nonerp) { |
| tx->u.tx.last_frag_rate = tx->u.tx.rate; |
| tx->u.tx.probe_last_frag = extra.probe ? 1 : 0; |
| |
| tx->u.tx.rate = extra.nonerp; |
| tx->u.tx.control->rate = extra.nonerp; |
| tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| } else { |
| tx->u.tx.last_frag_rate = tx->u.tx.rate; |
| tx->u.tx.control->rate = tx->u.tx.rate; |
| } |
| tx->u.tx.control->tx_rate = tx->u.tx.rate->val; |
| if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) && |
| tx->local->short_preamble && |
| (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { |
| tx->u.tx.short_preamble = 1; |
| tx->u.tx.control->tx_rate = tx->u.tx.rate->val2; |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx) |
| { |
| if (tx->sta) |
| tx->u.tx.control->key_idx = tx->sta->key_idx_compression; |
| else |
| tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID; |
| |
| if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) |
| tx->key = NULL; |
| else if (tx->sta && tx->sta->key) |
| tx->key = tx->sta->key; |
| else if (tx->sdata->default_key) |
| tx->key = tx->sdata->default_key; |
| else if (tx->sdata->drop_unencrypted && |
| !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); |
| return TXRX_DROP; |
| } else |
| tx->key = NULL; |
| |
| if (tx->key) { |
| tx->key->tx_rx_count++; |
| if (unlikely(tx->local->key_tx_rx_threshold && |
| tx->key->tx_rx_count > |
| tx->local->key_tx_rx_threshold)) { |
| ieee80211_key_threshold_notify(tx->dev, tx->key, |
| tx->sta); |
| } |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| size_t hdrlen, per_fragm, num_fragm, payload_len, left; |
| struct sk_buff **frags, *first, *frag; |
| int i; |
| u16 seq; |
| u8 *pos; |
| int frag_threshold = tx->local->fragmentation_threshold; |
| |
| if (!tx->fragmented) |
| return TXRX_CONTINUE; |
| |
| first = tx->skb; |
| |
| hdrlen = ieee80211_get_hdrlen(tx->fc); |
| payload_len = first->len - hdrlen; |
| per_fragm = frag_threshold - hdrlen - FCS_LEN; |
| num_fragm = (payload_len + per_fragm - 1) / per_fragm; |
| |
| frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); |
| if (!frags) |
| goto fail; |
| |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); |
| seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; |
| pos = first->data + hdrlen + per_fragm; |
| left = payload_len - per_fragm; |
| for (i = 0; i < num_fragm - 1; i++) { |
| struct ieee80211_hdr *fhdr; |
| size_t copylen; |
| |
| if (left <= 0) |
| goto fail; |
| |
| /* reserve enough extra head and tail room for possible |
| * encryption */ |
| frag = frags[i] = |
| dev_alloc_skb(tx->local->tx_headroom + |
| frag_threshold + |
| IEEE80211_ENCRYPT_HEADROOM + |
| IEEE80211_ENCRYPT_TAILROOM); |
| if (!frag) |
| goto fail; |
| /* Make sure that all fragments use the same priority so |
| * that they end up using the same TX queue */ |
| frag->priority = first->priority; |
| skb_reserve(frag, tx->local->tx_headroom + |
| IEEE80211_ENCRYPT_HEADROOM); |
| fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); |
| memcpy(fhdr, first->data, hdrlen); |
| if (i == num_fragm - 2) |
| fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); |
| fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); |
| copylen = left > per_fragm ? per_fragm : left; |
| memcpy(skb_put(frag, copylen), pos, copylen); |
| |
| pos += copylen; |
| left -= copylen; |
| } |
| skb_trim(first, hdrlen + per_fragm); |
| |
| tx->u.tx.num_extra_frag = num_fragm - 1; |
| tx->u.tx.extra_frag = frags; |
| |
| return TXRX_CONTINUE; |
| |
| fail: |
| printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); |
| if (frags) { |
| for (i = 0; i < num_fragm - 1; i++) |
| if (frags[i]) |
| dev_kfree_skb(frags[i]); |
| kfree(frags); |
| } |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); |
| return TXRX_DROP; |
| } |
| |
| |
| static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb) |
| { |
| if (tx->key->force_sw_encrypt) { |
| if (ieee80211_wep_encrypt(tx->local, skb, tx->key)) |
| return -1; |
| } else { |
| tx->u.tx.control->key_idx = tx->key->hw_key_idx; |
| if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) { |
| if (ieee80211_wep_add_iv(tx->local, skb, tx->key) == |
| NULL) |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| |
| void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| |
| hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); |
| if (tx->u.tx.extra_frag) { |
| struct ieee80211_hdr *fhdr; |
| int i; |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| fhdr = (struct ieee80211_hdr *) |
| tx->u.tx.extra_frag[i]->data; |
| fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); |
| } |
| } |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| u16 fc; |
| |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| if (!tx->key || tx->key->alg != ALG_WEP || |
| ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && |
| ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| (fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))) |
| return TXRX_CONTINUE; |
| |
| tx->u.tx.control->iv_len = WEP_IV_LEN; |
| tx->u.tx.control->icv_len = WEP_ICV_LEN; |
| ieee80211_tx_set_iswep(tx); |
| |
| if (wep_encrypt_skb(tx, tx->skb) < 0) { |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); |
| return TXRX_DROP; |
| } |
| |
| if (tx->u.tx.extra_frag) { |
| int i; |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) { |
| I802_DEBUG_INC(tx->local-> |
| tx_handlers_drop_wep); |
| return TXRX_DROP; |
| } |
| } |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len, |
| int rate, int erp, int short_preamble) |
| { |
| int dur; |
| |
| /* calculate duration (in microseconds, rounded up to next higher |
| * integer if it includes a fractional microsecond) to send frame of |
| * len bytes (does not include FCS) at the given rate. Duration will |
| * also include SIFS. |
| * |
| * rate is in 100 kbps, so divident is multiplied by 10 in the |
| * DIV_ROUND_UP() operations. |
| */ |
| |
| if (local->hw.conf.phymode == MODE_IEEE80211A || erp || |
| local->hw.conf.phymode == MODE_ATHEROS_TURBO) { |
| /* |
| * OFDM: |
| * |
| * N_DBPS = DATARATE x 4 |
| * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) |
| * (16 = SIGNAL time, 6 = tail bits) |
| * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext |
| * |
| * T_SYM = 4 usec |
| * 802.11a - 17.5.2: aSIFSTime = 16 usec |
| * 802.11g - 19.8.4: aSIFSTime = 10 usec + |
| * signal ext = 6 usec |
| */ |
| /* FIX: Atheros Turbo may have different (shorter) duration? */ |
| dur = 16; /* SIFS + signal ext */ |
| dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */ |
| dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */ |
| dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, |
| 4 * rate); /* T_SYM x N_SYM */ |
| } else { |
| /* |
| * 802.11b or 802.11g with 802.11b compatibility: |
| * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + |
| * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. |
| * |
| * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 |
| * aSIFSTime = 10 usec |
| * aPreambleLength = 144 usec or 72 usec with short preamble |
| * aPLCPHeaderLength = 48 usec or 24 usec with short preamble |
| */ |
| dur = 10; /* aSIFSTime = 10 usec */ |
| dur += short_preamble ? (72 + 24) : (144 + 48); |
| |
| dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); |
| } |
| |
| return dur; |
| } |
| |
| |
| /* Exported duration function for driver use */ |
| __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, |
| size_t frame_len, int rate) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| u16 dur; |
| int erp; |
| |
| erp = ieee80211_is_erp_rate(hw->conf.phymode, rate); |
| dur = ieee80211_frame_duration(local, frame_len, rate, |
| erp, local->short_preamble); |
| |
| return cpu_to_le16(dur); |
| } |
| EXPORT_SYMBOL(ieee80211_generic_frame_duration); |
| |
| |
| static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr, |
| int next_frag_len) |
| { |
| int rate, mrate, erp, dur, i; |
| struct ieee80211_rate *txrate = tx->u.tx.rate; |
| struct ieee80211_local *local = tx->local; |
| struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| |
| erp = txrate->flags & IEEE80211_RATE_ERP; |
| |
| /* |
| * data and mgmt (except PS Poll): |
| * - during CFP: 32768 |
| * - during contention period: |
| * if addr1 is group address: 0 |
| * if more fragments = 0 and addr1 is individual address: time to |
| * transmit one ACK plus SIFS |
| * if more fragments = 1 and addr1 is individual address: time to |
| * transmit next fragment plus 2 x ACK plus 3 x SIFS |
| * |
| * IEEE 802.11, 9.6: |
| * - control response frame (CTS or ACK) shall be transmitted using the |
| * same rate as the immediately previous frame in the frame exchange |
| * sequence, if this rate belongs to the PHY mandatory rates, or else |
| * at the highest possible rate belonging to the PHY rates in the |
| * BSSBasicRateSet |
| */ |
| |
| if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { |
| /* TODO: These control frames are not currently sent by |
| * 80211.o, but should they be implemented, this function |
| * needs to be updated to support duration field calculation. |
| * |
| * RTS: time needed to transmit pending data/mgmt frame plus |
| * one CTS frame plus one ACK frame plus 3 x SIFS |
| * CTS: duration of immediately previous RTS minus time |
| * required to transmit CTS and its SIFS |
| * ACK: 0 if immediately previous directed data/mgmt had |
| * more=0, with more=1 duration in ACK frame is duration |
| * from previous frame minus time needed to transmit ACK |
| * and its SIFS |
| * PS Poll: BIT(15) | BIT(14) | aid |
| */ |
| return 0; |
| } |
| |
| /* data/mgmt */ |
| if (0 /* FIX: data/mgmt during CFP */) |
| return 32768; |
| |
| if (group_addr) /* Group address as the destination - no ACK */ |
| return 0; |
| |
| /* Individual destination address: |
| * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) |
| * CTS and ACK frames shall be transmitted using the highest rate in |
| * basic rate set that is less than or equal to the rate of the |
| * immediately previous frame and that is using the same modulation |
| * (CCK or OFDM). If no basic rate set matches with these requirements, |
| * the highest mandatory rate of the PHY that is less than or equal to |
| * the rate of the previous frame is used. |
| * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps |
| */ |
| rate = -1; |
| mrate = 10; /* use 1 Mbps if everything fails */ |
| for (i = 0; i < mode->num_rates; i++) { |
| struct ieee80211_rate *r = &mode->rates[i]; |
| if (r->rate > txrate->rate) |
| break; |
| |
| if (IEEE80211_RATE_MODULATION(txrate->flags) != |
| IEEE80211_RATE_MODULATION(r->flags)) |
| continue; |
| |
| if (r->flags & IEEE80211_RATE_BASIC) |
| rate = r->rate; |
| else if (r->flags & IEEE80211_RATE_MANDATORY) |
| mrate = r->rate; |
| } |
| if (rate == -1) { |
| /* No matching basic rate found; use highest suitable mandatory |
| * PHY rate */ |
| rate = mrate; |
| } |
| |
| /* Time needed to transmit ACK |
| * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up |
| * to closest integer */ |
| |
| dur = ieee80211_frame_duration(local, 10, rate, erp, |
| local->short_preamble); |
| |
| if (next_frag_len) { |
| /* Frame is fragmented: duration increases with time needed to |
| * transmit next fragment plus ACK and 2 x SIFS. */ |
| dur *= 2; /* ACK + SIFS */ |
| /* next fragment */ |
| dur += ieee80211_frame_duration(local, next_frag_len, |
| txrate->rate, erp, |
| local->short_preamble); |
| } |
| |
| return dur; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; |
| u16 dur; |
| struct ieee80211_tx_control *control = tx->u.tx.control; |
| struct ieee80211_hw_mode *mode = tx->u.tx.mode; |
| |
| if (!is_multicast_ether_addr(hdr->addr1)) { |
| if (tx->skb->len + FCS_LEN > tx->local->rts_threshold && |
| tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) { |
| control->flags |= IEEE80211_TXCTL_USE_RTS_CTS; |
| control->retry_limit = |
| tx->local->long_retry_limit; |
| } else { |
| control->retry_limit = |
| tx->local->short_retry_limit; |
| } |
| } else { |
| control->retry_limit = 1; |
| } |
| |
| if (tx->fragmented) { |
| /* Do not use multiple retry rates when sending fragmented |
| * frames. |
| * TODO: The last fragment could still use multiple retry |
| * rates. */ |
| control->alt_retry_rate = -1; |
| } |
| |
| /* Use CTS protection for unicast frames sent using extended rates if |
| * there are associated non-ERP stations and RTS/CTS is not configured |
| * for the frame. */ |
| if (mode->mode == MODE_IEEE80211G && |
| (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) && |
| tx->u.tx.unicast && tx->sdata->use_protection && |
| !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS)) |
| control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT; |
| |
| /* Setup duration field for the first fragment of the frame. Duration |
| * for remaining fragments will be updated when they are being sent |
| * to low-level driver in ieee80211_tx(). */ |
| dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1), |
| tx->fragmented ? tx->u.tx.extra_frag[0]->len : |
| 0); |
| hdr->duration_id = cpu_to_le16(dur); |
| |
| if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) || |
| (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) { |
| struct ieee80211_rate *rate; |
| |
| /* Do not use multiple retry rates when using RTS/CTS */ |
| control->alt_retry_rate = -1; |
| |
| /* Use min(data rate, max base rate) as CTS/RTS rate */ |
| rate = tx->u.tx.rate; |
| while (rate > mode->rates && |
| !(rate->flags & IEEE80211_RATE_BASIC)) |
| rate--; |
| |
| control->rts_cts_rate = rate->val; |
| control->rts_rate = rate; |
| } |
| |
| if (tx->sta) { |
| tx->sta->tx_packets++; |
| tx->sta->tx_fragments++; |
| tx->sta->tx_bytes += tx->skb->len; |
| if (tx->u.tx.extra_frag) { |
| int i; |
| tx->sta->tx_fragments += tx->u.tx.num_extra_frag; |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| tx->sta->tx_bytes += |
| tx->u.tx.extra_frag[i]->len; |
| } |
| } |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx) |
| { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| struct sk_buff *skb = tx->skb; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| u32 sta_flags; |
| |
| if (unlikely(tx->local->sta_scanning != 0) && |
| ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) |
| return TXRX_DROP; |
| |
| if (tx->u.tx.ps_buffered) |
| return TXRX_CONTINUE; |
| |
| sta_flags = tx->sta ? tx->sta->flags : 0; |
| |
| if (likely(tx->u.tx.unicast)) { |
| if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && |
| tx->sdata->type != IEEE80211_IF_TYPE_IBSS && |
| (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: dropped data frame to not " |
| "associated station " MAC_FMT "\n", |
| tx->dev->name, MAC_ARG(hdr->addr1)); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); |
| return TXRX_DROP; |
| } |
| } else { |
| if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| tx->local->num_sta == 0 && |
| !tx->local->allow_broadcast_always && |
| tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) { |
| /* |
| * No associated STAs - no need to send multicast |
| * frames. |
| */ |
| return TXRX_DROP; |
| } |
| return TXRX_CONTINUE; |
| } |
| |
| if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x && |
| !(sta_flags & WLAN_STA_AUTHORIZED))) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT |
| " (unauthorized port)\n", tx->dev->name, |
| MAC_ARG(hdr->addr1)); |
| #endif |
| I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port); |
| return TXRX_DROP; |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| |
| if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24) |
| ieee80211_include_sequence(tx->sdata, hdr); |
| |
| return TXRX_CONTINUE; |
| } |
| |
| /* This function is called whenever the AP is about to exceed the maximum limit |
| * of buffered frames for power saving STAs. This situation should not really |
| * happen often during normal operation, so dropping the oldest buffered packet |
| * from each queue should be OK to make some room for new frames. */ |
| static void purge_old_ps_buffers(struct ieee80211_local *local) |
| { |
| int total = 0, purged = 0; |
| struct sk_buff *skb; |
| struct ieee80211_sub_if_data *sdata; |
| struct sta_info *sta; |
| |
| read_lock(&local->sub_if_lock); |
| list_for_each_entry(sdata, &local->sub_if_list, list) { |
| struct ieee80211_if_ap *ap; |
| if (sdata->dev == local->mdev || |
| sdata->type != IEEE80211_IF_TYPE_AP) |
| continue; |
| ap = &sdata->u.ap; |
| skb = skb_dequeue(&ap->ps_bc_buf); |
| if (skb) { |
| purged++; |
| dev_kfree_skb(skb); |
| } |
| total += skb_queue_len(&ap->ps_bc_buf); |
| } |
| read_unlock(&local->sub_if_lock); |
| |
| spin_lock_bh(&local->sta_lock); |
| list_for_each_entry(sta, &local->sta_list, list) { |
| skb = skb_dequeue(&sta->ps_tx_buf); |
| if (skb) { |
| purged++; |
| dev_kfree_skb(skb); |
| } |
| total += skb_queue_len(&sta->ps_tx_buf); |
| } |
| spin_unlock_bh(&local->sta_lock); |
| |
| local->total_ps_buffered = total; |
| printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", |
| local->mdev->name, purged); |
| } |
| |
| |
| static inline ieee80211_txrx_result |
| ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx) |
| { |
| /* broadcast/multicast frame */ |
| /* If any of the associated stations is in power save mode, |
| * the frame is buffered to be sent after DTIM beacon frame */ |
| if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) && |
| tx->sdata->type != IEEE80211_IF_TYPE_WDS && |
| tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) && |
| !(tx->fc & IEEE80211_FCTL_ORDER)) { |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= |
| AP_MAX_BC_BUFFER) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: BC TX buffer full - " |
| "dropping the oldest frame\n", |
| tx->dev->name); |
| } |
| dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); |
| } else |
| tx->local->total_ps_buffered++; |
| skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); |
| return TXRX_QUEUED; |
| } |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static inline ieee80211_txrx_result |
| ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx) |
| { |
| struct sta_info *sta = tx->sta; |
| |
| if (unlikely(!sta || |
| ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && |
| (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) |
| return TXRX_CONTINUE; |
| |
| if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) { |
| struct ieee80211_tx_packet_data *pkt_data; |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries " |
| "before %d)\n", |
| MAC_ARG(sta->addr), sta->aid, |
| skb_queue_len(&sta->ps_tx_buf)); |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| sta->flags |= WLAN_STA_TIM; |
| if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| purge_old_ps_buffers(tx->local); |
| if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { |
| struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: STA " MAC_FMT " TX " |
| "buffer full - dropping oldest frame\n", |
| tx->dev->name, MAC_ARG(sta->addr)); |
| } |
| dev_kfree_skb(old); |
| } else |
| tx->local->total_ps_buffered++; |
| /* Queue frame to be sent after STA sends an PS Poll frame */ |
| if (skb_queue_empty(&sta->ps_tx_buf)) { |
| if (tx->local->ops->set_tim) |
| tx->local->ops->set_tim(local_to_hw(tx->local), |
| sta->aid, 1); |
| if (tx->sdata->bss) |
| bss_tim_set(tx->local, tx->sdata->bss, sta->aid); |
| } |
| pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; |
| pkt_data->jiffies = jiffies; |
| skb_queue_tail(&sta->ps_tx_buf, tx->skb); |
| return TXRX_QUEUED; |
| } |
| #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| else if (unlikely(sta->flags & WLAN_STA_PS)) { |
| printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll " |
| "set -> send frame\n", tx->dev->name, |
| MAC_ARG(sta->addr)); |
| } |
| #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| sta->pspoll = 0; |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx) |
| { |
| if (unlikely(tx->u.tx.ps_buffered)) |
| return TXRX_CONTINUE; |
| |
| if (tx->u.tx.unicast) |
| return ieee80211_tx_h_unicast_ps_buf(tx); |
| else |
| return ieee80211_tx_h_multicast_ps_buf(tx); |
| } |
| |
| |
| /* |
| * deal with packet injection down monitor interface |
| * with Radiotap Header -- only called for monitor mode interface |
| */ |
| |
| static ieee80211_txrx_result |
| __ieee80211_parse_tx_radiotap( |
| struct ieee80211_txrx_data *tx, |
| struct sk_buff *skb, struct ieee80211_tx_control *control) |
| { |
| /* |
| * this is the moment to interpret and discard the radiotap header that |
| * must be at the start of the packet injected in Monitor mode |
| * |
| * Need to take some care with endian-ness since radiotap |
| * args are little-endian |
| */ |
| |
| struct ieee80211_radiotap_iterator iterator; |
| struct ieee80211_radiotap_header *rthdr = |
| (struct ieee80211_radiotap_header *) skb->data; |
| struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode; |
| int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); |
| |
| /* |
| * default control situation for all injected packets |
| * FIXME: this does not suit all usage cases, expand to allow control |
| */ |
| |
| control->retry_limit = 1; /* no retry */ |
| control->key_idx = -1; /* no encryption key */ |
| control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | |
| IEEE80211_TXCTL_USE_CTS_PROTECT); |
| control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT | |
| IEEE80211_TXCTL_NO_ACK; |
| control->antenna_sel_tx = 0; /* default to default antenna */ |
| |
| /* |
| * for every radiotap entry that is present |
| * (ieee80211_radiotap_iterator_next returns -ENOENT when no more |
| * entries present, or -EINVAL on error) |
| */ |
| |
| while (!ret) { |
| int i, target_rate; |
| |
| ret = ieee80211_radiotap_iterator_next(&iterator); |
| |
| if (ret) |
| continue; |
| |
| /* see if this argument is something we can use */ |
| switch (iterator.this_arg_index) { |
| /* |
| * You must take care when dereferencing iterator.this_arg |
| * for multibyte types... the pointer is not aligned. Use |
| * get_unaligned((type *)iterator.this_arg) to dereference |
| * iterator.this_arg for type "type" safely on all arches. |
| */ |
| case IEEE80211_RADIOTAP_RATE: |
| /* |
| * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps |
| * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps |
| */ |
| target_rate = (*iterator.this_arg) * 5; |
| for (i = 0; i < mode->num_rates; i++) { |
| struct ieee80211_rate *r = &mode->rates[i]; |
| |
| if (r->rate > target_rate) |
| continue; |
| |
| control->rate = r; |
| |
| if (r->flags & IEEE80211_RATE_PREAMBLE2) |
| control->tx_rate = r->val2; |
| else |
| control->tx_rate = r->val; |
| |
| /* end on exact match */ |
| if (r->rate == target_rate) |
| i = mode->num_rates; |
| } |
| break; |
| |
| case IEEE80211_RADIOTAP_ANTENNA: |
| /* |
| * radiotap uses 0 for 1st ant, mac80211 is 1 for |
| * 1st ant |
| */ |
| control->antenna_sel_tx = (*iterator.this_arg) + 1; |
| break; |
| |
| case IEEE80211_RADIOTAP_DBM_TX_POWER: |
| control->power_level = *iterator.this_arg; |
| break; |
| |
| case IEEE80211_RADIOTAP_FLAGS: |
| if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { |
| /* |
| * this indicates that the skb we have been |
| * handed has the 32-bit FCS CRC at the end... |
| * we should react to that by snipping it off |
| * because it will be recomputed and added |
| * on transmission |
| */ |
| if (skb->len < (iterator.max_length + FCS_LEN)) |
| return TXRX_DROP; |
| |
| skb_trim(skb, skb->len - FCS_LEN); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ |
| return TXRX_DROP; |
| |
| /* |
| * remove the radiotap header |
| * iterator->max_length was sanity-checked against |
| * skb->len by iterator init |
| */ |
| skb_pull(skb, iterator.max_length); |
| |
| return TXRX_CONTINUE; |
| } |
| |
| |
| static ieee80211_txrx_result inline |
| __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, |
| struct sk_buff *skb, |
| struct net_device *dev, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| struct ieee80211_sub_if_data *sdata; |
| ieee80211_txrx_result res = TXRX_CONTINUE; |
| |
| int hdrlen; |
| |
| memset(tx, 0, sizeof(*tx)); |
| tx->skb = skb; |
| tx->dev = dev; /* use original interface */ |
| tx->local = local; |
| tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| tx->sta = sta_info_get(local, hdr->addr1); |
| tx->fc = le16_to_cpu(hdr->frame_control); |
| |
| /* |
| * set defaults for things that can be set by |
| * injected radiotap headers |
| */ |
| control->power_level = local->hw.conf.power_level; |
| control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; |
| if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta) |
| control->antenna_sel_tx = tx->sta->antenna_sel_tx; |
| |
| /* process and remove the injection radiotap header */ |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) { |
| if (__ieee80211_parse_tx_radiotap(tx, skb, control) == |
| TXRX_DROP) { |
| return TXRX_DROP; |
| } |
| /* |
| * we removed the radiotap header after this point, |
| * we filled control with what we could use |
| * set to the actual ieee header now |
| */ |
| hdr = (struct ieee80211_hdr *) skb->data; |
| res = TXRX_QUEUED; /* indication it was monitor packet */ |
| } |
| |
| tx->u.tx.control = control; |
| tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1); |
| if (is_multicast_ether_addr(hdr->addr1)) |
| control->flags |= IEEE80211_TXCTL_NO_ACK; |
| else |
| control->flags &= ~IEEE80211_TXCTL_NO_ACK; |
| tx->fragmented = local->fragmentation_threshold < |
| IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast && |
| skb->len + FCS_LEN > local->fragmentation_threshold && |
| (!local->ops->set_frag_threshold); |
| if (!tx->sta) |
| control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| else if (tx->sta->clear_dst_mask) { |
| control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| tx->sta->clear_dst_mask = 0; |
| } |
| hdrlen = ieee80211_get_hdrlen(tx->fc); |
| if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { |
| u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; |
| tx->ethertype = (pos[0] << 8) | pos[1]; |
| } |
| control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT; |
| |
| return res; |
| } |
| |
| static int inline is_ieee80211_device(struct net_device *dev, |
| struct net_device *master) |
| { |
| return (wdev_priv(dev->ieee80211_ptr) == |
| wdev_priv(master->ieee80211_ptr)); |
| } |
| |
| /* Device in tx->dev has a reference added; use dev_put(tx->dev) when |
| * finished with it. */ |
| static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx, |
| struct sk_buff *skb, |
| struct net_device *mdev, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct net_device *dev; |
| |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| dev = dev_get_by_index(pkt_data->ifindex); |
| if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { |
| dev_put(dev); |
| dev = NULL; |
| } |
| if (unlikely(!dev)) |
| return -ENODEV; |
| __ieee80211_tx_prepare(tx, skb, dev, control); |
| return 0; |
| } |
| |
| static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local, |
| int queue) |
| { |
| return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); |
| } |
| |
| static inline int __ieee80211_queue_pending(const struct ieee80211_local *local, |
| int queue) |
| { |
| return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]); |
| } |
| |
| #define IEEE80211_TX_OK 0 |
| #define IEEE80211_TX_AGAIN 1 |
| #define IEEE80211_TX_FRAG_AGAIN 2 |
| |
| static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, |
| struct ieee80211_txrx_data *tx) |
| { |
| struct ieee80211_tx_control *control = tx->u.tx.control; |
| int ret, i; |
| |
| if (!ieee80211_qdisc_installed(local->mdev) && |
| __ieee80211_queue_stopped(local, 0)) { |
| netif_stop_queue(local->mdev); |
| return IEEE80211_TX_AGAIN; |
| } |
| if (skb) { |
| ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb); |
| ret = local->ops->tx(local_to_hw(local), skb, control); |
| if (ret) |
| return IEEE80211_TX_AGAIN; |
| local->mdev->trans_start = jiffies; |
| ieee80211_led_tx(local, 1); |
| } |
| if (tx->u.tx.extra_frag) { |
| control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | |
| IEEE80211_TXCTL_USE_CTS_PROTECT | |
| IEEE80211_TXCTL_CLEAR_DST_MASK | |
| IEEE80211_TXCTL_FIRST_FRAGMENT); |
| for (i = 0; i < tx->u.tx.num_extra_frag; i++) { |
| if (!tx->u.tx.extra_frag[i]) |
| continue; |
| if (__ieee80211_queue_stopped(local, control->queue)) |
| return IEEE80211_TX_FRAG_AGAIN; |
| if (i == tx->u.tx.num_extra_frag) { |
| control->tx_rate = tx->u.tx.last_frag_hwrate; |
| control->rate = tx->u.tx.last_frag_rate; |
| if (tx->u.tx.probe_last_frag) |
| control->flags |= |
| IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| else |
| control->flags &= |
| ~IEEE80211_TXCTL_RATE_CTRL_PROBE; |
| } |
| |
| ieee80211_dump_frame(local->mdev->name, |
| "TX to low-level driver", |
| tx->u.tx.extra_frag[i]); |
| ret = local->ops->tx(local_to_hw(local), |
| tx->u.tx.extra_frag[i], |
| control); |
| if (ret) |
| return IEEE80211_TX_FRAG_AGAIN; |
| local->mdev->trans_start = jiffies; |
| ieee80211_led_tx(local, 1); |
| tx->u.tx.extra_frag[i] = NULL; |
| } |
| kfree(tx->u.tx.extra_frag); |
| tx->u.tx.extra_frag = NULL; |
| } |
| return IEEE80211_TX_OK; |
| } |
| |
| static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, |
| struct ieee80211_tx_control *control, int mgmt) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct sta_info *sta; |
| ieee80211_tx_handler *handler; |
| struct ieee80211_txrx_data tx; |
| ieee80211_txrx_result res = TXRX_DROP, res_prepare; |
| int ret, i; |
| |
| WARN_ON(__ieee80211_queue_pending(local, control->queue)); |
| |
| if (unlikely(skb->len < 10)) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control); |
| |
| if (res_prepare == TXRX_DROP) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| sta = tx.sta; |
| tx.u.tx.mgmt_interface = mgmt; |
| tx.u.tx.mode = local->hw.conf.mode; |
| |
| if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */ |
| res = TXRX_CONTINUE; |
| } else { |
| for (handler = local->tx_handlers; *handler != NULL; |
| handler++) { |
| res = (*handler)(&tx); |
| if (res != TXRX_CONTINUE) |
| break; |
| } |
| } |
| |
| skb = tx.skb; /* handlers are allowed to change skb */ |
| |
| if (sta) |
| sta_info_put(sta); |
| |
| if (unlikely(res == TXRX_DROP)) { |
| I802_DEBUG_INC(local->tx_handlers_drop); |
| goto drop; |
| } |
| |
| if (unlikely(res == TXRX_QUEUED)) { |
| I802_DEBUG_INC(local->tx_handlers_queued); |
| return 0; |
| } |
| |
| if (tx.u.tx.extra_frag) { |
| for (i = 0; i < tx.u.tx.num_extra_frag; i++) { |
| int next_len, dur; |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) |
| tx.u.tx.extra_frag[i]->data; |
| |
| if (i + 1 < tx.u.tx.num_extra_frag) { |
| next_len = tx.u.tx.extra_frag[i + 1]->len; |
| } else { |
| next_len = 0; |
| tx.u.tx.rate = tx.u.tx.last_frag_rate; |
| tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val; |
| } |
| dur = ieee80211_duration(&tx, 0, next_len); |
| hdr->duration_id = cpu_to_le16(dur); |
| } |
| } |
| |
| retry: |
| ret = __ieee80211_tx(local, skb, &tx); |
| if (ret) { |
| struct ieee80211_tx_stored_packet *store = |
| &local->pending_packet[control->queue]; |
| |
| if (ret == IEEE80211_TX_FRAG_AGAIN) |
| skb = NULL; |
| set_bit(IEEE80211_LINK_STATE_PENDING, |
| &local->state[control->queue]); |
| smp_mb(); |
| /* When the driver gets out of buffers during sending of |
| * fragments and calls ieee80211_stop_queue, there is |
| * a small window between IEEE80211_LINK_STATE_XOFF and |
| * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer |
| * gets available in that window (i.e. driver calls |
| * ieee80211_wake_queue), we would end up with ieee80211_tx |
| * called with IEEE80211_LINK_STATE_PENDING. Prevent this by |
| * continuing transmitting here when that situation is |
| * possible to have happened. */ |
| if (!__ieee80211_queue_stopped(local, control->queue)) { |
| clear_bit(IEEE80211_LINK_STATE_PENDING, |
| &local->state[control->queue]); |
| goto retry; |
| } |
| memcpy(&store->control, control, |
| sizeof(struct ieee80211_tx_control)); |
| store->skb = skb; |
| store->extra_frag = tx.u.tx.extra_frag; |
| store->num_extra_frag = tx.u.tx.num_extra_frag; |
| store->last_frag_hwrate = tx.u.tx.last_frag_hwrate; |
| store->last_frag_rate = tx.u.tx.last_frag_rate; |
| store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag; |
| } |
| return 0; |
| |
| drop: |
| if (skb) |
| dev_kfree_skb(skb); |
| for (i = 0; i < tx.u.tx.num_extra_frag; i++) |
| if (tx.u.tx.extra_frag[i]) |
| dev_kfree_skb(tx.u.tx.extra_frag[i]); |
| kfree(tx.u.tx.extra_frag); |
| return 0; |
| } |
| |
| static void ieee80211_tx_pending(unsigned long data) |
| { |
| struct ieee80211_local *local = (struct ieee80211_local *)data; |
| struct net_device *dev = local->mdev; |
| struct ieee80211_tx_stored_packet *store; |
| struct ieee80211_txrx_data tx; |
| int i, ret, reschedule = 0; |
| |
| netif_tx_lock_bh(dev); |
| for (i = 0; i < local->hw.queues; i++) { |
| if (__ieee80211_queue_stopped(local, i)) |
| continue; |
| if (!__ieee80211_queue_pending(local, i)) { |
| reschedule = 1; |
| continue; |
| } |
| store = &local->pending_packet[i]; |
| tx.u.tx.control = &store->control; |
| tx.u.tx.extra_frag = store->extra_frag; |
| tx.u.tx.num_extra_frag = store->num_extra_frag; |
| tx.u.tx.last_frag_hwrate = store->last_frag_hwrate; |
| tx.u.tx.last_frag_rate = store->last_frag_rate; |
| tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe; |
| ret = __ieee80211_tx(local, store->skb, &tx); |
| if (ret) { |
| if (ret == IEEE80211_TX_FRAG_AGAIN) |
| store->skb = NULL; |
| } else { |
| clear_bit(IEEE80211_LINK_STATE_PENDING, |
| &local->state[i]); |
| reschedule = 1; |
| } |
| } |
| netif_tx_unlock_bh(dev); |
| if (reschedule) { |
| if (!ieee80211_qdisc_installed(dev)) { |
| if (!__ieee80211_queue_stopped(local, 0)) |
| netif_wake_queue(dev); |
| } else |
| netif_schedule(dev); |
| } |
| } |
| |
| static void ieee80211_clear_tx_pending(struct ieee80211_local *local) |
| { |
| int i, j; |
| struct ieee80211_tx_stored_packet *store; |
| |
| for (i = 0; i < local->hw.queues; i++) { |
| if (!__ieee80211_queue_pending(local, i)) |
| continue; |
| store = &local->pending_packet[i]; |
| kfree_skb(store->skb); |
| for (j = 0; j < store->num_extra_frag; j++) |
| kfree_skb(store->extra_frag[j]); |
| kfree(store->extra_frag); |
| clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); |
| } |
| } |
| |
| static int ieee80211_master_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_tx_control control; |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct net_device *odev = NULL; |
| struct ieee80211_sub_if_data *osdata; |
| int headroom; |
| int ret; |
| |
| /* |
| * copy control out of the skb so other people can use skb->cb |
| */ |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| memset(&control, 0, sizeof(struct ieee80211_tx_control)); |
| |
| if (pkt_data->ifindex) |
| odev = dev_get_by_index(pkt_data->ifindex); |
| if (unlikely(odev && !is_ieee80211_device(odev, dev))) { |
| dev_put(odev); |
| odev = NULL; |
| } |
| if (unlikely(!odev)) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: Discarded packet with nonexistent " |
| "originating device\n", dev->name); |
| #endif |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| osdata = IEEE80211_DEV_TO_SUB_IF(odev); |
| |
| headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM; |
| if (skb_headroom(skb) < headroom) { |
| if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| dev_put(odev); |
| return 0; |
| } |
| } |
| |
| control.ifindex = odev->ifindex; |
| control.type = osdata->type; |
| if (pkt_data->req_tx_status) |
| control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS; |
| if (pkt_data->do_not_encrypt) |
| control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; |
| if (pkt_data->requeue) |
| control.flags |= IEEE80211_TXCTL_REQUEUE; |
| control.queue = pkt_data->queue; |
| |
| ret = ieee80211_tx(odev, skb, &control, |
| control.type == IEEE80211_IF_TYPE_MGMT); |
| dev_put(odev); |
| |
| return ret; |
| } |
| |
| |
| int ieee80211_monitor_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct ieee80211_radiotap_header *prthdr = |
| (struct ieee80211_radiotap_header *)skb->data; |
| u16 len; |
| |
| /* |
| * there must be a radiotap header at the |
| * start in this case |
| */ |
| if (unlikely(prthdr->it_version)) { |
| /* only version 0 is supported */ |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| skb->dev = local->mdev; |
| |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| memset(pkt_data, 0, sizeof(*pkt_data)); |
| pkt_data->ifindex = dev->ifindex; |
| pkt_data->mgmt_iface = 0; |
| pkt_data->do_not_encrypt = 1; |
| |
| /* above needed because we set skb device to master */ |
| |
| /* |
| * fix up the pointers accounting for the radiotap |
| * header still being in there. We are being given |
| * a precooked IEEE80211 header so no need for |
| * normal processing |
| */ |
| len = le16_to_cpu(get_unaligned(&prthdr->it_len)); |
| skb_set_mac_header(skb, len); |
| skb_set_network_header(skb, len + sizeof(struct ieee80211_hdr)); |
| skb_set_transport_header(skb, len + sizeof(struct ieee80211_hdr)); |
| |
| /* |
| * pass the radiotap header up to |
| * the next stage intact |
| */ |
| dev_queue_xmit(skb); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| /** |
| * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type |
| * subinterfaces (wlan#, WDS, and VLAN interfaces) |
| * @skb: packet to be sent |
| * @dev: incoming interface |
| * |
| * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will |
| * not be freed, and caller is responsible for either retrying later or freeing |
| * skb). |
| * |
| * This function takes in an Ethernet header and encapsulates it with suitable |
| * IEEE 802.11 header based on which interface the packet is coming in. The |
| * encapsulated packet will then be passed to master interface, wlan#.11, for |
| * transmission (through low-level driver). |
| */ |
| int ieee80211_subif_start_xmit(struct sk_buff *skb, |
| struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct ieee80211_sub_if_data *sdata; |
| int ret = 1, head_need; |
| u16 ethertype, hdrlen, fc; |
| struct ieee80211_hdr hdr; |
| const u8 *encaps_data; |
| int encaps_len, skip_header_bytes; |
| int nh_pos, h_pos, no_encrypt = 0; |
| struct sta_info *sta; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| if (unlikely(skb->len < ETH_HLEN)) { |
| printk(KERN_DEBUG "%s: short skb (len=%d)\n", |
| dev->name, skb->len); |
| ret = 0; |
| goto fail; |
| } |
| |
| nh_pos = skb_network_header(skb) - skb->data; |
| h_pos = skb_transport_header(skb) - skb->data; |
| |
| /* convert Ethernet header to proper 802.11 header (based on |
| * operation mode) */ |
| ethertype = (skb->data[12] << 8) | skb->data[13]; |
| /* TODO: handling for 802.1x authorized/unauthorized port */ |
| fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA; |
| |
| if (likely(sdata->type == IEEE80211_IF_TYPE_AP || |
| sdata->type == IEEE80211_IF_TYPE_VLAN)) { |
| fc |= IEEE80211_FCTL_FROMDS; |
| /* DA BSSID SA */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 24; |
| } else if (sdata->type == IEEE80211_IF_TYPE_WDS) { |
| fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; |
| /* RA TA DA SA */ |
| memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); |
| memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| hdrlen = 30; |
| } else if (sdata->type == IEEE80211_IF_TYPE_STA) { |
| fc |= IEEE80211_FCTL_TODS; |
| /* BSSID SA DA */ |
| memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| hdrlen = 24; |
| } else if (sdata->type == IEEE80211_IF_TYPE_IBSS) { |
| /* DA SA BSSID */ |
| memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); |
| hdrlen = 24; |
| } else { |
| ret = 0; |
| goto fail; |
| } |
| |
| /* receiver is QoS enabled, use a QoS type frame */ |
| sta = sta_info_get(local, hdr.addr1); |
| if (sta) { |
| if (sta->flags & WLAN_STA_WME) { |
| fc |= IEEE80211_STYPE_QOS_DATA; |
| hdrlen += 2; |
| } |
| sta_info_put(sta); |
| } |
| |
| hdr.frame_control = cpu_to_le16(fc); |
| hdr.duration_id = 0; |
| hdr.seq_ctrl = 0; |
| |
| skip_header_bytes = ETH_HLEN; |
| if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { |
| encaps_data = bridge_tunnel_header; |
| encaps_len = sizeof(bridge_tunnel_header); |
| skip_header_bytes -= 2; |
| } else if (ethertype >= 0x600) { |
| encaps_data = rfc1042_header; |
| encaps_len = sizeof(rfc1042_header); |
| skip_header_bytes -= 2; |
| } else { |
| encaps_data = NULL; |
| encaps_len = 0; |
| } |
| |
| skb_pull(skb, skip_header_bytes); |
| nh_pos -= skip_header_bytes; |
| h_pos -= skip_header_bytes; |
| |
| /* TODO: implement support for fragments so that there is no need to |
| * reallocate and copy payload; it might be enough to support one |
| * extra fragment that would be copied in the beginning of the frame |
| * data.. anyway, it would be nice to include this into skb structure |
| * somehow |
| * |
| * There are few options for this: |
| * use skb->cb as an extra space for 802.11 header |
| * allocate new buffer if not enough headroom |
| * make sure that there is enough headroom in every skb by increasing |
| * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and |
| * alloc_skb() (net/core/skbuff.c) |
| */ |
| head_need = hdrlen + encaps_len + local->tx_headroom; |
| head_need -= skb_headroom(skb); |
| |
| /* We are going to modify skb data, so make a copy of it if happens to |
| * be cloned. This could happen, e.g., with Linux bridge code passing |
| * us broadcast frames. */ |
| |
| if (head_need > 0 || skb_cloned(skb)) { |
| #if 0 |
| printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " |
| "of headroom\n", dev->name, head_need); |
| #endif |
| |
| if (skb_cloned(skb)) |
| I802_DEBUG_INC(local->tx_expand_skb_head_cloned); |
| else |
| I802_DEBUG_INC(local->tx_expand_skb_head); |
| /* Since we have to reallocate the buffer, make sure that there |
| * is enough room for possible WEP IV/ICV and TKIP (8 bytes |
| * before payload and 12 after). */ |
| if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), |
| 12, GFP_ATOMIC)) { |
| printk(KERN_DEBUG "%s: failed to reallocate TX buffer" |
| "\n", dev->name); |
| goto fail; |
| } |
| } |
| |
| if (encaps_data) { |
| memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); |
| nh_pos += encaps_len; |
| h_pos += encaps_len; |
| } |
| memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); |
| nh_pos += hdrlen; |
| h_pos += hdrlen; |
| |
| pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; |
| memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); |
| pkt_data->ifindex = dev->ifindex; |
| pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT); |
| pkt_data->do_not_encrypt = no_encrypt; |
| |
| skb->dev = local->mdev; |
| sdata->stats.tx_packets++; |
| sdata->stats.tx_bytes += skb->len; |
| |
| /* Update skb pointers to various headers since this modified frame |
| * is going to go through Linux networking code that may potentially |
| * need things like pointer to IP header. */ |
| skb_set_mac_header(skb, 0); |
| skb_set_network_header(skb, nh_pos); |
| skb_set_transport_header(skb, h_pos); |
| |
| dev->trans_start = jiffies; |
| dev_queue_xmit(skb); |
| |
| return 0; |
| |
| fail: |
| if (!ret) |
| dev_kfree_skb(skb); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * This is the transmit routine for the 802.11 type interfaces |
| * called by upper layers of the linux networking |
| * stack when it has a frame to transmit |
| */ |
| static int |
| ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_tx_packet_data *pkt_data; |
| struct ieee80211_hdr *hdr; |
| u16 fc; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| if (skb->len < 10) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| |
| if (skb_headroom(skb) < sdata->local->tx_headroom) { |
| if (pskb_expand_head(skb, sdata->local->tx_headroom, |
| 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| return 0; |
| } |
| } |
| |
| hdr = (struct ieee80211_hdr *) skb->data; |
| fc = le16_to_cpu(hdr->frame_control); |
| |
| pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); |
| pkt_data->ifindex = sdata->dev->ifindex; |
| pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT); |
| |
| skb->priority = 20; /* use hardcoded priority for mgmt TX queue */ |
| skb->dev = sdata->local->mdev; |
| |
| /* |
| * We're using the protocol field of the the frame control header |
| * to request TX callback for hostapd. BIT(1) is checked. |
| */ |
| if ((fc & BIT(1)) == BIT(1)) { |
| pkt_data->req_tx_status = 1; |
| fc &= ~BIT(1); |
| hdr->frame_control = cpu_to_le16(fc); |
| } |
| |
| pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED); |
| |
| sdata->stats.tx_packets++; |
| sdata->stats.tx_bytes += skb->len; |
| |
| dev_queue_xmit(skb); |
| |
| return 0; |
| } |
| |
| |
| static void ieee80211_beacon_add_tim(struct ieee80211_local *local, |
| struct ieee80211_if_ap *bss, |
| struct sk_buff *skb) |
| { |
| u8 *pos, *tim; |
| int aid0 = 0; |
| int i, have_bits = 0, n1, n2; |
| |
| /* Generate bitmap for TIM only if there are any STAs in power save |
| * mode. */ |
| spin_lock_bh(&local->sta_lock); |
| if (atomic_read(&bss->num_sta_ps) > 0) |
| /* in the hope that this is faster than |
| * checking byte-for-byte */ |
| have_bits = !bitmap_empty((unsigned long*)bss->tim, |
| IEEE80211_MAX_AID+1); |
| |
| if (bss->dtim_count == 0) |
| bss->dtim_count = bss->dtim_period - 1; |
| else |
| bss->dtim_count--; |
| |
| tim = pos = (u8 *) skb_put(skb, 6); |
| *pos++ = WLAN_EID_TIM; |
| *pos++ = 4; |
| *pos++ = bss->dtim_count; |
| *pos++ = bss->dtim_period; |
| |
| if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) |
| aid0 = 1; |
| |
| if (have_bits) { |
| /* Find largest even number N1 so that bits numbered 1 through |
| * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits |
| * (N2 + 1) x 8 through 2007 are 0. */ |
| n1 = 0; |
| for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { |
| if (bss->tim[i]) { |
| n1 = i & 0xfe; |
| break; |
| } |
| } |
| n2 = n1; |
| for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { |
| if (bss->tim[i]) { |
| n2 = i; |
| break; |
| } |
| } |
| |
| /* Bitmap control */ |
| *pos++ = n1 | aid0; |
| /* Part Virt Bitmap */ |
| memcpy(pos, bss->tim + n1, n2 - n1 + 1); |
| |
| tim[1] = n2 - n1 + 4; |
| skb_put(skb, n2 - n1); |
| } else { |
| *pos++ = aid0; /* Bitmap control */ |
| *pos++ = 0; /* Part Virt Bitmap */ |
| } |
| spin_unlock_bh(&local->sta_lock); |
| } |
| |
| |
| struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct sk_buff *skb; |
| struct net_device *bdev; |
| struct ieee80211_sub_if_data *sdata = NULL; |
| struct ieee80211_if_ap *ap = NULL; |
| struct ieee80211_rate *rate; |
| struct rate_control_extra extra; |
| u8 *b_head, *b_tail; |
| int bh_len, bt_len; |
| |
| bdev = dev_get_by_index(if_id); |
| if (bdev) { |
| sdata = IEEE80211_DEV_TO_SUB_IF(bdev); |
| ap = &sdata->u.ap; |
| dev_put(bdev); |
| } |
| |
| if (!ap || sdata->type != IEEE80211_IF_TYPE_AP || |
| !ap->beacon_head) { |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| if (net_ratelimit()) |
| printk(KERN_DEBUG "no beacon data avail for idx=%d " |
| "(%s)\n", if_id, bdev ? bdev->name : "N/A"); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| return NULL; |
| } |
| |
| /* Assume we are generating the normal beacon locally */ |
| b_head = ap->beacon_head; |
| b_tail = ap->beacon_tail; |
| bh_len = ap->beacon_head_len; |
| bt_len = ap->beacon_tail_len; |
| |
| skb = dev_alloc_skb(local->tx_headroom + |
| bh_len + bt_len + 256 /* maximum TIM len */); |
| if (!skb) |
| return NULL; |
| |
| skb_reserve(skb, local->tx_headroom); |
| memcpy(skb_put(skb, bh_len), b_head, bh_len); |
| |
| ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data); |
| |
| ieee80211_beacon_add_tim(local, ap, skb); |
| |
| if (b_tail) { |
| memcpy(skb_put(skb, bt_len), b_tail, bt_len); |
| } |
| |
| if (control) { |
| memset(&extra, 0, sizeof(extra)); |
| extra.mode = local->oper_hw_mode; |
| |
| rate = rate_control_get_rate(local, local->mdev, skb, &extra); |
| if (!rate) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate " |
| "found\n", local->mdev->name); |
| } |
| dev_kfree_skb(skb); |
| return NULL; |
| } |
| |
| control->tx_rate = (local->short_preamble && |
| (rate->flags & IEEE80211_RATE_PREAMBLE2)) ? |
| rate->val2 : rate->val; |
| control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; |
| control->power_level = local->hw.conf.power_level; |
| control->flags |= IEEE80211_TXCTL_NO_ACK; |
| control->retry_limit = 1; |
| control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK; |
| } |
| |
| ap->num_beacons++; |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_beacon_get); |
| |
| __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, |
| size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_rate *rate; |
| int short_preamble = local->short_preamble; |
| int erp; |
| u16 dur; |
| |
| rate = frame_txctl->rts_rate; |
| erp = !!(rate->flags & IEEE80211_RATE_ERP); |
| |
| /* CTS duration */ |
| dur = ieee80211_frame_duration(local, 10, rate->rate, |
| erp, short_preamble); |
| /* Data frame duration */ |
| dur += ieee80211_frame_duration(local, frame_len, rate->rate, |
| erp, short_preamble); |
| /* ACK duration */ |
| dur += ieee80211_frame_duration(local, 10, rate->rate, |
| erp, short_preamble); |
| |
| return cpu_to_le16(dur); |
| } |
| EXPORT_SYMBOL(ieee80211_rts_duration); |
| |
| |
| __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, |
| size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_rate *rate; |
| int short_preamble = local->short_preamble; |
| int erp; |
| u16 dur; |
| |
| rate = frame_txctl->rts_rate; |
| erp = !!(rate->flags & IEEE80211_RATE_ERP); |
| |
| /* Data frame duration */ |
| dur = ieee80211_frame_duration(local, frame_len, rate->rate, |
| erp, short_preamble); |
| if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) { |
| /* ACK duration */ |
| dur += ieee80211_frame_duration(local, 10, rate->rate, |
| erp, short_preamble); |
| } |
| |
| return cpu_to_le16(dur); |
| } |
| EXPORT_SYMBOL(ieee80211_ctstoself_duration); |
| |
| void ieee80211_rts_get(struct ieee80211_hw *hw, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl, |
| struct ieee80211_rts *rts) |
| { |
| const struct ieee80211_hdr *hdr = frame; |
| u16 fctl; |
| |
| fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS; |
| rts->frame_control = cpu_to_le16(fctl); |
| rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl); |
| memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); |
| memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); |
| } |
| EXPORT_SYMBOL(ieee80211_rts_get); |
| |
| void ieee80211_ctstoself_get(struct ieee80211_hw *hw, |
| const void *frame, size_t frame_len, |
| const struct ieee80211_tx_control *frame_txctl, |
| struct ieee80211_cts *cts) |
| { |
| const struct ieee80211_hdr *hdr = frame; |
| u16 fctl; |
| |
| fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS; |
| cts->frame_control = cpu_to_le16(fctl); |
| cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl); |
| memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); |
| } |
| EXPORT_SYMBOL(ieee80211_ctstoself_get); |
| |
| struct sk_buff * |
| ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct sk_buff *skb; |
| struct sta_info *sta; |
| ieee80211_tx_handler *handler; |
| struct ieee80211_txrx_data tx; |
| ieee80211_txrx_result res = TXRX_DROP; |
| struct net_device *bdev; |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_if_ap *bss = NULL; |
| |
| bdev = dev_get_by_index(if_id); |
| if (bdev) { |
| sdata = IEEE80211_DEV_TO_SUB_IF(bdev); |
| bss = &sdata->u.ap; |
| dev_put(bdev); |
| } |
| if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head) |
| return NULL; |
| |
| if (bss->dtim_count != 0) |
| return NULL; /* send buffered bc/mc only after DTIM beacon */ |
| memset(control, 0, sizeof(*control)); |
| while (1) { |
| skb = skb_dequeue(&bss->ps_bc_buf); |
| if (!skb) |
| return NULL; |
| local->total_ps_buffered--; |
| |
| if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { |
| struct ieee80211_hdr *hdr = |
| (struct ieee80211_hdr *) skb->data; |
| /* more buffered multicast/broadcast frames ==> set |
| * MoreData flag in IEEE 802.11 header to inform PS |
| * STAs */ |
| hdr->frame_control |= |
| cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| } |
| |
| if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0) |
| break; |
| dev_kfree_skb_any(skb); |
| } |
| sta = tx.sta; |
| tx.u.tx.ps_buffered = 1; |
| |
| for (handler = local->tx_handlers; *handler != NULL; handler++) { |
| res = (*handler)(&tx); |
| if (res == TXRX_DROP || res == TXRX_QUEUED) |
| break; |
| } |
| dev_put(tx.dev); |
| skb = tx.skb; /* handlers are allowed to change skb */ |
| |
| if (res == TXRX_DROP) { |
| I802_DEBUG_INC(local->tx_handlers_drop); |
| dev_kfree_skb(skb); |
| skb = NULL; |
| } else if (res == TXRX_QUEUED) { |
| I802_DEBUG_INC(local->tx_handlers_queued); |
| skb = NULL; |
| } |
| |
| if (sta) |
| sta_info_put(sta); |
| |
| return skb; |
| } |
| EXPORT_SYMBOL(ieee80211_get_buffered_bc); |
| |
| static int __ieee80211_if_config(struct net_device *dev, |
| struct sk_buff *beacon, |
| struct ieee80211_tx_control *control) |
| { |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_if_conf conf; |
| static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
| |
| if (!local->ops->config_interface || !netif_running(dev)) |
| return 0; |
| |
| memset(&conf, 0, sizeof(conf)); |
| conf.type = sdata->type; |
| if (sdata->type == IEEE80211_IF_TYPE_STA || |
| sdata->type == IEEE80211_IF_TYPE_IBSS) { |
| if (local->sta_scanning && |
| local->scan_dev == dev) |
| conf.bssid = scan_bssid; |
| else |
| conf.bssid = sdata->u.sta.bssid; |
| conf.ssid = sdata->u.sta.ssid; |
| conf.ssid_len = sdata->u.sta.ssid_len; |
| conf.generic_elem = sdata->u.sta.extra_ie; |
| conf.generic_elem_len = sdata->u.sta.extra_ie_len; |
| } else if (sdata->type == IEEE80211_IF_TYPE_AP) { |
| conf.ssid = sdata->u.ap.ssid; |
| conf.ssid_len = sdata->u.ap.ssid_len; |
| conf.generic_elem = sdata->u.ap.generic_elem; |
| conf.generic_elem_len = sdata->u.ap.generic_elem_len; |
| conf.beacon = beacon; |
| conf.beacon_control = control; |
| } |
| return local->ops->config_interface(local_to_hw(local), |
| dev->ifindex, &conf); |
| } |
| |
| int ieee80211_if_config(struct net_device *dev) |
| { |
| return __ieee80211_if_config(dev, NULL, NULL); |
| } |
| |
| int ieee80211_if_config_beacon(struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_tx_control control; |
| struct sk_buff *skb; |
| |
| if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE)) |
| return 0; |
| skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control); |
| if (!skb) |
| return -ENOMEM; |
| return __ieee80211_if_config(dev, skb, &control); |
| } |
| |
| int ieee80211_hw_config(struct ieee80211_local *local) |
| { |
| struct ieee80211_hw_mode *mode; |
| struct ieee80211_channel *chan; |
| int ret = 0; |
| |
| if (local->sta_scanning) { |
| chan = local->scan_channel; |
| mode = local->scan_hw_mode; |
| } else { |
| chan = local->oper_channel; |
| mode = local->oper_hw_mode; |
| } |
| |
| local->hw.conf.channel = chan->chan; |
| local->hw.conf.channel_val = chan->val; |
| local->hw.conf.power_level = chan->power_level; |
| local->hw.conf.freq = chan->freq; |
| local->hw.conf.phymode = mode->mode; |
| local->hw.conf.antenna_max = chan->antenna_max; |
| local->hw.conf.chan = chan; |
| local->hw.conf.mode = mode; |
| |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d " |
| "phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq, |
| local->hw.conf.phymode); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| |
| if (local->ops->config) |
| ret = local->ops->config(local_to_hw(local), &local->hw.conf); |
| |
| return ret; |
| } |
| |
| |
| static int ieee80211_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| /* FIX: what would be proper limits for MTU? |
| * This interface uses 802.3 frames. */ |
| if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) { |
| printk(KERN_WARNING "%s: invalid MTU %d\n", |
| dev->name, new_mtu); |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| dev->mtu = new_mtu; |
| return 0; |
| } |
| |
| |
| static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu) |
| { |
| /* FIX: what would be proper limits for MTU? |
| * This interface uses 802.11 frames. */ |
| if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) { |
| printk(KERN_WARNING "%s: invalid MTU %d\n", |
| dev->name, new_mtu); |
| return -EINVAL; |
| } |
| |
| #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu); |
| #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| dev->mtu = new_mtu; |
| return 0; |
| } |
| |
| enum netif_tx_lock_class { |
| TX_LOCK_NORMAL, |
| TX_LOCK_MASTER, |
| }; |
| |
| static inline void netif_tx_lock_nested(struct net_device *dev, int subclass) |
| { |
| spin_lock_nested(&dev->_xmit_lock, subclass); |
| dev->xmit_lock_owner = smp_processor_id(); |
| } |
| |
| static void ieee80211_set_multicast_list(struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| unsigned short flags; |
| |
| netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER); |
| if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) { |
| if (sdata->allmulti) { |
| sdata->allmulti = 0; |
| local->iff_allmultis--; |
| } else { |
| sdata->allmulti = 1; |
| local->iff_allmultis++; |
| } |
| } |
| if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) { |
| if (sdata->promisc) { |
| sdata->promisc = 0; |
| local->iff_promiscs--; |
| } else { |
| sdata->promisc = 1; |
| local->iff_promiscs++; |
| } |
| } |
| if (dev->mc_count != sdata->mc_count) { |
| local->mc_count = local->mc_count - sdata->mc_count + |
| dev->mc_count; |
| sdata->mc_count = dev->mc_count; |
| } |
| if (local->ops->set_multicast_list) { |
| flags = local->mdev->flags; |
| if (local->iff_allmultis) |
| flags |= IFF_ALLMULTI; |
| if (local->iff_promiscs) |
| flags |= IFF_PROMISC; |
| read_lock(&local->sub_if_lock); |
| local->ops->set_multicast_list(local_to_hw(local), flags, |
| local->mc_count); |
| read_unlock(&local->sub_if_lock); |
| } |
| netif_tx_unlock(local->mdev); |
| } |
| |
| struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw, |
| struct dev_mc_list *prev, |
| void **ptr) |
| { |
| struct ieee80211_local *local = hw_to_local(hw); |
| struct ieee80211_sub_if_data *sdata = *ptr; |
| struct dev_mc_list *mc; |
| |
| if (!prev) { |
| WARN_ON(sdata); |
| sdata = NULL; |
| } |
| if (!prev || !prev->next) { |
| if (sdata) |
| sdata = list_entry(sdata->list.next, |
| struct ieee80211_sub_if_data, list); |
| else |
| sdata = list_entry(local->sub_if_list.next, |
| struct ieee80211_sub_if_data, list); |
| if (&sdata->list != &local->sub_if_list) |
| mc = sdata->dev->mc_list; |
| else |
| mc = NULL; |
| } else |
| mc = prev->next; |
| |
| *ptr = sdata; |
| return mc; |
| } |
| EXPORT_SYMBOL(ieee80211_get_mc_list_item); |
| |
| static struct net_device_stats *ieee80211_get_stats(struct net_device *dev) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| return &(sdata->stats); |
| } |
| |
| static void ieee80211_if_shutdown(struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| ASSERT_RTNL(); |
| switch (sdata->type) { |
| case IEEE80211_IF_TYPE_STA: |
| case IEEE80211_IF_TYPE_IBSS: |
| sdata->u.sta.state = IEEE80211_DISABLED; |
| del_timer_sync(&sdata->u.sta.timer); |
| skb_queue_purge(&sdata->u.sta.skb_queue); |
| if (!local->ops->hw_scan && |
| local->scan_dev == sdata->dev) { |
| local->sta_scanning = 0; |
| cancel_delayed_work(&local->scan_work); |
| } |
| flush_workqueue(local->hw.workqueue); |
| break; |
| } |
| } |
| |
| static inline int identical_mac_addr_allowed(int type1, int type2) |
| { |
| return (type1 == IEEE80211_IF_TYPE_MNTR || |
| type2 == IEEE80211_IF_TYPE_MNTR || |
| (type1 == IEEE80211_IF_TYPE_AP && |
| type2 == IEEE80211_IF_TYPE_WDS) || |
| (type1 == IEEE80211_IF_TYPE_WDS && |
| (type2 == IEEE80211_IF_TYPE_WDS || |
| type2 == IEEE80211_IF_TYPE_AP)) || |
| (type1 == IEEE80211_IF_TYPE_AP && |
| type2 == IEEE80211_IF_TYPE_VLAN) || |
| (type1 == IEEE80211_IF_TYPE_VLAN && |
| (type2 == IEEE80211_IF_TYPE_AP || |
| type2 == IEEE80211_IF_TYPE_VLAN))); |
| } |
| |
| static int ieee80211_master_open(struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_sub_if_data *sdata; |
| int res = -EOPNOTSUPP; |
| |
| read_lock(&local->sub_if_lock); |
| list_for_each_entry(sdata, &local->sub_if_list, list) { |
| if (sdata->dev != dev && netif_running(sdata->dev)) { |
| res = 0; |
| break; |
| } |
| } |
| read_unlock(&local->sub_if_lock); |
| return res; |
| } |
| |
| static int ieee80211_master_stop(struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_sub_if_data *sdata; |
| |
| read_lock(&local->sub_if_lock); |
| list_for_each_entry(sdata, &local->sub_if_list, list) |
| if (sdata->dev != dev && netif_running(sdata->dev)) |
| dev_close(sdata->dev); |
| read_unlock(&local->sub_if_lock); |
| |
| return 0; |
| } |
| |
| static int ieee80211_mgmt_open(struct net_device *dev) |
| { |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| |
| if (!netif_running(local->mdev)) |
| return -EOPNOTSUPP; |
| return 0; |
| } |
| |
| static int ieee80211_mgmt_stop(struct net_device *dev) |
| { |
| return 0; |
| } |
| |
| /* Check if running monitor interfaces should go to a "soft monitor" mode |
| * and switch them if necessary. */ |
| static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local) |
| { |
| struct ieee80211_if_init_conf conf; |
| |
| if (local->open_count && local->open_count == local->monitors && |
| !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) && |
| local->ops->remove_interface) { |
| conf.if_id = -1; |
| conf.type = IEEE80211_IF_TYPE_MNTR; |
| conf.mac_addr = NULL; |
| local->ops->remove_interface(local_to_hw(local), &conf); |
| } |
| } |
| |
| /* Check if running monitor interfaces should go to a "hard monitor" mode |
| * and switch them if necessary. */ |
| static void ieee80211_start_hard_monitor(struct ieee80211_local *local) |
| { |
| struct ieee80211_if_init_conf conf; |
| |
| if (local->open_count && local->open_count == local->monitors && |
| !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { |
| conf.if_id = -1; |
| conf.type = IEEE80211_IF_TYPE_MNTR; |
| conf.mac_addr = NULL; |
| local->ops->add_interface(local_to_hw(local), &conf); |
| } |
| } |
| |
| static int ieee80211_open(struct net_device *dev) |
| { |
| struct ieee80211_sub_if_data *sdata, *nsdata; |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| struct ieee80211_if_init_conf conf; |
| int res; |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| read_lock(&local->sub_if_lock); |
| list_for_each_entry(nsdata, &local->sub_if_list, list) { |
| struct net_device *ndev = nsdata->dev; |
| |
| if (ndev != dev && ndev != local->mdev && netif_running(ndev) && |
| compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 && |
| !identical_mac_addr_allowed(sdata->type, nsdata->type)) { |
| read_unlock(&local->sub_if_lock); |
| return -ENOTUNIQ; |
| } |
| } |
| read_unlock(&local->sub_if_lock); |
| |
| if (sdata->type == IEEE80211_IF_TYPE_WDS && |
| is_zero_ether_addr(sdata->u.wds.remote_addr)) |
| return -ENOLINK; |
| |
| if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count && |
| !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { |
| /* run the interface in a "soft monitor" mode */ |
| local->monitors++; |
| local->open_count++; |
| local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; |
| return 0; |
| } |
| ieee80211_start_soft_monitor(local); |
| |
| conf.if_id = dev->ifindex; |
| conf.type = sdata->type; |
| conf.mac_addr = dev->dev_addr; |
| res = local->ops->add_interface(local_to_hw(local), &conf); |
| if (res) { |
| if (sdata->type == IEEE80211_IF_TYPE_MNTR) |
| ieee80211_start_hard_monitor(local); |
| return res; |
| } |
| |
| if (local->open_count == 0) { |
| res = 0; |
| tasklet_enable(&local->tx_pending_tasklet); |
| tasklet_enable(&local->tasklet); |
| if (local->ops->open) |
| res = local->ops->open(local_to_hw(local)); |
| if (res == 0) { |
| res = dev_open(local->mdev); |
| if (res) { |
| if (local->ops->stop) |
| local->ops->stop(local_to_hw(local)); |
| } else { |
| res = ieee80211_hw_config(local); |
| if (res && local->ops->stop) |
| local->ops->stop(local_to_hw(local)); |
| else if (!res && local->apdev) |
| dev_open(local->apdev); |
| } |
| } |
| if (res) { |
| if (local->ops->remove_interface) |
| local->ops->remove_interface(local_to_hw(local), |
| &conf); |
| return res; |
| } |
| } |
| local->open_count++; |
| |
| if (sdata->type == IEEE80211_IF_TYPE_MNTR) { |
| local->monitors++; |
| local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP; |
| } else |
| ieee80211_if_config(dev); |
| |
| if (sdata->type == IEEE80211_IF_TYPE_STA && |
| !local->user_space_mlme) |
| netif_carrier_off(dev); |
| else |
| netif_carrier_on(dev); |
| |
| netif_start_queue(dev); |
| return 0; |
| } |
| |
| |
| static int ieee80211_stop(struct net_device *dev) |
| { |
| struct ieee80211_sub_if_data *sdata; |
| struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| |
| sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| if (sdata->type == IEEE80211_IF_TYPE_MNTR && |
| local->open_count > 1 && |
| !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) { |
| /* remove "soft monitor" interface */ |
| local->open_count--; |
| local->monitors--; |
| if (!local->monitors) |
| local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; |
| return 0; |
| } |
| |
| netif_stop_queue(dev); |
| ieee80211_if_shutdown(dev); |
| |
| if (sdata->type == IEEE80211_IF_TYPE_MNTR) { |
| local->monitors--; |
| if (!local->monitors) |
| local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP; |
| } |
| |
| local->open_count--; |
| if (local->open_count == 0) { |
| if (netif_running(local->mdev)) |
| dev_close(local->mdev); |
| if (local->apdev) |
| dev_close(local->apdev); |
| if (local->ops->stop) |
| local->ops->stop(local_to_hw(local)); |
| tasklet_disable(&local->tx_pending_tasklet); |
| tasklet_disable(&local->tasklet); |
| } |
| if (local->ops->remove_interface) { |
| struct ieee80211_if_init_conf conf; |
| |
| conf.if_id = dev->ifindex; |
| conf.type = sdata->type; |
| conf.mac_addr = dev->dev_addr; |
| local->ops->remove_interface(local_to_hw(local), &conf); |
| } |
| |
| ieee80211_start_hard_monitor(local); |
| |
| return 0; |
| } |
| |
| |
| static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr) |
| { |
| memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */ |
| return ETH_ALEN; |
| } |
| |
| static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) |
| { |
| return compare_ether_addr(raddr, addr) == 0 || |
| is_broadcast_ether_addr(raddr); |
| } |
| |
| |
| static ieee80211_txrx_result |
| ieee80211_rx_h_data(struct ieee80211_txrx_data *rx) |
| { |
| struct net_device *dev = rx->dev; |
| struct ieee80211_local *local = rx->local; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; |
| u16 fc, hdrlen, ethertype; |
| u8 *payload; |
| u8 dst[ETH_ALEN]; |
| u8 src[ETH_ALEN]; |
| struct sk_buff *skb = rx->skb, *skb2; |
| struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| |
| fc = rx->fc; |
| if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)) |
| return TXRX_CONTINUE; |
| |
| if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) |
| return TXRX_DROP; |
| |
| hdrlen = ieee80211_get_hdrlen(fc); |
| |
| /* convert IEEE 802.11 header + possible LLC headers into Ethernet |
| * header |
| * IEEE 802.11 address fields: |
| * ToDS FromDS Addr1 Addr2 Addr3 Addr4 |
| * 0 0 DA SA BSSID n/a |
| * 0 1 DA BSSID SA n/a |
| * 1 0 BSSID SA DA n/a |
| * 1 1 RA TA DA SA |
| */ |
| |
| switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { |
| case IEEE80211_FCTL_TODS: |
| /* BSSID SA DA */ |
| memcpy(dst, hdr->addr3, ETH_ALEN); |
| memcpy(src, hdr->addr2, ETH_ALEN); |
| |
| if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP && |
| sdata->type != IEEE80211_IF_TYPE_VLAN)) { |
| printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID=" |
| MAC_FMT " SA=" MAC_FMT " DA=" MAC_FMT ")\n", |
| dev->name, MAC_ARG(hdr->addr1), |
| MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3)); |
| return TXRX_DROP; |
| } |
| break; |
| case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): |
| /* RA TA DA SA */ |
| memcpy(dst, hdr->addr3, ETH_ALEN); |
| memcpy(src, hdr->addr4, ETH_ALEN); |
| |
| if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) { |
| printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA=" |
| MAC_FMT " TA=" MAC_FMT " DA=" MAC_FMT " SA=" |
| MAC_FMT ")\n", |
| rx->dev->name, MAC_ARG(hdr->addr1), |
| MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3), |
| MAC_ARG(hdr->addr4)); |
| return TXRX_DROP; |
| } |
| break; |
| case IEEE80211_FCTL_FROMDS: |
| /* DA BSSID SA */ |
| memcpy(dst, hdr->addr1, ETH_ALEN); |
| memcpy(src, hdr->addr3, ETH_ALEN); |
| |
| if (sdata->type != IEEE80211_IF_TYPE_STA) { |
| return TXRX_DROP; |
| } |
| break; |
| case 0: |
| /* DA SA BSSID */ |
| memcpy(dst, hdr->addr1, ETH_ALEN); |
| memcpy(src, hdr->addr2, ETH_ALEN); |
| |
| if (sdata->type != IEEE80211_IF_TYPE_IBSS) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: dropped IBSS frame (DA=" |
| MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT |
| ")\n", |
| dev->name, MAC_ARG(hdr->addr1), |
| MAC_ARG(hdr->addr2), |
| MAC_ARG(hdr->addr3)); |
| } |
| return TXRX_DROP; |
| } |
| break; |
| } |
| |
| payload = skb->data + hdrlen; |
| |
| if (unlikely(skb->len - hdrlen < 8)) { |
| if (net_ratelimit()) { |
| printk(KERN_DEBUG "%s: RX too short data frame " |
| "payload\n", dev->name); |
| } |
| return TXRX_DROP; |
| } |
| |
| ethertype = (payload[6] << 8) | payload[7]; |
| |
| if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && |
| ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || |
| compare_ether_addr(payload, bridge_tunnel_header) == 0)) { |
| /* remove RFC1042 or Bridge-Tunnel encapsulation and |
| * replace EtherType */ |
| skb_pull(skb, hdrlen + 6); |
| memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); |
| memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); |
| } else { |
| struct ethhdr *ehdr; |
| __be16 len; |
| skb_pull(skb, hdrlen); |
| len = htons(skb->len); |
| ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); |
| memcpy(ehdr->h_dest, dst, ETH_ALEN); |
| memcpy(ehdr->h_source, src, ETH_ALEN); |
| ehdr->h_proto = len; |
| } |
| skb->dev = dev; |
| |
| skb2 = NULL; |
| |
| sdata->stats.rx_packets++; |
| sdata->stats.rx_bytes += skb->len; |
| |
| if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP |
| || sdata->type == IEEE80211_IF_TYPE_VLAN) && rx->u.rx.ra_match) { |
| if (is_multicast_ether_addr(skb->data)) { |
| /* send multicast frames both to higher layers in |
| * local net stack and back to the wireless media */ |
| skb2 = skb_copy(skb, GFP_ATOMIC); |
| if (!skb2) |
| printk(KERN_DEBUG "%s: failed to clone " |
| "multicast frame\n", dev->name); |
| } else { |
| struct sta_info *dsta; |
| dsta = sta_info_get(local, skb->data); |
| if (dsta && !dsta->dev) { |
| printk(KERN_DEBUG "Station with null dev " |
| "structure!\n"); |
| } else if (dsta && dsta->dev == dev) { |
| /* Destination station is associated to this |
| * AP, so send the frame directly to it and |
| * do not pass the frame to local net stack. |
| */ |
| skb2 = skb; |
| skb = NULL; |
| } |
| if (dsta) |
| sta_info_put(dsta); |
| } |
| } |
| |
| if (skb) { |
| /* deliver to local stack */ |
| skb->protocol = eth_type_trans(skb, dev); |
| memset(skb |