blob: a7421f130cc019a3e4144090a3848bf338f3be4b [file] [log] [blame]
* Copyright (c) International Business Machines Corp., 2006
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* Author: Artem Bityutskiy (Битюцкий Артём)
#ifndef __UBI_USER_H__
#define __UBI_USER_H__
* UBI device creation (the same as MTD device attachment)
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
* control device. The caller has to properly fill and pass
* &struct ubi_attach_req object - UBI will attach the MTD device specified in
* the request and return the newly created UBI device number as the ioctl
* return value.
* UBI device deletion (the same as MTD device detachment)
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
* control device.
* UBI volume creation
* ~~~~~~~~~~~~~~~~~~~
* UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
* device. A &struct ubi_mkvol_req object has to be properly filled and a
* pointer to it has to be passed to the IOCTL.
* UBI volume deletion
* ~~~~~~~~~~~~~~~~~~~
* To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
* device should be used. A pointer to the 32-bit volume ID hast to be passed
* to the IOCTL.
* UBI volume re-size
* ~~~~~~~~~~~~~~~~~~
* To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
* device should be used. A &struct ubi_rsvol_req object has to be properly
* filled and a pointer to it has to be passed to the IOCTL.
* UBI volume update
* ~~~~~~~~~~~~~~~~~
* Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
* corresponding UBI volume character device. A pointer to a 64-bit update
* size should be passed to the IOCTL. After this, UBI expects user to write
* this number of bytes to the volume character device. The update is finished
* when the claimed number of bytes is passed. So, the volume update sequence
* is something like:
* fd = open("/dev/my_volume");
* ioctl(fd, UBI_IOCVOLUP, &image_size);
* write(fd, buf, image_size);
* close(fd);
* Atomic eraseblock change
* ~~~~~~~~~~~~~~~~~~~~~~~~
* Atomic eraseblock change operation is done via the %UBI_IOCEBCH IOCTL
* command of the corresponding UBI volume character device. A pointer to
* &struct ubi_leb_change_req has to be passed to the IOCTL. Then the user is
* expected to write the requested amount of bytes. This is similar to the
* "volume update" IOCTL.
* When a new UBI volume or UBI device is created, users may either specify the
* volume/device number they want to create or to let UBI automatically assign
* the number using these constants.
#define UBI_VOL_NUM_AUTO (-1)
#define UBI_DEV_NUM_AUTO (-1)
/* Maximum volume name length */
/* IOCTL commands of UBI character devices */
#define UBI_IOC_MAGIC 'o'
/* Create an UBI volume */
#define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
/* Remove an UBI volume */
#define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
/* Re-size an UBI volume */
#define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
/* IOCTL commands of the UBI control character device */
#define UBI_CTRL_IOC_MAGIC 'o'
/* Attach an MTD device */
#define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
/* Detach an MTD device */
#define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, int32_t)
/* IOCTL commands of UBI volume character devices */
/* Start UBI volume update */
#define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
/* An eraseblock erasure command, used for debugging, disabled by default */
#define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
/* An atomic eraseblock change command */
#define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, int32_t)
/* Maximum MTD device name length supported by UBI */
#define MAX_UBI_MTD_NAME_LEN 127
* UBI data type hint constants.
* UBI_LONGTERM: long-term data
* UBI_SHORTTERM: short-term data
* UBI_UNKNOWN: data persistence is unknown
* These constants are used when data is written to UBI volumes in order to
* help the UBI wear-leveling unit to find more appropriate physical
* eraseblocks.
enum {
* UBI volume type constants.
* @UBI_DYNAMIC_VOLUME: dynamic volume
* @UBI_STATIC_VOLUME: static volume
enum {
* struct ubi_attach_req - attach MTD device request.
* @ubi_num: UBI device number to create
* @mtd_num: MTD device number to attach
* @vid_hdr_offset: VID header offset (use defaults if %0)
* @padding: reserved for future, not used, has to be zeroed
* This data structure is used to specify MTD device UBI has to attach and the
* parameters it has to use. The number which should be assigned to the new UBI
* device is passed in @ubi_num. UBI may automatically assign the number if
* @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
* @ubi_num.
* Most applications should pass %0 in @vid_hdr_offset to make UBI use default
* offset of the VID header within physical eraseblocks. The default offset is
* the next min. I/O unit after the EC header. For example, it will be offset
* 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
* it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
* But in rare cases, if this optimizes things, the VID header may be placed to
* a different offset. For example, the boot-loader might do things faster if the
* VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. As
* the boot-loader would not normally need to read EC headers (unless it needs
* UBI in RW mode), it might be faster to calculate ECC. This is weird example,
* but it real-life example. So, in this example, @vid_hdr_offer would be
* 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
* aligned, which is OK, as UBI is clever enough to realize this is 4th sub-page
* of the first page and add needed padding.
struct ubi_attach_req {
int32_t ubi_num;
int32_t mtd_num;
int32_t vid_hdr_offset;
uint8_t padding[12];
* struct ubi_mkvol_req - volume description data structure used in
* volume creation requests.
* @vol_id: volume number
* @alignment: volume alignment
* @bytes: volume size in bytes
* @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
* @padding1: reserved for future, not used, has to be zeroed
* @name_len: volume name length
* @padding2: reserved for future, not used, has to be zeroed
* @name: volume name
* This structure is used by user-space programs when creating new volumes. The
* @used_bytes field is only necessary when creating static volumes.
* The @alignment field specifies the required alignment of the volume logical
* eraseblock. This means, that the size of logical eraseblocks will be aligned
* to this number, i.e.,
* (UBI device logical eraseblock size) mod (@alignment) = 0.
* To put it differently, the logical eraseblock of this volume may be slightly
* shortened in order to make it properly aligned. The alignment has to be
* multiple of the flash minimal input/output unit, or %1 to utilize the entire
* available space of logical eraseblocks.
* The @alignment field may be useful, for example, when one wants to maintain
* a block device on top of an UBI volume. In this case, it is desirable to fit
* an integer number of blocks in logical eraseblocks of this UBI volume. With
* alignment it is possible to update this volume using plane UBI volume image
* BLOBs, without caring about how to properly align them.
struct ubi_mkvol_req {
int32_t vol_id;
int32_t alignment;
int64_t bytes;
int8_t vol_type;
int8_t padding1;
int16_t name_len;
int8_t padding2[4];
char name[UBI_MAX_VOLUME_NAME + 1];
} __attribute__ ((packed));
* struct ubi_rsvol_req - a data structure used in volume re-size requests.
* @vol_id: ID of the volume to re-size
* @bytes: new size of the volume in bytes
* Re-sizing is possible for both dynamic and static volumes. But while dynamic
* volumes may be re-sized arbitrarily, static volumes cannot be made to be
* smaller then the number of bytes they bear. To arbitrarily shrink a static
* volume, it must be wiped out first (by means of volume update operation with
* zero number of bytes).
struct ubi_rsvol_req {
int64_t bytes;
int32_t vol_id;
} __attribute__ ((packed));
* struct ubi_leb_change_req - a data structure used in atomic logical
* eraseblock change requests.
* @lnum: logical eraseblock number to change
* @bytes: how many bytes will be written to the logical eraseblock
* @padding: reserved for future, not used, has to be zeroed
struct ubi_leb_change_req {
int32_t lnum;
int32_t bytes;
uint8_t dtype;
uint8_t padding[7];
} __attribute__ ((packed));
#endif /* __UBI_USER_H__ */