blob: 98802ab282114239f0d3d4cc401ace5dcd27cbcf [file] [log] [blame]
/*
* arch/sh/kernel/setup.c
*
* This file handles the architecture-dependent parts of initialization
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002 - 2006 Paul Mundt
*/
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/utsname.h>
#include <linux/cpu.h>
#include <linux/pfn.h>
#include <linux/fs.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/clock.h>
#ifdef CONFIG_SH_KGDB
#include <asm/kgdb.h>
static int kgdb_parse_options(char *options);
#endif
extern void * __rd_start, * __rd_end;
/*
* Machine setup..
*/
/*
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
* This value will be used at the very early stage of serial setup.
* The bigger value means no problem.
*/
struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
#if defined(CONFIG_SH_UNKNOWN)
struct sh_machine_vector sh_mv;
#endif
extern int root_mountflags;
#define MV_NAME_SIZE 32
static struct sh_machine_vector* __init get_mv_byname(const char* name);
/*
* This is set up by the setup-routine at boot-time
*/
#define PARAM ((unsigned char *)empty_zero_page)
#define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
#define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
#define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
#define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
#define INITRD_START (*(unsigned long *) (PARAM+0x010))
#define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
/* ... */
#define COMMAND_LINE ((char *) (PARAM+0x100))
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
unsigned long memory_start, memory_end;
static inline void parse_cmdline (char ** cmdline_p, char mv_name[MV_NAME_SIZE],
struct sh_machine_vector** mvp,
unsigned long *mv_io_base)
{
char c = ' ', *to = command_line, *from = COMMAND_LINE;
int len = 0;
/* Save unparsed command line copy for /proc/cmdline */
memcpy(boot_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
memory_end = memory_start + __MEMORY_SIZE;
for (;;) {
/*
* "mem=XXX[kKmM]" defines a size of memory.
*/
if (c == ' ' && !memcmp(from, "mem=", 4)) {
if (to != command_line)
to--;
{
unsigned long mem_size;
mem_size = memparse(from+4, &from);
memory_end = memory_start + mem_size;
}
}
if (c == ' ' && !memcmp(from, "sh_mv=", 6)) {
char* mv_end;
char* mv_comma;
int mv_len;
if (to != command_line)
to--;
from += 6;
mv_end = strchr(from, ' ');
if (mv_end == NULL)
mv_end = from + strlen(from);
mv_comma = strchr(from, ',');
if ((mv_comma != NULL) && (mv_comma < mv_end)) {
int ints[3];
get_options(mv_comma+1, ARRAY_SIZE(ints), ints);
*mv_io_base = ints[1];
mv_len = mv_comma - from;
} else {
mv_len = mv_end - from;
}
if (mv_len > (MV_NAME_SIZE-1))
mv_len = MV_NAME_SIZE-1;
memcpy(mv_name, from, mv_len);
mv_name[mv_len] = '\0';
from = mv_end;
*mvp = get_mv_byname(mv_name);
}
c = *(from++);
if (!c)
break;
if (COMMAND_LINE_SIZE <= ++len)
break;
*(to++) = c;
}
*to = '\0';
*cmdline_p = command_line;
}
static int __init sh_mv_setup(char **cmdline_p)
{
#ifdef CONFIG_SH_UNKNOWN
extern struct sh_machine_vector mv_unknown;
#endif
struct sh_machine_vector *mv = NULL;
char mv_name[MV_NAME_SIZE] = "";
unsigned long mv_io_base = 0;
parse_cmdline(cmdline_p, mv_name, &mv, &mv_io_base);
#ifdef CONFIG_SH_UNKNOWN
if (mv == NULL) {
mv = &mv_unknown;
if (*mv_name != '\0') {
printk("Warning: Unsupported machine %s, using unknown\n",
mv_name);
}
}
sh_mv = *mv;
#endif
/*
* Manually walk the vec, fill in anything that the board hasn't yet
* by hand, wrapping to the generic implementation.
*/
#define mv_set(elem) do { \
if (!sh_mv.mv_##elem) \
sh_mv.mv_##elem = generic_##elem; \
} while (0)
mv_set(inb); mv_set(inw); mv_set(inl);
mv_set(outb); mv_set(outw); mv_set(outl);
mv_set(inb_p); mv_set(inw_p); mv_set(inl_p);
mv_set(outb_p); mv_set(outw_p); mv_set(outl_p);
mv_set(insb); mv_set(insw); mv_set(insl);
mv_set(outsb); mv_set(outsw); mv_set(outsl);
mv_set(readb); mv_set(readw); mv_set(readl);
mv_set(writeb); mv_set(writew); mv_set(writel);
mv_set(ioport_map);
mv_set(ioport_unmap);
mv_set(irq_demux);
#ifdef CONFIG_SH_UNKNOWN
__set_io_port_base(mv_io_base);
#endif
if (!sh_mv.mv_nr_irqs)
sh_mv.mv_nr_irqs = NR_IRQS;
return 0;
}
void __init setup_arch(char **cmdline_p)
{
unsigned long bootmap_size;
unsigned long start_pfn, max_pfn, max_low_pfn;
#ifdef CONFIG_CMDLINE_BOOL
strcpy(COMMAND_LINE, CONFIG_CMDLINE);
#endif
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
code_resource.start = (unsigned long)virt_to_phys(_text);
code_resource.end = (unsigned long)virt_to_phys(_etext)-1;
data_resource.start = (unsigned long)virt_to_phys(_etext);
data_resource.end = (unsigned long)virt_to_phys(_edata)-1;
sh_mv_setup(cmdline_p);
/*
* Find the highest page frame number we have available
*/
max_pfn = PFN_DOWN(__pa(memory_end));
/*
* Determine low and high memory ranges:
*/
max_low_pfn = max_pfn;
/*
* Partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(_end));
/*
* Find a proper area for the bootmem bitmap. After this
* bootstrap step all allocations (until the page allocator
* is intact) must be done via bootmem_alloc().
*/
bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
__MEMORY_START>>PAGE_SHIFT,
max_low_pfn);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
{
unsigned long curr_pfn, last_pfn, pages;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(__MEMORY_START);
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(__pa(memory_end));
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
pages = last_pfn - curr_pfn;
free_bootmem_node(NODE_DATA(0), PFN_PHYS(curr_pfn),
PFN_PHYS(pages));
}
/*
* Reserve the kernel text and
* Reserve the bootmem bitmap. We do this in two steps (first step
* was init_bootmem()), because this catches the (definitely buggy)
* case of us accidentally initializing the bootmem allocator with
* an invalid RAM area.
*/
reserve_bootmem_node(NODE_DATA(0), __MEMORY_START+PAGE_SIZE,
(PFN_PHYS(start_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
/*
* reserve physical page 0 - it's a special BIOS page on many boxes,
* enabling clean reboots, SMP operation, laptop functions.
*/
reserve_bootmem_node(NODE_DATA(0), __MEMORY_START, PAGE_SIZE);
#ifdef CONFIG_BLK_DEV_INITRD
ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
if (&__rd_start != &__rd_end) {
LOADER_TYPE = 1;
INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
__MEMORY_START;
INITRD_SIZE = (unsigned long)&__rd_end -
(unsigned long)&__rd_start;
}
if (LOADER_TYPE && INITRD_START) {
if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
reserve_bootmem_node(NODE_DATA(0), INITRD_START +
__MEMORY_START, INITRD_SIZE);
initrd_start = INITRD_START + PAGE_OFFSET +
__MEMORY_START;
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
INITRD_START + INITRD_SIZE,
max_low_pfn << PAGE_SHIFT);
initrd_start = 0;
}
}
#endif
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
/* Perform the machine specific initialisation */
if (likely(sh_mv.mv_setup))
sh_mv.mv_setup(cmdline_p);
paging_init();
}
struct sh_machine_vector* __init get_mv_byname(const char* name)
{
extern long __machvec_start, __machvec_end;
struct sh_machine_vector *all_vecs =
(struct sh_machine_vector *)&__machvec_start;
int i, n = ((unsigned long)&__machvec_end
- (unsigned long)&__machvec_start)/
sizeof(struct sh_machine_vector);
for (i = 0; i < n; ++i) {
struct sh_machine_vector *mv = &all_vecs[i];
if (mv == NULL)
continue;
if (strcasecmp(name, get_system_type()) == 0) {
return mv;
}
}
return NULL;
}
static struct cpu cpu[NR_CPUS];
static int __init topology_init(void)
{
int cpu_id;
for_each_possible_cpu(cpu_id)
register_cpu(&cpu[cpu_id], cpu_id);
return 0;
}
subsys_initcall(topology_init);
static const char *cpu_name[] = {
[CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
[CPU_SH7604] = "SH7604", [CPU_SH7300] = "SH7300",
[CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
[CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
[CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
[CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
[CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
[CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
[CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180",
[CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
[CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
[CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
[CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
[CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
[CPU_SH_NONE] = "Unknown"
};
const char *get_cpu_subtype(struct sh_cpuinfo *c)
{
return cpu_name[c->type];
}
#ifdef CONFIG_PROC_FS
/* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
static const char *cpu_flags[] = {
"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
"ptea", "llsc", "l2", NULL
};
static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
{
unsigned long i;
seq_printf(m, "cpu flags\t:");
if (!c->flags) {
seq_printf(m, " %s\n", cpu_flags[0]);
return;
}
for (i = 0; cpu_flags[i]; i++)
if ((c->flags & (1 << i)))
seq_printf(m, " %s", cpu_flags[i+1]);
seq_printf(m, "\n");
}
static void show_cacheinfo(struct seq_file *m, const char *type,
struct cache_info info)
{
unsigned int cache_size;
cache_size = info.ways * info.sets * info.linesz;
seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
type, cache_size >> 10, info.ways);
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct sh_cpuinfo *c = v;
unsigned int cpu = c - cpu_data;
if (!cpu_online(cpu))
return 0;
if (cpu == 0)
seq_printf(m, "machine\t\t: %s\n", get_system_type());
seq_printf(m, "processor\t: %d\n", cpu);
seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
show_cpuflags(m, c);
seq_printf(m, "cache type\t: ");
/*
* Check for what type of cache we have, we support both the
* unified cache on the SH-2 and SH-3, as well as the harvard
* style cache on the SH-4.
*/
if (c->icache.flags & SH_CACHE_COMBINED) {
seq_printf(m, "unified\n");
show_cacheinfo(m, "cache", c->icache);
} else {
seq_printf(m, "split (harvard)\n");
show_cacheinfo(m, "icache", c->icache);
show_cacheinfo(m, "dcache", c->dcache);
}
/* Optional secondary cache */
if (c->flags & CPU_HAS_L2_CACHE)
show_cacheinfo(m, "scache", c->scache);
seq_printf(m, "bogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
return show_clocks(m);
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SH_KGDB
/*
* Parse command-line kgdb options. By default KGDB is enabled,
* entered on error (or other action) using default serial info.
* The command-line option can include a serial port specification
* and an action to override default or configured behavior.
*/
struct kgdb_sermap kgdb_sci_sermap =
{ "ttySC", 5, kgdb_sci_setup, NULL };
struct kgdb_sermap *kgdb_serlist = &kgdb_sci_sermap;
struct kgdb_sermap *kgdb_porttype = &kgdb_sci_sermap;
void kgdb_register_sermap(struct kgdb_sermap *map)
{
struct kgdb_sermap *last;
for (last = kgdb_serlist; last->next; last = last->next)
;
last->next = map;
if (!map->namelen) {
map->namelen = strlen(map->name);
}
}
static int __init kgdb_parse_options(char *options)
{
char c;
int baud;
/* Check for port spec (or use default) */
/* Determine port type and instance */
if (!memcmp(options, "tty", 3)) {
struct kgdb_sermap *map = kgdb_serlist;
while (map && memcmp(options, map->name, map->namelen))
map = map->next;
if (!map) {
KGDB_PRINTK("unknown port spec in %s\n", options);
return -1;
}
kgdb_porttype = map;
kgdb_serial_setup = map->setup_fn;
kgdb_portnum = options[map->namelen] - '0';
options += map->namelen + 1;
options = (*options == ',') ? options+1 : options;
/* Read optional parameters (baud/parity/bits) */
baud = simple_strtoul(options, &options, 10);
if (baud != 0) {
kgdb_baud = baud;
c = toupper(*options);
if (c == 'E' || c == 'O' || c == 'N') {
kgdb_parity = c;
options++;
}
c = *options;
if (c == '7' || c == '8') {
kgdb_bits = c;
options++;
}
options = (*options == ',') ? options+1 : options;
}
}
/* Check for action specification */
if (!memcmp(options, "halt", 4)) {
kgdb_halt = 1;
options += 4;
} else if (!memcmp(options, "disabled", 8)) {
kgdb_enabled = 0;
options += 8;
}
if (*options) {
KGDB_PRINTK("ignored unknown options: %s\n", options);
return 0;
}
return 1;
}
__setup("kgdb=", kgdb_parse_options);
#endif /* CONFIG_SH_KGDB */