blob: 7999da25fe40afb035c4342cd1f227f0b4d21078 [file] [log] [blame]
/*
* random.c -- A strong random number generator
*
* Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
*
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
* rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU General Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
/*
* (now, with legal B.S. out of the way.....)
*
* This routine gathers environmental noise from device drivers, etc.,
* and returns good random numbers, suitable for cryptographic use.
* Besides the obvious cryptographic uses, these numbers are also good
* for seeding TCP sequence numbers, and other places where it is
* desirable to have numbers which are not only random, but hard to
* predict by an attacker.
*
* Theory of operation
* ===================
*
* Computers are very predictable devices. Hence it is extremely hard
* to produce truly random numbers on a computer --- as opposed to
* pseudo-random numbers, which can easily generated by using a
* algorithm. Unfortunately, it is very easy for attackers to guess
* the sequence of pseudo-random number generators, and for some
* applications this is not acceptable. So instead, we must try to
* gather "environmental noise" from the computer's environment, which
* must be hard for outside attackers to observe, and use that to
* generate random numbers. In a Unix environment, this is best done
* from inside the kernel.
*
* Sources of randomness from the environment include inter-keyboard
* timings, inter-interrupt timings from some interrupts, and other
* events which are both (a) non-deterministic and (b) hard for an
* outside observer to measure. Randomness from these sources are
* added to an "entropy pool", which is mixed using a CRC-like function.
* This is not cryptographically strong, but it is adequate assuming
* the randomness is not chosen maliciously, and it is fast enough that
* the overhead of doing it on every interrupt is very reasonable.
* As random bytes are mixed into the entropy pool, the routines keep
* an *estimate* of how many bits of randomness have been stored into
* the random number generator's internal state.
*
* When random bytes are desired, they are obtained by taking the SHA
* hash of the contents of the "entropy pool". The SHA hash avoids
* exposing the internal state of the entropy pool. It is believed to
* be computationally infeasible to derive any useful information
* about the input of SHA from its output. Even if it is possible to
* analyze SHA in some clever way, as long as the amount of data
* returned from the generator is less than the inherent entropy in
* the pool, the output data is totally unpredictable. For this
* reason, the routine decreases its internal estimate of how many
* bits of "true randomness" are contained in the entropy pool as it
* outputs random numbers.
*
* If this estimate goes to zero, the routine can still generate
* random numbers; however, an attacker may (at least in theory) be
* able to infer the future output of the generator from prior
* outputs. This requires successful cryptanalysis of SHA, which is
* not believed to be feasible, but there is a remote possibility.
* Nonetheless, these numbers should be useful for the vast majority
* of purposes.
*
* Exported interfaces ---- output
* ===============================
*
* There are three exported interfaces; the first is one designed to
* be used from within the kernel:
*
* void get_random_bytes(void *buf, int nbytes);
*
* This interface will return the requested number of random bytes,
* and place it in the requested buffer.
*
* The two other interfaces are two character devices /dev/random and
* /dev/urandom. /dev/random is suitable for use when very high
* quality randomness is desired (for example, for key generation or
* one-time pads), as it will only return a maximum of the number of
* bits of randomness (as estimated by the random number generator)
* contained in the entropy pool.
*
* The /dev/urandom device does not have this limit, and will return
* as many bytes as are requested. As more and more random bytes are
* requested without giving time for the entropy pool to recharge,
* this will result in random numbers that are merely cryptographically
* strong. For many applications, however, this is acceptable.
*
* Exported interfaces ---- input
* ==============================
*
* The current exported interfaces for gathering environmental noise
* from the devices are:
*
* void add_input_randomness(unsigned int type, unsigned int code,
* unsigned int value);
* void add_interrupt_randomness(int irq);
*
* add_input_randomness() uses the input layer interrupt timing, as well as
* the event type information from the hardware.
*
* add_interrupt_randomness() uses the inter-interrupt timing as random
* inputs to the entropy pool. Note that not all interrupts are good
* sources of randomness! For example, the timer interrupts is not a
* good choice, because the periodicity of the interrupts is too
* regular, and hence predictable to an attacker. Disk interrupts are
* a better measure, since the timing of the disk interrupts are more
* unpredictable.
*
* All of these routines try to estimate how many bits of randomness a
* particular randomness source. They do this by keeping track of the
* first and second order deltas of the event timings.
*
* Ensuring unpredictability at system startup
* ============================================
*
* When any operating system starts up, it will go through a sequence
* of actions that are fairly predictable by an adversary, especially
* if the start-up does not involve interaction with a human operator.
* This reduces the actual number of bits of unpredictability in the
* entropy pool below the value in entropy_count. In order to
* counteract this effect, it helps to carry information in the
* entropy pool across shut-downs and start-ups. To do this, put the
* following lines an appropriate script which is run during the boot
* sequence:
*
* echo "Initializing random number generator..."
* random_seed=/var/run/random-seed
* # Carry a random seed from start-up to start-up
* # Load and then save the whole entropy pool
* if [ -f $random_seed ]; then
* cat $random_seed >/dev/urandom
* else
* touch $random_seed
* fi
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* and the following lines in an appropriate script which is run as
* the system is shutdown:
*
* # Carry a random seed from shut-down to start-up
* # Save the whole entropy pool
* echo "Saving random seed..."
* random_seed=/var/run/random-seed
* touch $random_seed
* chmod 600 $random_seed
* dd if=/dev/urandom of=$random_seed count=1 bs=512
*
* For example, on most modern systems using the System V init
* scripts, such code fragments would be found in
* /etc/rc.d/init.d/random. On older Linux systems, the correct script
* location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
*
* Effectively, these commands cause the contents of the entropy pool
* to be saved at shut-down time and reloaded into the entropy pool at
* start-up. (The 'dd' in the addition to the bootup script is to
* make sure that /etc/random-seed is different for every start-up,
* even if the system crashes without executing rc.0.) Even with
* complete knowledge of the start-up activities, predicting the state
* of the entropy pool requires knowledge of the previous history of
* the system.
*
* Configuring the /dev/random driver under Linux
* ==============================================
*
* The /dev/random driver under Linux uses minor numbers 8 and 9 of
* the /dev/mem major number (#1). So if your system does not have
* /dev/random and /dev/urandom created already, they can be created
* by using the commands:
*
* mknod /dev/random c 1 8
* mknod /dev/urandom c 1 9
*
* Acknowledgements:
* =================
*
* Ideas for constructing this random number generator were derived
* from Pretty Good Privacy's random number generator, and from private
* discussions with Phil Karn. Colin Plumb provided a faster random
* number generator, which speed up the mixing function of the entropy
* pool, taken from PGPfone. Dale Worley has also contributed many
* useful ideas and suggestions to improve this driver.
*
* Any flaws in the design are solely my responsibility, and should
* not be attributed to the Phil, Colin, or any of authors of PGP.
*
* Further background information on this topic may be obtained from
* RFC 1750, "Randomness Recommendations for Security", by Donald
* Eastlake, Steve Crocker, and Jeff Schiller.
*/
#include <linux/utsname.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/cryptohash.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
/*
* Configuration information
*/
#define INPUT_POOL_WORDS 128
#define OUTPUT_POOL_WORDS 32
#define SEC_XFER_SIZE 512
/*
* The minimum number of bits of entropy before we wake up a read on
* /dev/random. Should be enough to do a significant reseed.
*/
static int random_read_wakeup_thresh = 64;
/*
* If the entropy count falls under this number of bits, then we
* should wake up processes which are selecting or polling on write
* access to /dev/random.
*/
static int random_write_wakeup_thresh = 128;
/*
* When the input pool goes over trickle_thresh, start dropping most
* samples to avoid wasting CPU time and reduce lock contention.
*/
static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
static DEFINE_PER_CPU(int, trickle_count) = 0;
/*
* A pool of size .poolwords is stirred with a primitive polynomial
* of degree .poolwords over GF(2). The taps for various sizes are
* defined below. They are chosen to be evenly spaced (minimum RMS
* distance from evenly spaced; the numbers in the comments are a
* scaled squared error sum) except for the last tap, which is 1 to
* get the twisting happening as fast as possible.
*/
static struct poolinfo {
int poolwords;
int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
{ 128, 103, 76, 51, 25, 1 },
/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
{ 32, 26, 20, 14, 7, 1 },
#if 0
/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
{ 2048, 1638, 1231, 819, 411, 1 },
/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
{ 1024, 817, 615, 412, 204, 1 },
/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
{ 1024, 819, 616, 410, 207, 2 },
/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
{ 512, 411, 308, 208, 104, 1 },
/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
{ 512, 409, 307, 206, 102, 2 },
/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
{ 512, 409, 309, 205, 103, 2 },
/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
{ 256, 205, 155, 101, 52, 1 },
/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
{ 128, 103, 78, 51, 27, 2 },
/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
{ 64, 52, 39, 26, 14, 1 },
#endif
};
#define POOLBITS poolwords*32
#define POOLBYTES poolwords*4
/*
* For the purposes of better mixing, we use the CRC-32 polynomial as
* well to make a twisted Generalized Feedback Shift Reigster
*
* (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
* Transactions on Modeling and Computer Simulation 2(3):179-194.
* Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
* II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
*
* Thanks to Colin Plumb for suggesting this.
*
* We have not analyzed the resultant polynomial to prove it primitive;
* in fact it almost certainly isn't. Nonetheless, the irreducible factors
* of a random large-degree polynomial over GF(2) are more than large enough
* that periodicity is not a concern.
*
* The input hash is much less sensitive than the output hash. All
* that we want of it is that it be a good non-cryptographic hash;
* i.e. it not produce collisions when fed "random" data of the sort
* we expect to see. As long as the pool state differs for different
* inputs, we have preserved the input entropy and done a good job.
* The fact that an intelligent attacker can construct inputs that
* will produce controlled alterations to the pool's state is not
* important because we don't consider such inputs to contribute any
* randomness. The only property we need with respect to them is that
* the attacker can't increase his/her knowledge of the pool's state.
* Since all additions are reversible (knowing the final state and the
* input, you can reconstruct the initial state), if an attacker has
* any uncertainty about the initial state, he/she can only shuffle
* that uncertainty about, but never cause any collisions (which would
* decrease the uncertainty).
*
* The chosen system lets the state of the pool be (essentially) the input
* modulo the generator polymnomial. Now, for random primitive polynomials,
* this is a universal class of hash functions, meaning that the chance
* of a collision is limited by the attacker's knowledge of the generator
* polynomail, so if it is chosen at random, an attacker can never force
* a collision. Here, we use a fixed polynomial, but we *can* assume that
* ###--> it is unknown to the processes generating the input entropy. <-###
* Because of this important property, this is a good, collision-resistant
* hash; hash collisions will occur no more often than chance.
*/
/*
* Static global variables
*/
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
#if 0
static int debug = 0;
module_param(debug, bool, 0644);
#define DEBUG_ENT(fmt, arg...) do { if (debug) \
printk(KERN_DEBUG "random %04d %04d %04d: " \
fmt,\
input_pool.entropy_count,\
blocking_pool.entropy_count,\
nonblocking_pool.entropy_count,\
## arg); } while (0)
#else
#define DEBUG_ENT(fmt, arg...) do {} while (0)
#endif
/**********************************************************************
*
* OS independent entropy store. Here are the functions which handle
* storing entropy in an entropy pool.
*
**********************************************************************/
struct entropy_store;
struct entropy_store {
/* mostly-read data: */
struct poolinfo *poolinfo;
__u32 *pool;
const char *name;
int limit;
struct entropy_store *pull;
/* read-write data: */
spinlock_t lock ____cacheline_aligned_in_smp;
unsigned add_ptr;
int entropy_count;
int input_rotate;
};
static __u32 input_pool_data[INPUT_POOL_WORDS];
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
static struct entropy_store input_pool = {
.poolinfo = &poolinfo_table[0],
.name = "input",
.limit = 1,
.lock = SPIN_LOCK_UNLOCKED,
.pool = input_pool_data
};
static struct entropy_store blocking_pool = {
.poolinfo = &poolinfo_table[1],
.name = "blocking",
.limit = 1,
.pull = &input_pool,
.lock = SPIN_LOCK_UNLOCKED,
.pool = blocking_pool_data
};
static struct entropy_store nonblocking_pool = {
.poolinfo = &poolinfo_table[1],
.name = "nonblocking",
.pull = &input_pool,
.lock = SPIN_LOCK_UNLOCKED,
.pool = nonblocking_pool_data
};
/*
* This function adds a byte into the entropy "pool". It does not
* update the entropy estimate. The caller should call
* credit_entropy_store if this is appropriate.
*
* The pool is stirred with a primitive polynomial of the appropriate
* degree, and then twisted. We twist by three bits at a time because
* it's cheap to do so and helps slightly in the expected case where
* the entropy is concentrated in the low-order bits.
*/
static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
int nwords, __u32 out[16])
{
static __u32 const twist_table[8] = {
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
int new_rotate, input_rotate;
int wordmask = r->poolinfo->poolwords - 1;
__u32 w, next_w;
unsigned long flags;
/* Taps are constant, so we can load them without holding r->lock. */
tap1 = r->poolinfo->tap1;
tap2 = r->poolinfo->tap2;
tap3 = r->poolinfo->tap3;
tap4 = r->poolinfo->tap4;
tap5 = r->poolinfo->tap5;
next_w = *in++;
spin_lock_irqsave(&r->lock, flags);
prefetch_range(r->pool, wordmask);
input_rotate = r->input_rotate;
add_ptr = r->add_ptr;
while (nwords--) {
w = rol32(next_w, input_rotate);
if (nwords > 0)
next_w = *in++;
i = add_ptr = (add_ptr - 1) & wordmask;
/*
* Normally, we add 7 bits of rotation to the pool.
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
new_rotate = input_rotate + 14;
if (i)
new_rotate = input_rotate + 7;
input_rotate = new_rotate & 31;
/* XOR in the various taps */
w ^= r->pool[(i + tap1) & wordmask];
w ^= r->pool[(i + tap2) & wordmask];
w ^= r->pool[(i + tap3) & wordmask];
w ^= r->pool[(i + tap4) & wordmask];
w ^= r->pool[(i + tap5) & wordmask];
w ^= r->pool[i];
r->pool[i] = (w >> 3) ^ twist_table[w & 7];
}
r->input_rotate = input_rotate;
r->add_ptr = add_ptr;
if (out) {
for (i = 0; i < 16; i++) {
out[i] = r->pool[add_ptr];
add_ptr = (add_ptr - 1) & wordmask;
}
}
spin_unlock_irqrestore(&r->lock, flags);
}
static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
int nwords)
{
__add_entropy_words(r, in, nwords, NULL);
}
/*
* Credit (or debit) the entropy store with n bits of entropy
*/
static void credit_entropy_store(struct entropy_store *r, int nbits)
{
unsigned long flags;
spin_lock_irqsave(&r->lock, flags);
if (r->entropy_count + nbits < 0) {
DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
r->entropy_count, nbits);
r->entropy_count = 0;
} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
r->entropy_count = r->poolinfo->POOLBITS;
} else {
r->entropy_count += nbits;
if (nbits)
DEBUG_ENT("added %d entropy credits to %s\n",
nbits, r->name);
}
spin_unlock_irqrestore(&r->lock, flags);
}
/*********************************************************************
*
* Entropy input management
*
*********************************************************************/
/* There is one of these per entropy source */
struct timer_rand_state {
cycles_t last_time;
long last_delta,last_delta2;
unsigned dont_count_entropy:1;
};
static struct timer_rand_state input_timer_state;
static struct timer_rand_state *irq_timer_state[NR_IRQS];
/*
* This function adds entropy to the entropy "pool" by using timing
* delays. It uses the timer_rand_state structure to make an estimate
* of how many bits of entropy this call has added to the pool.
*
* The number "num" is also added to the pool - it should somehow describe
* the type of event which just happened. This is currently 0-255 for
* keyboard scan codes, and 256 upwards for interrupts.
*
*/
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
struct {
cycles_t cycles;
long jiffies;
unsigned num;
} sample;
long delta, delta2, delta3;
preempt_disable();
/* if over the trickle threshold, use only 1 in 4096 samples */
if (input_pool.entropy_count > trickle_thresh &&
(__get_cpu_var(trickle_count)++ & 0xfff))
goto out;
sample.jiffies = jiffies;
sample.cycles = get_cycles();
sample.num = num;
add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
/*
* Calculate number of bits of randomness we probably added.
* We take into account the first, second and third-order deltas
* in order to make our estimate.
*/
if (!state->dont_count_entropy) {
delta = sample.jiffies - state->last_time;
state->last_time = sample.jiffies;
delta2 = delta - state->last_delta;
state->last_delta = delta;
delta3 = delta2 - state->last_delta2;
state->last_delta2 = delta2;
if (delta < 0)
delta = -delta;
if (delta2 < 0)
delta2 = -delta2;
if (delta3 < 0)
delta3 = -delta3;
if (delta > delta2)
delta = delta2;
if (delta > delta3)
delta = delta3;
/*
* delta is now minimum absolute delta.
* Round down by 1 bit on general principles,
* and limit entropy entimate to 12 bits.
*/
credit_entropy_store(&input_pool,
min_t(int, fls(delta>>1), 11));
}
if(input_pool.entropy_count >= random_read_wakeup_thresh)
wake_up_interruptible(&random_read_wait);
out:
preempt_enable();
}
extern void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value)
{
static unsigned char last_value;
/* ignore autorepeat and the like */
if (value == last_value)
return;
DEBUG_ENT("input event\n");
last_value = value;
add_timer_randomness(&input_timer_state,
(type << 4) ^ code ^ (code >> 4) ^ value);
}
void add_interrupt_randomness(int irq)
{
if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
return;
DEBUG_ENT("irq event %d\n", irq);
add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
}
void add_disk_randomness(struct gendisk *disk)
{
if (!disk || !disk->random)
return;
/* first major is 1, so we get >= 0x200 here */
DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
add_timer_randomness(disk->random,
0x100 + MKDEV(disk->major, disk->first_minor));
}
EXPORT_SYMBOL(add_disk_randomness);
#define EXTRACT_SIZE 10
/*********************************************************************
*
* Entropy extraction routines
*
*********************************************************************/
static ssize_t extract_entropy(struct entropy_store *r, void * buf,
size_t nbytes, int min, int rsvd);
/*
* This utility inline function is responsible for transfering entropy
* from the primary pool to the secondary extraction pool. We make
* sure we pull enough for a 'catastrophic reseed'.
*/
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
__u32 tmp[OUTPUT_POOL_WORDS];
if (r->pull && r->entropy_count < nbytes * 8 &&
r->entropy_count < r->poolinfo->POOLBITS) {
int bytes = max_t(int, random_read_wakeup_thresh / 8,
min_t(int, nbytes, sizeof(tmp)));
int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
DEBUG_ENT("going to reseed %s with %d bits "
"(%d of %d requested)\n",
r->name, bytes * 8, nbytes * 8, r->entropy_count);
bytes=extract_entropy(r->pull, tmp, bytes,
random_read_wakeup_thresh / 8, rsvd);
add_entropy_words(r, tmp, (bytes + 3) / 4);
credit_entropy_store(r, bytes*8);
}
}
/*
* These functions extracts randomness from the "entropy pool", and
* returns it in a buffer.
*
* The min parameter specifies the minimum amount we can pull before
* failing to avoid races that defeat catastrophic reseeding while the
* reserved parameter indicates how much entropy we must leave in the
* pool after each pull to avoid starving other readers.
*
* Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
*/
static size_t account(struct entropy_store *r, size_t nbytes, int min,
int reserved)
{
unsigned long flags;
BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
/* Hold lock while accounting */
spin_lock_irqsave(&r->lock, flags);
DEBUG_ENT("trying to extract %d bits from %s\n",
nbytes * 8, r->name);
/* Can we pull enough? */
if (r->entropy_count / 8 < min + reserved) {
nbytes = 0;
} else {
/* If limited, never pull more than available */
if (r->limit && nbytes + reserved >= r->entropy_count / 8)
nbytes = r->entropy_count/8 - reserved;
if(r->entropy_count / 8 >= nbytes + reserved)
r->entropy_count -= nbytes*8;
else
r->entropy_count = reserved;
if (r->entropy_count < random_write_wakeup_thresh)
wake_up_interruptible(&random_write_wait);
}
DEBUG_ENT("debiting %d entropy credits from %s%s\n",
nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
spin_unlock_irqrestore(&r->lock, flags);
return nbytes;
}
static void extract_buf(struct entropy_store *r, __u8 *out)
{
int i, x;
__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
sha_init(buf);
/*
* As we hash the pool, we mix intermediate values of
* the hash back into the pool. This eliminates
* backtracking attacks (where the attacker knows
* the state of the pool plus the current outputs, and
* attempts to find previous ouputs), unless the hash
* function can be inverted.
*/
for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) {
sha_transform(buf, (__u8 *)r->pool+i, buf + 5);
add_entropy_words(r, &buf[x % 5], 1);
}
/*
* To avoid duplicates, we atomically extract a
* portion of the pool while mixing, and hash one
* final time.
*/
__add_entropy_words(r, &buf[x % 5], 1, data);
sha_transform(buf, (__u8 *)data, buf + 5);
/*
* In case the hash function has some recognizable
* output pattern, we fold it in half.
*/
buf[0] ^= buf[3];
buf[1] ^= buf[4];
buf[0] ^= rol32(buf[3], 16);
memcpy(out, buf, EXTRACT_SIZE);
memset(buf, 0, sizeof(buf));
}
static ssize_t extract_entropy(struct entropy_store *r, void * buf,
size_t nbytes, int min, int reserved)
{
ssize_t ret = 0, i;
__u8 tmp[EXTRACT_SIZE];
xfer_secondary_pool(r, nbytes);
nbytes = account(r, nbytes, min, reserved);
while (nbytes) {
extract_buf(r, tmp);
i = min_t(int, nbytes, EXTRACT_SIZE);
memcpy(buf, tmp, i);
nbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memset(tmp, 0, sizeof(tmp));
return ret;
}
static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
size_t nbytes)
{
ssize_t ret = 0, i;
__u8 tmp[EXTRACT_SIZE];
xfer_secondary_pool(r, nbytes);
nbytes = account(r, nbytes, 0, 0);
while (nbytes) {
if (need_resched()) {
if (signal_pending(current)) {
if (ret == 0)
ret = -ERESTARTSYS;
break;
}
schedule();
}
extract_buf(r, tmp);
i = min_t(int, nbytes, EXTRACT_SIZE);
if (copy_to_user(buf, tmp, i)) {
ret = -EFAULT;
break;
}
nbytes -= i;
buf += i;
ret += i;
}
/* Wipe data just returned from memory */
memset(tmp, 0, sizeof(tmp));
return ret;
}
/*
* This function is the exported kernel interface. It returns some
* number of good random numbers, suitable for seeding TCP sequence
* numbers, etc.
*/
void get_random_bytes(void *buf, int nbytes)
{
extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes);
/*
* init_std_data - initialize pool with system data
*
* @r: pool to initialize
*
* This function clears the pool's entropy count and mixes some system
* data into the pool to prepare it for use. The pool is not cleared
* as that can only decrease the entropy in the pool.
*/
static void init_std_data(struct entropy_store *r)
{
struct timeval tv;
unsigned long flags;
spin_lock_irqsave(&r->lock, flags);
r->entropy_count = 0;
spin_unlock_irqrestore(&r->lock, flags);
do_gettimeofday(&tv);
add_entropy_words(r, (__u32 *)&tv, sizeof(tv)/4);
add_entropy_words(r, (__u32 *)&system_utsname,
sizeof(system_utsname)/4);
}
static int __init rand_initialize(void)
{
init_std_data(&input_pool);
init_std_data(&blocking_pool);
init_std_data(&nonblocking_pool);
return 0;
}
module_init(rand_initialize);
void rand_initialize_irq(int irq)
{
struct timer_rand_state *state;
if (irq >= NR_IRQS || irq_timer_state[irq])
return;
/*
* If kmalloc returns null, we just won't use that entropy
* source.
*/
state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
if (state) {
memset(state, 0, sizeof(struct timer_rand_state));
irq_timer_state[irq] = state;
}
}
void rand_initialize_disk(struct gendisk *disk)
{
struct timer_rand_state *state;
/*
* If kmalloc returns null, we just won't use that entropy
* source.
*/
state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
if (state) {
memset(state, 0, sizeof(struct timer_rand_state));
disk->random = state;
}
}
static ssize_t
random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
{
ssize_t n, retval = 0, count = 0;
if (nbytes == 0)
return 0;
while (nbytes > 0) {
n = nbytes;
if (n > SEC_XFER_SIZE)
n = SEC_XFER_SIZE;
DEBUG_ENT("reading %d bits\n", n*8);
n = extract_entropy_user(&blocking_pool, buf, n);
DEBUG_ENT("read got %d bits (%d still needed)\n",
n*8, (nbytes-n)*8);
if (n == 0) {
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
DEBUG_ENT("sleeping?\n");
wait_event_interruptible(random_read_wait,
input_pool.entropy_count >=
random_read_wakeup_thresh);
DEBUG_ENT("awake\n");
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
continue;
}
if (n < 0) {
retval = n;
break;
}
count += n;
buf += n;
nbytes -= n;
break; /* This break makes the device work */
/* like a named pipe */
}
/*
* If we gave the user some bytes, update the access time.
*/
if (count)
file_accessed(file);
return (count ? count : retval);
}
static ssize_t
urandom_read(struct file * file, char __user * buf,
size_t nbytes, loff_t *ppos)
{
return extract_entropy_user(&nonblocking_pool, buf, nbytes);
}
static unsigned int
random_poll(struct file *file, poll_table * wait)
{
unsigned int mask;
poll_wait(file, &random_read_wait, wait);
poll_wait(file, &random_write_wait, wait);
mask = 0;
if (input_pool.entropy_count >= random_read_wakeup_thresh)
mask |= POLLIN | POLLRDNORM;
if (input_pool.entropy_count < random_write_wakeup_thresh)
mask |= POLLOUT | POLLWRNORM;
return mask;
}
static ssize_t
random_write(struct file * file, const char __user * buffer,
size_t count, loff_t *ppos)
{
int ret = 0;
size_t bytes;
__u32 buf[16];
const char __user *p = buffer;
size_t c = count;
while (c > 0) {
bytes = min(c, sizeof(buf));
bytes -= copy_from_user(&buf, p, bytes);
if (!bytes) {
ret = -EFAULT;
break;
}
c -= bytes;
p += bytes;
add_entropy_words(&input_pool, buf, (bytes + 3) / 4);
}
if (p == buffer) {
return (ssize_t)ret;
} else {
struct inode *inode = file->f_dentry->d_inode;
inode->i_mtime = current_fs_time(inode->i_sb);
mark_inode_dirty(inode);
return (ssize_t)(p - buffer);
}
}
static int
random_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
int size, ent_count;
int __user *p = (int __user *)arg;
int retval;
switch (cmd) {
case RNDGETENTCNT:
ent_count = input_pool.entropy_count;
if (put_user(ent_count, p))
return -EFAULT;
return 0;
case RNDADDTOENTCNT:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p))
return -EFAULT;
credit_entropy_store(&input_pool, ent_count);
/*
* Wake up waiting processes if we have enough
* entropy.
*/
if (input_pool.entropy_count >= random_read_wakeup_thresh)
wake_up_interruptible(&random_read_wait);
return 0;
case RNDADDENTROPY:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(ent_count, p++))
return -EFAULT;
if (ent_count < 0)
return -EINVAL;
if (get_user(size, p++))
return -EFAULT;
retval = random_write(file, (const char __user *) p,
size, &file->f_pos);
if (retval < 0)
return retval;
credit_entropy_store(&input_pool, ent_count);
/*
* Wake up waiting processes if we have enough
* entropy.
*/
if (input_pool.entropy_count >= random_read_wakeup_thresh)
wake_up_interruptible(&random_read_wait);
return 0;
case RNDZAPENTCNT:
case RNDCLEARPOOL:
/* Clear the entropy pool counters. */
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
init_std_data(&input_pool);
init_std_data(&blocking_pool);
init_std_data(&nonblocking_pool);
return 0;
default:
return -EINVAL;
}
}
struct file_operations random_fops = {
.read = random_read,
.write = random_write,
.poll = random_poll,
.ioctl = random_ioctl,
};
struct file_operations urandom_fops = {
.read = urandom_read,
.write = random_write,
.ioctl = random_ioctl,
};
/***************************************************************
* Random UUID interface
*
* Used here for a Boot ID, but can be useful for other kernel
* drivers.
***************************************************************/
/*
* Generate random UUID
*/
void generate_random_uuid(unsigned char uuid_out[16])
{
get_random_bytes(uuid_out, 16);
/* Set UUID version to 4 --- truely random generation */
uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
/* Set the UUID variant to DCE */
uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
}
EXPORT_SYMBOL(generate_random_uuid);
/********************************************************************
*
* Sysctl interface
*
********************************************************************/
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
static int min_read_thresh = 8, min_write_thresh;
static int max_read_thresh = INPUT_POOL_WORDS * 32;
static int max_write_thresh = INPUT_POOL_WORDS * 32;
static char sysctl_bootid[16];
/*
* These functions is used to return both the bootid UUID, and random
* UUID. The difference is in whether table->data is NULL; if it is,
* then a new UUID is generated and returned to the user.
*
* If the user accesses this via the proc interface, it will be returned
* as an ASCII string in the standard UUID format. If accesses via the
* sysctl system call, it is returned as 16 bytes of binary data.
*/
static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
ctl_table fake_table;
unsigned char buf[64], tmp_uuid[16], *uuid;
uuid = table->data;
if (!uuid) {
uuid = tmp_uuid;
uuid[8] = 0;
}
if (uuid[8] == 0)
generate_random_uuid(uuid);
sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
"%02x%02x%02x%02x%02x%02x",
uuid[0], uuid[1], uuid[2], uuid[3],
uuid[4], uuid[5], uuid[6], uuid[7],
uuid[8], uuid[9], uuid[10], uuid[11],
uuid[12], uuid[13], uuid[14], uuid[15]);
fake_table.data = buf;
fake_table.maxlen = sizeof(buf);
return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
}
static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
void __user *oldval, size_t __user *oldlenp,
void __user *newval, size_t newlen, void **context)
{
unsigned char tmp_uuid[16], *uuid;
unsigned int len;
if (!oldval || !oldlenp)
return 1;
uuid = table->data;
if (!uuid) {
uuid = tmp_uuid;
uuid[8] = 0;
}
if (uuid[8] == 0)
generate_random_uuid(uuid);
if (get_user(len, oldlenp))
return -EFAULT;
if (len) {
if (len > 16)
len = 16;
if (copy_to_user(oldval, uuid, len) ||
put_user(len, oldlenp))
return -EFAULT;
}
return 1;
}
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
ctl_table random_table[] = {
{
.ctl_name = RANDOM_POOLSIZE,
.procname = "poolsize",
.data = &sysctl_poolsize,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = &proc_dointvec,
},
{
.ctl_name = RANDOM_ENTROPY_COUNT,
.procname = "entropy_avail",
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = &proc_dointvec,
.data = &input_pool.entropy_count,
},
{
.ctl_name = RANDOM_READ_THRESH,
.procname = "read_wakeup_threshold",
.data = &random_read_wakeup_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.strategy = &sysctl_intvec,
.extra1 = &min_read_thresh,
.extra2 = &max_read_thresh,
},
{
.ctl_name = RANDOM_WRITE_THRESH,
.procname = "write_wakeup_threshold",
.data = &random_write_wakeup_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec_minmax,
.strategy = &sysctl_intvec,
.extra1 = &min_write_thresh,
.extra2 = &max_write_thresh,
},
{
.ctl_name = RANDOM_BOOT_ID,
.procname = "boot_id",
.data = &sysctl_bootid,
.maxlen = 16,
.mode = 0444,
.proc_handler = &proc_do_uuid,
.strategy = &uuid_strategy,
},
{
.ctl_name = RANDOM_UUID,
.procname = "uuid",
.maxlen = 16,
.mode = 0444,
.proc_handler = &proc_do_uuid,
.strategy = &uuid_strategy,
},
{ .ctl_name = 0 }
};
#endif /* CONFIG_SYSCTL */
/********************************************************************
*
* Random funtions for networking
*
********************************************************************/
/*
* TCP initial sequence number picking. This uses the random number
* generator to pick an initial secret value. This value is hashed
* along with the TCP endpoint information to provide a unique
* starting point for each pair of TCP endpoints. This defeats
* attacks which rely on guessing the initial TCP sequence number.
* This algorithm was suggested by Steve Bellovin.
*
* Using a very strong hash was taking an appreciable amount of the total
* TCP connection establishment time, so this is a weaker hash,
* compensated for by changing the secret periodically.
*/
/* F, G and H are basic MD4 functions: selection, majority, parity */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/*
* The generic round function. The application is so specific that
* we don't bother protecting all the arguments with parens, as is generally
* good macro practice, in favor of extra legibility.
* Rotation is separate from addition to prevent recomputation
*/
#define ROUND(f, a, b, c, d, x, s) \
(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
#define K1 0
#define K2 013240474631UL
#define K3 015666365641UL
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
{
__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
/* Round 1 */
ROUND(F, a, b, c, d, in[ 0] + K1, 3);
ROUND(F, d, a, b, c, in[ 1] + K1, 7);
ROUND(F, c, d, a, b, in[ 2] + K1, 11);
ROUND(F, b, c, d, a, in[ 3] + K1, 19);
ROUND(F, a, b, c, d, in[ 4] + K1, 3);
ROUND(F, d, a, b, c, in[ 5] + K1, 7);
ROUND(F, c, d, a, b, in[ 6] + K1, 11);
ROUND(F, b, c, d, a, in[ 7] + K1, 19);
ROUND(F, a, b, c, d, in[ 8] + K1, 3);
ROUND(F, d, a, b, c, in[ 9] + K1, 7);
ROUND(F, c, d, a, b, in[10] + K1, 11);
ROUND(F, b, c, d, a, in[11] + K1, 19);
/* Round 2 */
ROUND(G, a, b, c, d, in[ 1] + K2, 3);
ROUND(G, d, a, b, c, in[ 3] + K2, 5);
ROUND(G, c, d, a, b, in[ 5] + K2, 9);
ROUND(G, b, c, d, a, in[ 7] + K2, 13);
ROUND(G, a, b, c, d, in[ 9] + K2, 3);
ROUND(G, d, a, b, c, in[11] + K2, 5);
ROUND(G, c, d, a, b, in[ 0] + K2, 9);
ROUND(G, b, c, d, a, in[ 2] + K2, 13);
ROUND(G, a, b, c, d, in[ 4] + K2, 3);
ROUND(G, d, a, b, c, in[ 6] + K2, 5);
ROUND(G, c, d, a, b, in[ 8] + K2, 9);
ROUND(G, b, c, d, a, in[10] + K2, 13);
/* Round 3 */
ROUND(H, a, b, c, d, in[ 3] + K3, 3);
ROUND(H, d, a, b, c, in[ 7] + K3, 9);
ROUND(H, c, d, a, b, in[11] + K3, 11);
ROUND(H, b, c, d, a, in[ 2] + K3, 15);
ROUND(H, a, b, c, d, in[ 6] + K3, 3);
ROUND(H, d, a, b, c, in[10] + K3, 9);
ROUND(H, c, d, a, b, in[ 1] + K3, 11);
ROUND(H, b, c, d, a, in[ 5] + K3, 15);
ROUND(H, a, b, c, d, in[ 9] + K3, 3);
ROUND(H, d, a, b, c, in[ 0] + K3, 9);
ROUND(H, c, d, a, b, in[ 4] + K3, 11);
ROUND(H, b, c, d, a, in[ 8] + K3, 15);
return buf[1] + b; /* "most hashed" word */
/* Alternative: return sum of all words? */
}
#endif
#undef ROUND
#undef F
#undef G
#undef H
#undef K1
#undef K2
#undef K3
/* This should not be decreased so low that ISNs wrap too fast. */
#define REKEY_INTERVAL (300 * HZ)
/*
* Bit layout of the tcp sequence numbers (before adding current time):
* bit 24-31: increased after every key exchange
* bit 0-23: hash(source,dest)
*
* The implementation is similar to the algorithm described
* in the Appendix of RFC 1185, except that
* - it uses a 1 MHz clock instead of a 250 kHz clock
* - it performs a rekey every 5 minutes, which is equivalent
* to a (source,dest) tulple dependent forward jump of the
* clock by 0..2^(HASH_BITS+1)
*
* Thus the average ISN wraparound time is 68 minutes instead of
* 4.55 hours.
*
* SMP cleanup and lock avoidance with poor man's RCU.
* Manfred Spraul <manfred@colorfullife.com>
*
*/
#define COUNT_BITS 8
#define COUNT_MASK ((1 << COUNT_BITS) - 1)
#define HASH_BITS 24
#define HASH_MASK ((1 << HASH_BITS) - 1)
static struct keydata {
__u32 count; /* already shifted to the final position */
__u32 secret[12];
} ____cacheline_aligned ip_keydata[2];
static unsigned int ip_cnt;
static void rekey_seq_generator(void *private_);
static DECLARE_WORK(rekey_work, rekey_seq_generator, NULL);
/*
* Lock avoidance:
* The ISN generation runs lockless - it's just a hash over random data.
* State changes happen every 5 minutes when the random key is replaced.
* Synchronization is performed by having two copies of the hash function
* state and rekey_seq_generator always updates the inactive copy.
* The copy is then activated by updating ip_cnt.
* The implementation breaks down if someone blocks the thread
* that processes SYN requests for more than 5 minutes. Should never
* happen, and even if that happens only a not perfectly compliant
* ISN is generated, nothing fatal.
*/
static void rekey_seq_generator(void *private_)
{
struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
smp_wmb();
ip_cnt++;
schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
}
static inline struct keydata *get_keyptr(void)
{
struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
smp_rmb();
return keyptr;
}
static __init int seqgen_init(void)
{
rekey_seq_generator(NULL);
return 0;
}
late_initcall(seqgen_init);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
__u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
__u16 sport, __u16 dport)
{
struct timeval tv;
__u32 seq;
__u32 hash[12];
struct keydata *keyptr = get_keyptr();
/* The procedure is the same as for IPv4, but addresses are longer.
* Thus we must use twothirdsMD4Transform.
*/
memcpy(hash, saddr, 16);
hash[4]=(sport << 16) + dport;
memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
seq = twothirdsMD4Transform(daddr, hash) & HASH_MASK;
seq += keyptr->count;
do_gettimeofday(&tv);
seq += tv.tv_usec + tv.tv_sec * 1000000;
return seq;
}
EXPORT_SYMBOL(secure_tcpv6_sequence_number);
#endif
/* The code below is shamelessly stolen from secure_tcp_sequence_number().
* All blames to Andrey V. Savochkin <saw@msu.ru>.
*/
__u32 secure_ip_id(__u32 daddr)
{
struct keydata *keyptr;
__u32 hash[4];
keyptr = get_keyptr();
/*
* Pick a unique starting offset for each IP destination.
* The dest ip address is placed in the starting vector,
* which is then hashed with random data.
*/
hash[0] = daddr;
hash[1] = keyptr->secret[9];
hash[2] = keyptr->secret[10];
hash[3] = keyptr->secret[11];
return half_md4_transform(hash, keyptr->secret);
}
#ifdef CONFIG_INET
__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
__u16 sport, __u16 dport)
{
struct timeval tv;
__u32 seq;
__u32 hash[4];
struct keydata *keyptr = get_keyptr();
/*
* Pick a unique starting offset for each TCP connection endpoints
* (saddr, daddr, sport, dport).
* Note that the words are placed into the starting vector, which is
* then mixed with a partial MD4 over random data.
*/
hash[0]=saddr;
hash[1]=daddr;
hash[2]=(sport << 16) + dport;
hash[3]=keyptr->secret[11];
seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
seq += keyptr->count;
/*
* As close as possible to RFC 793, which
* suggests using a 250 kHz clock.
* Further reading shows this assumes 2 Mb/s networks.
* For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
* That's funny, Linux has one built in! Use it!
* (Networks are faster now - should this be increased?)
*/
do_gettimeofday(&tv);
seq += tv.tv_usec + tv.tv_sec * 1000000;
#if 0
printk("init_seq(%lx, %lx, %d, %d) = %d\n",
saddr, daddr, sport, dport, seq);
#endif
return seq;
}
EXPORT_SYMBOL(secure_tcp_sequence_number);
/* Generate secure starting point for ephemeral TCP port search */
u32 secure_tcp_port_ephemeral(__u32 saddr, __u32 daddr, __u16 dport)
{
struct keydata *keyptr = get_keyptr();
u32 hash[4];
/*
* Pick a unique starting offset for each ephemeral port search
* (saddr, daddr, dport) and 48bits of random data.
*/
hash[0] = saddr;
hash[1] = daddr;
hash[2] = dport ^ keyptr->secret[10];
hash[3] = keyptr->secret[11];
return half_md4_transform(hash, keyptr->secret);
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
u32 secure_tcpv6_port_ephemeral(const __u32 *saddr, const __u32 *daddr, __u16 dport)
{
struct keydata *keyptr = get_keyptr();
u32 hash[12];
memcpy(hash, saddr, 16);
hash[4] = dport;
memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
return twothirdsMD4Transform(daddr, hash);
}
EXPORT_SYMBOL(secure_tcpv6_port_ephemeral);
#endif
#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
/* Similar to secure_tcp_sequence_number but generate a 48 bit value
* bit's 32-47 increase every key exchange
* 0-31 hash(source, dest)
*/
u64 secure_dccp_sequence_number(__u32 saddr, __u32 daddr,
__u16 sport, __u16 dport)
{
struct timeval tv;
u64 seq;
__u32 hash[4];
struct keydata *keyptr = get_keyptr();
hash[0] = saddr;
hash[1] = daddr;
hash[2] = (sport << 16) + dport;
hash[3] = keyptr->secret[11];
seq = half_md4_transform(hash, keyptr->secret);
seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
do_gettimeofday(&tv);
seq += tv.tv_usec + tv.tv_sec * 1000000;
seq &= (1ull << 48) - 1;
#if 0
printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
saddr, daddr, sport, dport, seq);
#endif
return seq;
}
EXPORT_SYMBOL(secure_dccp_sequence_number);
#endif
#endif /* CONFIG_INET */
/*
* Get a random word for internal kernel use only. Similar to urandom but
* with the goal of minimal entropy pool depletion. As a result, the random
* value is not cryptographically secure but for several uses the cost of
* depleting entropy is too high
*/
unsigned int get_random_int(void)
{
/*
* Use IP's RNG. It suits our purpose perfectly: it re-keys itself
* every second, from the entropy pool (and thus creates a limited
* drain on it), and uses halfMD4Transform within the second. We
* also mix it with jiffies and the PID:
*/
return secure_ip_id(current->pid + jiffies);
}
/*
* randomize_range() returns a start address such that
*
* [...... <range> .....]
* start end
*
* a <range> with size "len" starting at the return value is inside in the
* area defined by [start, end], but is otherwise randomized.
*/
unsigned long
randomize_range(unsigned long start, unsigned long end, unsigned long len)
{
unsigned long range = end - len - start;
if (end <= start + len)
return 0;
return PAGE_ALIGN(get_random_int() % range + start);
}