blob: 97abf934d1852931d36a18f8027d1597fa66e135 [file] [log] [blame]
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* IPv4 Forwarding Information Base: FIB frontend.
*
* Version: $Id: fib_frontend.c,v 1.26 2001/10/31 21:55:54 davem Exp $
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/bitops.h>
#include <linux/capability.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/inetdevice.h>
#include <linux/netdevice.h>
#include <linux/if_addr.h>
#include <linux/if_arp.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/list.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/route.h>
#include <net/tcp.h>
#include <net/sock.h>
#include <net/icmp.h>
#include <net/arp.h>
#include <net/ip_fib.h>
#include <net/rtnetlink.h>
#define FFprint(a...) printk(KERN_DEBUG a)
static struct sock *fibnl;
#ifndef CONFIG_IP_MULTIPLE_TABLES
struct fib_table *ip_fib_local_table;
struct fib_table *ip_fib_main_table;
#define FIB_TABLE_HASHSZ 1
static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
static void __init fib4_rules_init(void)
{
ip_fib_local_table = fib_hash_init(RT_TABLE_LOCAL);
hlist_add_head_rcu(&ip_fib_local_table->tb_hlist, &fib_table_hash[0]);
ip_fib_main_table = fib_hash_init(RT_TABLE_MAIN);
hlist_add_head_rcu(&ip_fib_main_table->tb_hlist, &fib_table_hash[0]);
}
#else
#define FIB_TABLE_HASHSZ 256
static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
struct fib_table *fib_new_table(u32 id)
{
struct fib_table *tb;
unsigned int h;
if (id == 0)
id = RT_TABLE_MAIN;
tb = fib_get_table(id);
if (tb)
return tb;
tb = fib_hash_init(id);
if (!tb)
return NULL;
h = id & (FIB_TABLE_HASHSZ - 1);
hlist_add_head_rcu(&tb->tb_hlist, &fib_table_hash[h]);
return tb;
}
struct fib_table *fib_get_table(u32 id)
{
struct fib_table *tb;
struct hlist_node *node;
unsigned int h;
if (id == 0)
id = RT_TABLE_MAIN;
h = id & (FIB_TABLE_HASHSZ - 1);
rcu_read_lock();
hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb_hlist) {
if (tb->tb_id == id) {
rcu_read_unlock();
return tb;
}
}
rcu_read_unlock();
return NULL;
}
#endif /* CONFIG_IP_MULTIPLE_TABLES */
static void fib_flush(void)
{
int flushed = 0;
struct fib_table *tb;
struct hlist_node *node;
unsigned int h;
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
hlist_for_each_entry(tb, node, &fib_table_hash[h], tb_hlist)
flushed += tb->tb_flush(tb);
}
if (flushed)
rt_cache_flush(-1);
}
/*
* Find the first device with a given source address.
*/
struct net_device * ip_dev_find(__be32 addr)
{
struct flowi fl = { .nl_u = { .ip4_u = { .daddr = addr } } };
struct fib_result res;
struct net_device *dev = NULL;
struct fib_table *local_table;
#ifdef CONFIG_IP_MULTIPLE_TABLES
res.r = NULL;
#endif
local_table = fib_get_table(RT_TABLE_LOCAL);
if (!local_table || local_table->tb_lookup(local_table, &fl, &res))
return NULL;
if (res.type != RTN_LOCAL)
goto out;
dev = FIB_RES_DEV(res);
if (dev)
dev_hold(dev);
out:
fib_res_put(&res);
return dev;
}
unsigned inet_addr_type(__be32 addr)
{
struct flowi fl = { .nl_u = { .ip4_u = { .daddr = addr } } };
struct fib_result res;
unsigned ret = RTN_BROADCAST;
struct fib_table *local_table;
if (ZERONET(addr) || BADCLASS(addr))
return RTN_BROADCAST;
if (MULTICAST(addr))
return RTN_MULTICAST;
#ifdef CONFIG_IP_MULTIPLE_TABLES
res.r = NULL;
#endif
local_table = fib_get_table(RT_TABLE_LOCAL);
if (local_table) {
ret = RTN_UNICAST;
if (!local_table->tb_lookup(local_table, &fl, &res)) {
ret = res.type;
fib_res_put(&res);
}
}
return ret;
}
/* Given (packet source, input interface) and optional (dst, oif, tos):
- (main) check, that source is valid i.e. not broadcast or our local
address.
- figure out what "logical" interface this packet arrived
and calculate "specific destination" address.
- check, that packet arrived from expected physical interface.
*/
int fib_validate_source(__be32 src, __be32 dst, u8 tos, int oif,
struct net_device *dev, __be32 *spec_dst, u32 *itag)
{
struct in_device *in_dev;
struct flowi fl = { .nl_u = { .ip4_u =
{ .daddr = src,
.saddr = dst,
.tos = tos } },
.iif = oif };
struct fib_result res;
int no_addr, rpf;
int ret;
no_addr = rpf = 0;
rcu_read_lock();
in_dev = __in_dev_get_rcu(dev);
if (in_dev) {
no_addr = in_dev->ifa_list == NULL;
rpf = IN_DEV_RPFILTER(in_dev);
}
rcu_read_unlock();
if (in_dev == NULL)
goto e_inval;
if (fib_lookup(&fl, &res))
goto last_resort;
if (res.type != RTN_UNICAST)
goto e_inval_res;
*spec_dst = FIB_RES_PREFSRC(res);
fib_combine_itag(itag, &res);
#ifdef CONFIG_IP_ROUTE_MULTIPATH
if (FIB_RES_DEV(res) == dev || res.fi->fib_nhs > 1)
#else
if (FIB_RES_DEV(res) == dev)
#endif
{
ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
fib_res_put(&res);
return ret;
}
fib_res_put(&res);
if (no_addr)
goto last_resort;
if (rpf)
goto e_inval;
fl.oif = dev->ifindex;
ret = 0;
if (fib_lookup(&fl, &res) == 0) {
if (res.type == RTN_UNICAST) {
*spec_dst = FIB_RES_PREFSRC(res);
ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
}
fib_res_put(&res);
}
return ret;
last_resort:
if (rpf)
goto e_inval;
*spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
*itag = 0;
return 0;
e_inval_res:
fib_res_put(&res);
e_inval:
return -EINVAL;
}
static inline __be32 sk_extract_addr(struct sockaddr *addr)
{
return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
}
static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
{
struct nlattr *nla;
nla = (struct nlattr *) ((char *) mx + len);
nla->nla_type = type;
nla->nla_len = nla_attr_size(4);
*(u32 *) nla_data(nla) = value;
return len + nla_total_size(4);
}
static int rtentry_to_fib_config(int cmd, struct rtentry *rt,
struct fib_config *cfg)
{
__be32 addr;
int plen;
memset(cfg, 0, sizeof(*cfg));
if (rt->rt_dst.sa_family != AF_INET)
return -EAFNOSUPPORT;
/*
* Check mask for validity:
* a) it must be contiguous.
* b) destination must have all host bits clear.
* c) if application forgot to set correct family (AF_INET),
* reject request unless it is absolutely clear i.e.
* both family and mask are zero.
*/
plen = 32;
addr = sk_extract_addr(&rt->rt_dst);
if (!(rt->rt_flags & RTF_HOST)) {
__be32 mask = sk_extract_addr(&rt->rt_genmask);
if (rt->rt_genmask.sa_family != AF_INET) {
if (mask || rt->rt_genmask.sa_family)
return -EAFNOSUPPORT;
}
if (bad_mask(mask, addr))
return -EINVAL;
plen = inet_mask_len(mask);
}
cfg->fc_dst_len = plen;
cfg->fc_dst = addr;
if (cmd != SIOCDELRT) {
cfg->fc_nlflags = NLM_F_CREATE;
cfg->fc_protocol = RTPROT_BOOT;
}
if (rt->rt_metric)
cfg->fc_priority = rt->rt_metric - 1;
if (rt->rt_flags & RTF_REJECT) {
cfg->fc_scope = RT_SCOPE_HOST;
cfg->fc_type = RTN_UNREACHABLE;
return 0;
}
cfg->fc_scope = RT_SCOPE_NOWHERE;
cfg->fc_type = RTN_UNICAST;
if (rt->rt_dev) {
char *colon;
struct net_device *dev;
char devname[IFNAMSIZ];
if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
return -EFAULT;
devname[IFNAMSIZ-1] = 0;
colon = strchr(devname, ':');
if (colon)
*colon = 0;
dev = __dev_get_by_name(&init_net, devname);
if (!dev)
return -ENODEV;
cfg->fc_oif = dev->ifindex;
if (colon) {
struct in_ifaddr *ifa;
struct in_device *in_dev = __in_dev_get_rtnl(dev);
if (!in_dev)
return -ENODEV;
*colon = ':';
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
if (strcmp(ifa->ifa_label, devname) == 0)
break;
if (ifa == NULL)
return -ENODEV;
cfg->fc_prefsrc = ifa->ifa_local;
}
}
addr = sk_extract_addr(&rt->rt_gateway);
if (rt->rt_gateway.sa_family == AF_INET && addr) {
cfg->fc_gw = addr;
if (rt->rt_flags & RTF_GATEWAY &&
inet_addr_type(addr) == RTN_UNICAST)
cfg->fc_scope = RT_SCOPE_UNIVERSE;
}
if (cmd == SIOCDELRT)
return 0;
if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
return -EINVAL;
if (cfg->fc_scope == RT_SCOPE_NOWHERE)
cfg->fc_scope = RT_SCOPE_LINK;
if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
struct nlattr *mx;
int len = 0;
mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
if (mx == NULL)
return -ENOMEM;
if (rt->rt_flags & RTF_MTU)
len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
if (rt->rt_flags & RTF_WINDOW)
len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
if (rt->rt_flags & RTF_IRTT)
len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
cfg->fc_mx = mx;
cfg->fc_mx_len = len;
}
return 0;
}
/*
* Handle IP routing ioctl calls. These are used to manipulate the routing tables
*/
int ip_rt_ioctl(unsigned int cmd, void __user *arg)
{
struct fib_config cfg;
struct rtentry rt;
int err;
switch (cmd) {
case SIOCADDRT: /* Add a route */
case SIOCDELRT: /* Delete a route */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&rt, arg, sizeof(rt)))
return -EFAULT;
rtnl_lock();
err = rtentry_to_fib_config(cmd, &rt, &cfg);
if (err == 0) {
struct fib_table *tb;
if (cmd == SIOCDELRT) {
tb = fib_get_table(cfg.fc_table);
if (tb)
err = tb->tb_delete(tb, &cfg);
else
err = -ESRCH;
} else {
tb = fib_new_table(cfg.fc_table);
if (tb)
err = tb->tb_insert(tb, &cfg);
else
err = -ENOBUFS;
}
/* allocated by rtentry_to_fib_config() */
kfree(cfg.fc_mx);
}
rtnl_unlock();
return err;
}
return -EINVAL;
}
const struct nla_policy rtm_ipv4_policy[RTA_MAX+1] = {
[RTA_DST] = { .type = NLA_U32 },
[RTA_SRC] = { .type = NLA_U32 },
[RTA_IIF] = { .type = NLA_U32 },
[RTA_OIF] = { .type = NLA_U32 },
[RTA_GATEWAY] = { .type = NLA_U32 },
[RTA_PRIORITY] = { .type = NLA_U32 },
[RTA_PREFSRC] = { .type = NLA_U32 },
[RTA_METRICS] = { .type = NLA_NESTED },
[RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
[RTA_PROTOINFO] = { .type = NLA_U32 },
[RTA_FLOW] = { .type = NLA_U32 },
};
static int rtm_to_fib_config(struct sk_buff *skb, struct nlmsghdr *nlh,
struct fib_config *cfg)
{
struct nlattr *attr;
int err, remaining;
struct rtmsg *rtm;
err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
if (err < 0)
goto errout;
memset(cfg, 0, sizeof(*cfg));
rtm = nlmsg_data(nlh);
cfg->fc_dst_len = rtm->rtm_dst_len;
cfg->fc_tos = rtm->rtm_tos;
cfg->fc_table = rtm->rtm_table;
cfg->fc_protocol = rtm->rtm_protocol;
cfg->fc_scope = rtm->rtm_scope;
cfg->fc_type = rtm->rtm_type;
cfg->fc_flags = rtm->rtm_flags;
cfg->fc_nlflags = nlh->nlmsg_flags;
cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
cfg->fc_nlinfo.nlh = nlh;
if (cfg->fc_type > RTN_MAX) {
err = -EINVAL;
goto errout;
}
nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
switch (nla_type(attr)) {
case RTA_DST:
cfg->fc_dst = nla_get_be32(attr);
break;
case RTA_OIF:
cfg->fc_oif = nla_get_u32(attr);
break;
case RTA_GATEWAY:
cfg->fc_gw = nla_get_be32(attr);
break;
case RTA_PRIORITY:
cfg->fc_priority = nla_get_u32(attr);
break;
case RTA_PREFSRC:
cfg->fc_prefsrc = nla_get_be32(attr);
break;
case RTA_METRICS:
cfg->fc_mx = nla_data(attr);
cfg->fc_mx_len = nla_len(attr);
break;
case RTA_MULTIPATH:
cfg->fc_mp = nla_data(attr);
cfg->fc_mp_len = nla_len(attr);
break;
case RTA_FLOW:
cfg->fc_flow = nla_get_u32(attr);
break;
case RTA_TABLE:
cfg->fc_table = nla_get_u32(attr);
break;
}
}
return 0;
errout:
return err;
}
static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
{
struct fib_config cfg;
struct fib_table *tb;
int err;
err = rtm_to_fib_config(skb, nlh, &cfg);
if (err < 0)
goto errout;
tb = fib_get_table(cfg.fc_table);
if (tb == NULL) {
err = -ESRCH;
goto errout;
}
err = tb->tb_delete(tb, &cfg);
errout:
return err;
}
static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
{
struct fib_config cfg;
struct fib_table *tb;
int err;
err = rtm_to_fib_config(skb, nlh, &cfg);
if (err < 0)
goto errout;
tb = fib_new_table(cfg.fc_table);
if (tb == NULL) {
err = -ENOBUFS;
goto errout;
}
err = tb->tb_insert(tb, &cfg);
errout:
return err;
}
static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
{
unsigned int h, s_h;
unsigned int e = 0, s_e;
struct fib_table *tb;
struct hlist_node *node;
int dumped = 0;
if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
return ip_rt_dump(skb, cb);
s_h = cb->args[0];
s_e = cb->args[1];
for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
e = 0;
hlist_for_each_entry(tb, node, &fib_table_hash[h], tb_hlist) {
if (e < s_e)
goto next;
if (dumped)
memset(&cb->args[2], 0, sizeof(cb->args) -
2 * sizeof(cb->args[0]));
if (tb->tb_dump(tb, skb, cb) < 0)
goto out;
dumped = 1;
next:
e++;
}
}
out:
cb->args[1] = e;
cb->args[0] = h;
return skb->len;
}
/* Prepare and feed intra-kernel routing request.
Really, it should be netlink message, but :-( netlink
can be not configured, so that we feed it directly
to fib engine. It is legal, because all events occur
only when netlink is already locked.
*/
static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
{
struct fib_table *tb;
struct fib_config cfg = {
.fc_protocol = RTPROT_KERNEL,
.fc_type = type,
.fc_dst = dst,
.fc_dst_len = dst_len,
.fc_prefsrc = ifa->ifa_local,
.fc_oif = ifa->ifa_dev->dev->ifindex,
.fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
};
if (type == RTN_UNICAST)
tb = fib_new_table(RT_TABLE_MAIN);
else
tb = fib_new_table(RT_TABLE_LOCAL);
if (tb == NULL)
return;
cfg.fc_table = tb->tb_id;
if (type != RTN_LOCAL)
cfg.fc_scope = RT_SCOPE_LINK;
else
cfg.fc_scope = RT_SCOPE_HOST;
if (cmd == RTM_NEWROUTE)
tb->tb_insert(tb, &cfg);
else
tb->tb_delete(tb, &cfg);
}
void fib_add_ifaddr(struct in_ifaddr *ifa)
{
struct in_device *in_dev = ifa->ifa_dev;
struct net_device *dev = in_dev->dev;
struct in_ifaddr *prim = ifa;
__be32 mask = ifa->ifa_mask;
__be32 addr = ifa->ifa_local;
__be32 prefix = ifa->ifa_address&mask;
if (ifa->ifa_flags&IFA_F_SECONDARY) {
prim = inet_ifa_byprefix(in_dev, prefix, mask);
if (prim == NULL) {
printk(KERN_DEBUG "fib_add_ifaddr: bug: prim == NULL\n");
return;
}
}
fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
if (!(dev->flags&IFF_UP))
return;
/* Add broadcast address, if it is explicitly assigned. */
if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
if (!ZERONET(prefix) && !(ifa->ifa_flags&IFA_F_SECONDARY) &&
(prefix != addr || ifa->ifa_prefixlen < 32)) {
fib_magic(RTM_NEWROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
RTN_UNICAST, prefix, ifa->ifa_prefixlen, prim);
/* Add network specific broadcasts, when it takes a sense */
if (ifa->ifa_prefixlen < 31) {
fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix|~mask, 32, prim);
}
}
}
static void fib_del_ifaddr(struct in_ifaddr *ifa)
{
struct in_device *in_dev = ifa->ifa_dev;
struct net_device *dev = in_dev->dev;
struct in_ifaddr *ifa1;
struct in_ifaddr *prim = ifa;
__be32 brd = ifa->ifa_address|~ifa->ifa_mask;
__be32 any = ifa->ifa_address&ifa->ifa_mask;
#define LOCAL_OK 1
#define BRD_OK 2
#define BRD0_OK 4
#define BRD1_OK 8
unsigned ok = 0;
if (!(ifa->ifa_flags&IFA_F_SECONDARY))
fib_magic(RTM_DELROUTE, dev->flags&IFF_LOOPBACK ? RTN_LOCAL :
RTN_UNICAST, any, ifa->ifa_prefixlen, prim);
else {
prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
if (prim == NULL) {
printk(KERN_DEBUG "fib_del_ifaddr: bug: prim == NULL\n");
return;
}
}
/* Deletion is more complicated than add.
We should take care of not to delete too much :-)
Scan address list to be sure that addresses are really gone.
*/
for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
if (ifa->ifa_local == ifa1->ifa_local)
ok |= LOCAL_OK;
if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
ok |= BRD_OK;
if (brd == ifa1->ifa_broadcast)
ok |= BRD1_OK;
if (any == ifa1->ifa_broadcast)
ok |= BRD0_OK;
}
if (!(ok&BRD_OK))
fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
if (!(ok&BRD1_OK))
fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
if (!(ok&BRD0_OK))
fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
if (!(ok&LOCAL_OK)) {
fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
/* Check, that this local address finally disappeared. */
if (inet_addr_type(ifa->ifa_local) != RTN_LOCAL) {
/* And the last, but not the least thing.
We must flush stray FIB entries.
First of all, we scan fib_info list searching
for stray nexthop entries, then ignite fib_flush.
*/
if (fib_sync_down(ifa->ifa_local, NULL, 0))
fib_flush();
}
}
#undef LOCAL_OK
#undef BRD_OK
#undef BRD0_OK
#undef BRD1_OK
}
static void nl_fib_lookup(struct fib_result_nl *frn, struct fib_table *tb )
{
struct fib_result res;
struct flowi fl = { .mark = frn->fl_mark,
.nl_u = { .ip4_u = { .daddr = frn->fl_addr,
.tos = frn->fl_tos,
.scope = frn->fl_scope } } };
#ifdef CONFIG_IP_MULTIPLE_TABLES
res.r = NULL;
#endif
frn->err = -ENOENT;
if (tb) {
local_bh_disable();
frn->tb_id = tb->tb_id;
frn->err = tb->tb_lookup(tb, &fl, &res);
if (!frn->err) {
frn->prefixlen = res.prefixlen;
frn->nh_sel = res.nh_sel;
frn->type = res.type;
frn->scope = res.scope;
fib_res_put(&res);
}
local_bh_enable();
}
}
static void nl_fib_input(struct sk_buff *skb)
{
struct fib_result_nl *frn;
struct nlmsghdr *nlh;
struct fib_table *tb;
u32 pid;
nlh = nlmsg_hdr(skb);
if (skb->len < NLMSG_SPACE(0) || skb->len < nlh->nlmsg_len ||
nlh->nlmsg_len < NLMSG_LENGTH(sizeof(*frn)))
return;
skb = skb_clone(skb, GFP_KERNEL);
if (skb == NULL)
return;
nlh = nlmsg_hdr(skb);
frn = (struct fib_result_nl *) NLMSG_DATA(nlh);
tb = fib_get_table(frn->tb_id_in);
nl_fib_lookup(frn, tb);
pid = NETLINK_CB(skb).pid; /* pid of sending process */
NETLINK_CB(skb).pid = 0; /* from kernel */
NETLINK_CB(skb).dst_group = 0; /* unicast */
netlink_unicast(fibnl, skb, pid, MSG_DONTWAIT);
}
static void nl_fib_lookup_init(void)
{
fibnl = netlink_kernel_create(&init_net, NETLINK_FIB_LOOKUP, 0,
nl_fib_input, NULL, THIS_MODULE);
}
static void fib_disable_ip(struct net_device *dev, int force)
{
if (fib_sync_down(0, dev, force))
fib_flush();
rt_cache_flush(0);
arp_ifdown(dev);
}
static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct in_ifaddr *ifa = (struct in_ifaddr*)ptr;
switch (event) {
case NETDEV_UP:
fib_add_ifaddr(ifa);
#ifdef CONFIG_IP_ROUTE_MULTIPATH
fib_sync_up(ifa->ifa_dev->dev);
#endif
rt_cache_flush(-1);
break;
case NETDEV_DOWN:
fib_del_ifaddr(ifa);
if (ifa->ifa_dev->ifa_list == NULL) {
/* Last address was deleted from this interface.
Disable IP.
*/
fib_disable_ip(ifa->ifa_dev->dev, 1);
} else {
rt_cache_flush(-1);
}
break;
}
return NOTIFY_DONE;
}
static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
struct in_device *in_dev = __in_dev_get_rtnl(dev);
if (dev->nd_net != &init_net)
return NOTIFY_DONE;
if (event == NETDEV_UNREGISTER) {
fib_disable_ip(dev, 2);
return NOTIFY_DONE;
}
if (!in_dev)
return NOTIFY_DONE;
switch (event) {
case NETDEV_UP:
for_ifa(in_dev) {
fib_add_ifaddr(ifa);
} endfor_ifa(in_dev);
#ifdef CONFIG_IP_ROUTE_MULTIPATH
fib_sync_up(dev);
#endif
rt_cache_flush(-1);
break;
case NETDEV_DOWN:
fib_disable_ip(dev, 0);
break;
case NETDEV_CHANGEMTU:
case NETDEV_CHANGE:
rt_cache_flush(0);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block fib_inetaddr_notifier = {
.notifier_call =fib_inetaddr_event,
};
static struct notifier_block fib_netdev_notifier = {
.notifier_call =fib_netdev_event,
};
void __init ip_fib_init(void)
{
unsigned int i;
for (i = 0; i < FIB_TABLE_HASHSZ; i++)
INIT_HLIST_HEAD(&fib_table_hash[i]);
fib4_rules_init();
register_netdevice_notifier(&fib_netdev_notifier);
register_inetaddr_notifier(&fib_inetaddr_notifier);
nl_fib_lookup_init();
rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL);
rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL);
rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib);
}
EXPORT_SYMBOL(inet_addr_type);
EXPORT_SYMBOL(ip_dev_find);