blob: 012fdb04ec238ee4e6649b0e25485a9d49d32b4e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/nospec.h>
#include <linux/hugetlb.h>
#include <linux/compat.h>
#include <linux/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "openclose.h"
#include "rsrc.h"
struct io_rsrc_update {
struct file *file;
u64 arg;
u32 nr_args;
u32 offset;
};
static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
struct io_mapped_ubuf **pimu,
struct page **last_hpage);
#define IO_RSRC_REF_BATCH 100
/* only define max */
#define IORING_MAX_FIXED_FILES (1U << 20)
#define IORING_MAX_REG_BUFFERS (1U << 14)
void io_rsrc_refs_drop(struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
if (ctx->rsrc_cached_refs) {
io_rsrc_put_node(ctx->rsrc_node, ctx->rsrc_cached_refs);
ctx->rsrc_cached_refs = 0;
}
}
int __io_account_mem(struct user_struct *user, unsigned long nr_pages)
{
unsigned long page_limit, cur_pages, new_pages;
if (!nr_pages)
return 0;
/* Don't allow more pages than we can safely lock */
page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
cur_pages = atomic_long_read(&user->locked_vm);
do {
new_pages = cur_pages + nr_pages;
if (new_pages > page_limit)
return -ENOMEM;
} while (!atomic_long_try_cmpxchg(&user->locked_vm,
&cur_pages, new_pages));
return 0;
}
static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
{
if (ctx->user)
__io_unaccount_mem(ctx->user, nr_pages);
if (ctx->mm_account)
atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
}
static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
{
int ret;
if (ctx->user) {
ret = __io_account_mem(ctx->user, nr_pages);
if (ret)
return ret;
}
if (ctx->mm_account)
atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
return 0;
}
static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
void __user *arg, unsigned index)
{
struct iovec __user *src;
#ifdef CONFIG_COMPAT
if (ctx->compat) {
struct compat_iovec __user *ciovs;
struct compat_iovec ciov;
ciovs = (struct compat_iovec __user *) arg;
if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
return -EFAULT;
dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
dst->iov_len = ciov.iov_len;
return 0;
}
#endif
src = (struct iovec __user *) arg;
if (copy_from_user(dst, &src[index], sizeof(*dst)))
return -EFAULT;
return 0;
}
static int io_buffer_validate(struct iovec *iov)
{
unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
/*
* Don't impose further limits on the size and buffer
* constraints here, we'll -EINVAL later when IO is
* submitted if they are wrong.
*/
if (!iov->iov_base)
return iov->iov_len ? -EFAULT : 0;
if (!iov->iov_len)
return -EFAULT;
/* arbitrary limit, but we need something */
if (iov->iov_len > SZ_1G)
return -EFAULT;
if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
return -EOVERFLOW;
return 0;
}
static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
{
struct io_mapped_ubuf *imu = *slot;
unsigned int i;
if (imu != ctx->dummy_ubuf) {
for (i = 0; i < imu->nr_bvecs; i++)
unpin_user_page(imu->bvec[i].bv_page);
if (imu->acct_pages)
io_unaccount_mem(ctx, imu->acct_pages);
kvfree(imu);
}
*slot = NULL;
}
void io_rsrc_refs_refill(struct io_ring_ctx *ctx)
__must_hold(&ctx->uring_lock)
{
ctx->rsrc_cached_refs += IO_RSRC_REF_BATCH;
percpu_ref_get_many(&ctx->rsrc_node->refs, IO_RSRC_REF_BATCH);
}
static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
{
struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
struct io_ring_ctx *ctx = rsrc_data->ctx;
struct io_rsrc_put *prsrc, *tmp;
list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
list_del(&prsrc->list);
if (prsrc->tag) {
if (ctx->flags & IORING_SETUP_IOPOLL) {
mutex_lock(&ctx->uring_lock);
io_post_aux_cqe(ctx, prsrc->tag, 0, 0, true);
mutex_unlock(&ctx->uring_lock);
} else {
io_post_aux_cqe(ctx, prsrc->tag, 0, 0, true);
}
}
rsrc_data->do_put(ctx, prsrc);
kfree(prsrc);
}
io_rsrc_node_destroy(ref_node);
if (atomic_dec_and_test(&rsrc_data->refs))
complete(&rsrc_data->done);
}
void io_rsrc_put_work(struct work_struct *work)
{
struct io_ring_ctx *ctx;
struct llist_node *node;
ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
node = llist_del_all(&ctx->rsrc_put_llist);
while (node) {
struct io_rsrc_node *ref_node;
struct llist_node *next = node->next;
ref_node = llist_entry(node, struct io_rsrc_node, llist);
__io_rsrc_put_work(ref_node);
node = next;
}
}
void io_wait_rsrc_data(struct io_rsrc_data *data)
{
if (data && !atomic_dec_and_test(&data->refs))
wait_for_completion(&data->done);
}
void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
{
percpu_ref_exit(&ref_node->refs);
kfree(ref_node);
}
static __cold void io_rsrc_node_ref_zero(struct percpu_ref *ref)
{
struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
struct io_ring_ctx *ctx = node->rsrc_data->ctx;
unsigned long flags;
bool first_add = false;
unsigned long delay = HZ;
spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
node->done = true;
/* if we are mid-quiesce then do not delay */
if (node->rsrc_data->quiesce)
delay = 0;
while (!list_empty(&ctx->rsrc_ref_list)) {
node = list_first_entry(&ctx->rsrc_ref_list,
struct io_rsrc_node, node);
/* recycle ref nodes in order */
if (!node->done)
break;
list_del(&node->node);
first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
}
spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
if (first_add)
mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
}
static struct io_rsrc_node *io_rsrc_node_alloc(void)
{
struct io_rsrc_node *ref_node;
ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
if (!ref_node)
return NULL;
if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
0, GFP_KERNEL)) {
kfree(ref_node);
return NULL;
}
INIT_LIST_HEAD(&ref_node->node);
INIT_LIST_HEAD(&ref_node->rsrc_list);
ref_node->done = false;
return ref_node;
}
void io_rsrc_node_switch(struct io_ring_ctx *ctx,
struct io_rsrc_data *data_to_kill)
__must_hold(&ctx->uring_lock)
{
WARN_ON_ONCE(!ctx->rsrc_backup_node);
WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
io_rsrc_refs_drop(ctx);
if (data_to_kill) {
struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
rsrc_node->rsrc_data = data_to_kill;
spin_lock_irq(&ctx->rsrc_ref_lock);
list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
spin_unlock_irq(&ctx->rsrc_ref_lock);
atomic_inc(&data_to_kill->refs);
percpu_ref_kill(&rsrc_node->refs);
ctx->rsrc_node = NULL;
}
if (!ctx->rsrc_node) {
ctx->rsrc_node = ctx->rsrc_backup_node;
ctx->rsrc_backup_node = NULL;
}
}
int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
{
if (ctx->rsrc_backup_node)
return 0;
ctx->rsrc_backup_node = io_rsrc_node_alloc();
return ctx->rsrc_backup_node ? 0 : -ENOMEM;
}
__cold static int io_rsrc_ref_quiesce(struct io_rsrc_data *data,
struct io_ring_ctx *ctx)
{
int ret;
/* As we may drop ->uring_lock, other task may have started quiesce */
if (data->quiesce)
return -ENXIO;
data->quiesce = true;
do {
ret = io_rsrc_node_switch_start(ctx);
if (ret)
break;
io_rsrc_node_switch(ctx, data);
/* kill initial ref, already quiesced if zero */
if (atomic_dec_and_test(&data->refs))
break;
mutex_unlock(&ctx->uring_lock);
flush_delayed_work(&ctx->rsrc_put_work);
ret = wait_for_completion_interruptible(&data->done);
if (!ret) {
mutex_lock(&ctx->uring_lock);
if (atomic_read(&data->refs) > 0) {
/*
* it has been revived by another thread while
* we were unlocked
*/
mutex_unlock(&ctx->uring_lock);
} else {
break;
}
}
atomic_inc(&data->refs);
/* wait for all works potentially completing data->done */
flush_delayed_work(&ctx->rsrc_put_work);
reinit_completion(&data->done);
ret = io_run_task_work_sig(ctx);
mutex_lock(&ctx->uring_lock);
} while (ret >= 0);
data->quiesce = false;
return ret;
}
static void io_free_page_table(void **table, size_t size)
{
unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
for (i = 0; i < nr_tables; i++)
kfree(table[i]);
kfree(table);
}
static void io_rsrc_data_free(struct io_rsrc_data *data)
{
size_t size = data->nr * sizeof(data->tags[0][0]);
if (data->tags)
io_free_page_table((void **)data->tags, size);
kfree(data);
}
static __cold void **io_alloc_page_table(size_t size)
{
unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
size_t init_size = size;
void **table;
table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
if (!table)
return NULL;
for (i = 0; i < nr_tables; i++) {
unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
if (!table[i]) {
io_free_page_table(table, init_size);
return NULL;
}
size -= this_size;
}
return table;
}
__cold static int io_rsrc_data_alloc(struct io_ring_ctx *ctx,
rsrc_put_fn *do_put, u64 __user *utags,
unsigned nr, struct io_rsrc_data **pdata)
{
struct io_rsrc_data *data;
int ret = -ENOMEM;
unsigned i;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
if (!data->tags) {
kfree(data);
return -ENOMEM;
}
data->nr = nr;
data->ctx = ctx;
data->do_put = do_put;
if (utags) {
ret = -EFAULT;
for (i = 0; i < nr; i++) {
u64 *tag_slot = io_get_tag_slot(data, i);
if (copy_from_user(tag_slot, &utags[i],
sizeof(*tag_slot)))
goto fail;
}
}
atomic_set(&data->refs, 1);
init_completion(&data->done);
*pdata = data;
return 0;
fail:
io_rsrc_data_free(data);
return ret;
}
static int __io_sqe_files_update(struct io_ring_ctx *ctx,
struct io_uring_rsrc_update2 *up,
unsigned nr_args)
{
u64 __user *tags = u64_to_user_ptr(up->tags);
__s32 __user *fds = u64_to_user_ptr(up->data);
struct io_rsrc_data *data = ctx->file_data;
struct io_fixed_file *file_slot;
struct file *file;
int fd, i, err = 0;
unsigned int done;
bool needs_switch = false;
if (!ctx->file_data)
return -ENXIO;
if (up->offset + nr_args > ctx->nr_user_files)
return -EINVAL;
for (done = 0; done < nr_args; done++) {
u64 tag = 0;
if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
copy_from_user(&fd, &fds[done], sizeof(fd))) {
err = -EFAULT;
break;
}
if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
err = -EINVAL;
break;
}
if (fd == IORING_REGISTER_FILES_SKIP)
continue;
i = array_index_nospec(up->offset + done, ctx->nr_user_files);
file_slot = io_fixed_file_slot(&ctx->file_table, i);
if (file_slot->file_ptr) {
file = (struct file *)(file_slot->file_ptr & FFS_MASK);
err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
if (err)
break;
file_slot->file_ptr = 0;
io_file_bitmap_clear(&ctx->file_table, i);
needs_switch = true;
}
if (fd != -1) {
file = fget(fd);
if (!file) {
err = -EBADF;
break;
}
/*
* Don't allow io_uring instances to be registered. If
* UNIX isn't enabled, then this causes a reference
* cycle and this instance can never get freed. If UNIX
* is enabled we'll handle it just fine, but there's
* still no point in allowing a ring fd as it doesn't
* support regular read/write anyway.
*/
if (io_is_uring_fops(file)) {
fput(file);
err = -EBADF;
break;
}
err = io_scm_file_account(ctx, file);
if (err) {
fput(file);
break;
}
*io_get_tag_slot(data, i) = tag;
io_fixed_file_set(file_slot, file);
io_file_bitmap_set(&ctx->file_table, i);
}
}
if (needs_switch)
io_rsrc_node_switch(ctx, data);
return done ? done : err;
}
static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
struct io_uring_rsrc_update2 *up,
unsigned int nr_args)
{
u64 __user *tags = u64_to_user_ptr(up->tags);
struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
struct page *last_hpage = NULL;
bool needs_switch = false;
__u32 done;
int i, err;
if (!ctx->buf_data)
return -ENXIO;
if (up->offset + nr_args > ctx->nr_user_bufs)
return -EINVAL;
for (done = 0; done < nr_args; done++) {
struct io_mapped_ubuf *imu;
int offset = up->offset + done;
u64 tag = 0;
err = io_copy_iov(ctx, &iov, iovs, done);
if (err)
break;
if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
err = -EFAULT;
break;
}
err = io_buffer_validate(&iov);
if (err)
break;
if (!iov.iov_base && tag) {
err = -EINVAL;
break;
}
err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
if (err)
break;
i = array_index_nospec(offset, ctx->nr_user_bufs);
if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
err = io_queue_rsrc_removal(ctx->buf_data, i,
ctx->rsrc_node, ctx->user_bufs[i]);
if (unlikely(err)) {
io_buffer_unmap(ctx, &imu);
break;
}
ctx->user_bufs[i] = ctx->dummy_ubuf;
needs_switch = true;
}
ctx->user_bufs[i] = imu;
*io_get_tag_slot(ctx->buf_data, offset) = tag;
}
if (needs_switch)
io_rsrc_node_switch(ctx, ctx->buf_data);
return done ? done : err;
}
static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
struct io_uring_rsrc_update2 *up,
unsigned nr_args)
{
__u32 tmp;
int err;
if (check_add_overflow(up->offset, nr_args, &tmp))
return -EOVERFLOW;
err = io_rsrc_node_switch_start(ctx);
if (err)
return err;
switch (type) {
case IORING_RSRC_FILE:
return __io_sqe_files_update(ctx, up, nr_args);
case IORING_RSRC_BUFFER:
return __io_sqe_buffers_update(ctx, up, nr_args);
}
return -EINVAL;
}
int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args)
{
struct io_uring_rsrc_update2 up;
if (!nr_args)
return -EINVAL;
memset(&up, 0, sizeof(up));
if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
return -EFAULT;
if (up.resv || up.resv2)
return -EINVAL;
return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
}
int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
unsigned size, unsigned type)
{
struct io_uring_rsrc_update2 up;
if (size != sizeof(up))
return -EINVAL;
if (copy_from_user(&up, arg, sizeof(up)))
return -EFAULT;
if (!up.nr || up.resv || up.resv2)
return -EINVAL;
return __io_register_rsrc_update(ctx, type, &up, up.nr);
}
__cold int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
unsigned int size, unsigned int type)
{
struct io_uring_rsrc_register rr;
/* keep it extendible */
if (size != sizeof(rr))
return -EINVAL;
memset(&rr, 0, sizeof(rr));
if (copy_from_user(&rr, arg, size))
return -EFAULT;
if (!rr.nr || rr.resv2)
return -EINVAL;
if (rr.flags & ~IORING_RSRC_REGISTER_SPARSE)
return -EINVAL;
switch (type) {
case IORING_RSRC_FILE:
if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
break;
return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
rr.nr, u64_to_user_ptr(rr.tags));
case IORING_RSRC_BUFFER:
if (rr.flags & IORING_RSRC_REGISTER_SPARSE && rr.data)
break;
return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
rr.nr, u64_to_user_ptr(rr.tags));
}
return -EINVAL;
}
int io_files_update_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update);
if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
return -EINVAL;
if (sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
up->offset = READ_ONCE(sqe->off);
up->nr_args = READ_ONCE(sqe->len);
if (!up->nr_args)
return -EINVAL;
up->arg = READ_ONCE(sqe->addr);
return 0;
}
static int io_files_update_with_index_alloc(struct io_kiocb *req,
unsigned int issue_flags)
{
struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update);
__s32 __user *fds = u64_to_user_ptr(up->arg);
unsigned int done;
struct file *file;
int ret, fd;
if (!req->ctx->file_data)
return -ENXIO;
for (done = 0; done < up->nr_args; done++) {
if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
ret = -EFAULT;
break;
}
file = fget(fd);
if (!file) {
ret = -EBADF;
break;
}
ret = io_fixed_fd_install(req, issue_flags, file,
IORING_FILE_INDEX_ALLOC);
if (ret < 0)
break;
if (copy_to_user(&fds[done], &ret, sizeof(ret))) {
__io_close_fixed(req->ctx, issue_flags, ret);
ret = -EFAULT;
break;
}
}
if (done)
return done;
return ret;
}
int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_rsrc_update *up = io_kiocb_to_cmd(req, struct io_rsrc_update);
struct io_ring_ctx *ctx = req->ctx;
struct io_uring_rsrc_update2 up2;
int ret;
up2.offset = up->offset;
up2.data = up->arg;
up2.nr = 0;
up2.tags = 0;
up2.resv = 0;
up2.resv2 = 0;
if (up->offset == IORING_FILE_INDEX_ALLOC) {
ret = io_files_update_with_index_alloc(req, issue_flags);
} else {
io_ring_submit_lock(ctx, issue_flags);
ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
&up2, up->nr_args);
io_ring_submit_unlock(ctx, issue_flags);
}
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
struct io_rsrc_node *node, void *rsrc)
{
u64 *tag_slot = io_get_tag_slot(data, idx);
struct io_rsrc_put *prsrc;
prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
if (!prsrc)
return -ENOMEM;
prsrc->tag = *tag_slot;
*tag_slot = 0;
prsrc->rsrc = rsrc;
list_add(&prsrc->list, &node->rsrc_list);
return 0;
}
void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
{
#if !defined(IO_URING_SCM_ALL)
int i;
for (i = 0; i < ctx->nr_user_files; i++) {
struct file *file = io_file_from_index(&ctx->file_table, i);
if (!file)
continue;
if (io_fixed_file_slot(&ctx->file_table, i)->file_ptr & FFS_SCM)
continue;
io_file_bitmap_clear(&ctx->file_table, i);
fput(file);
}
#endif
#if defined(CONFIG_UNIX)
if (ctx->ring_sock) {
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff *skb;
while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
kfree_skb(skb);
}
#endif
io_free_file_tables(&ctx->file_table);
io_rsrc_data_free(ctx->file_data);
ctx->file_data = NULL;
ctx->nr_user_files = 0;
}
int io_sqe_files_unregister(struct io_ring_ctx *ctx)
{
unsigned nr = ctx->nr_user_files;
int ret;
if (!ctx->file_data)
return -ENXIO;
/*
* Quiesce may unlock ->uring_lock, and while it's not held
* prevent new requests using the table.
*/
ctx->nr_user_files = 0;
ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
ctx->nr_user_files = nr;
if (!ret)
__io_sqe_files_unregister(ctx);
return ret;
}
/*
* Ensure the UNIX gc is aware of our file set, so we are certain that
* the io_uring can be safely unregistered on process exit, even if we have
* loops in the file referencing. We account only files that can hold other
* files because otherwise they can't form a loop and so are not interesting
* for GC.
*/
int __io_scm_file_account(struct io_ring_ctx *ctx, struct file *file)
{
#if defined(CONFIG_UNIX)
struct sock *sk = ctx->ring_sock->sk;
struct sk_buff_head *head = &sk->sk_receive_queue;
struct scm_fp_list *fpl;
struct sk_buff *skb;
if (likely(!io_file_need_scm(file)))
return 0;
/*
* See if we can merge this file into an existing skb SCM_RIGHTS
* file set. If there's no room, fall back to allocating a new skb
* and filling it in.
*/
spin_lock_irq(&head->lock);
skb = skb_peek(head);
if (skb && UNIXCB(skb).fp->count < SCM_MAX_FD)
__skb_unlink(skb, head);
else
skb = NULL;
spin_unlock_irq(&head->lock);
if (!skb) {
fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
if (!fpl)
return -ENOMEM;
skb = alloc_skb(0, GFP_KERNEL);
if (!skb) {
kfree(fpl);
return -ENOMEM;
}
fpl->user = get_uid(current_user());
fpl->max = SCM_MAX_FD;
fpl->count = 0;
UNIXCB(skb).fp = fpl;
skb->sk = sk;
skb->scm_io_uring = 1;
skb->destructor = unix_destruct_scm;
refcount_add(skb->truesize, &sk->sk_wmem_alloc);
}
fpl = UNIXCB(skb).fp;
fpl->fp[fpl->count++] = get_file(file);
unix_inflight(fpl->user, file);
skb_queue_head(head, skb);
fput(file);
#endif
return 0;
}
static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
{
struct file *file = prsrc->file;
#if defined(CONFIG_UNIX)
struct sock *sock = ctx->ring_sock->sk;
struct sk_buff_head list, *head = &sock->sk_receive_queue;
struct sk_buff *skb;
int i;
if (!io_file_need_scm(file)) {
fput(file);
return;
}
__skb_queue_head_init(&list);
/*
* Find the skb that holds this file in its SCM_RIGHTS. When found,
* remove this entry and rearrange the file array.
*/
skb = skb_dequeue(head);
while (skb) {
struct scm_fp_list *fp;
fp = UNIXCB(skb).fp;
for (i = 0; i < fp->count; i++) {
int left;
if (fp->fp[i] != file)
continue;
unix_notinflight(fp->user, fp->fp[i]);
left = fp->count - 1 - i;
if (left) {
memmove(&fp->fp[i], &fp->fp[i + 1],
left * sizeof(struct file *));
}
fp->count--;
if (!fp->count) {
kfree_skb(skb);
skb = NULL;
} else {
__skb_queue_tail(&list, skb);
}
fput(file);
file = NULL;
break;
}
if (!file)
break;
__skb_queue_tail(&list, skb);
skb = skb_dequeue(head);
}
if (skb_peek(&list)) {
spin_lock_irq(&head->lock);
while ((skb = __skb_dequeue(&list)) != NULL)
__skb_queue_tail(head, skb);
spin_unlock_irq(&head->lock);
}
#else
fput(file);
#endif
}
int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned nr_args, u64 __user *tags)
{
__s32 __user *fds = (__s32 __user *) arg;
struct file *file;
int fd, ret;
unsigned i;
if (ctx->file_data)
return -EBUSY;
if (!nr_args)
return -EINVAL;
if (nr_args > IORING_MAX_FIXED_FILES)
return -EMFILE;
if (nr_args > rlimit(RLIMIT_NOFILE))
return -EMFILE;
ret = io_rsrc_node_switch_start(ctx);
if (ret)
return ret;
ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
&ctx->file_data);
if (ret)
return ret;
if (!io_alloc_file_tables(&ctx->file_table, nr_args)) {
io_rsrc_data_free(ctx->file_data);
ctx->file_data = NULL;
return -ENOMEM;
}
for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
struct io_fixed_file *file_slot;
if (fds && copy_from_user(&fd, &fds[i], sizeof(fd))) {
ret = -EFAULT;
goto fail;
}
/* allow sparse sets */
if (!fds || fd == -1) {
ret = -EINVAL;
if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
goto fail;
continue;
}
file = fget(fd);
ret = -EBADF;
if (unlikely(!file))
goto fail;
/*
* Don't allow io_uring instances to be registered. If UNIX
* isn't enabled, then this causes a reference cycle and this
* instance can never get freed. If UNIX is enabled we'll
* handle it just fine, but there's still no point in allowing
* a ring fd as it doesn't support regular read/write anyway.
*/
if (io_is_uring_fops(file)) {
fput(file);
goto fail;
}
ret = io_scm_file_account(ctx, file);
if (ret) {
fput(file);
goto fail;
}
file_slot = io_fixed_file_slot(&ctx->file_table, i);
io_fixed_file_set(file_slot, file);
io_file_bitmap_set(&ctx->file_table, i);
}
/* default it to the whole table */
io_file_table_set_alloc_range(ctx, 0, ctx->nr_user_files);
io_rsrc_node_switch(ctx, NULL);
return 0;
fail:
__io_sqe_files_unregister(ctx);
return ret;
}
static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
{
io_buffer_unmap(ctx, &prsrc->buf);
prsrc->buf = NULL;
}
void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
{
unsigned int i;
for (i = 0; i < ctx->nr_user_bufs; i++)
io_buffer_unmap(ctx, &ctx->user_bufs[i]);
kfree(ctx->user_bufs);
io_rsrc_data_free(ctx->buf_data);
ctx->user_bufs = NULL;
ctx->buf_data = NULL;
ctx->nr_user_bufs = 0;
}
int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
{
unsigned nr = ctx->nr_user_bufs;
int ret;
if (!ctx->buf_data)
return -ENXIO;
/*
* Quiesce may unlock ->uring_lock, and while it's not held
* prevent new requests using the table.
*/
ctx->nr_user_bufs = 0;
ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
ctx->nr_user_bufs = nr;
if (!ret)
__io_sqe_buffers_unregister(ctx);
return ret;
}
/*
* Not super efficient, but this is just a registration time. And we do cache
* the last compound head, so generally we'll only do a full search if we don't
* match that one.
*
* We check if the given compound head page has already been accounted, to
* avoid double accounting it. This allows us to account the full size of the
* page, not just the constituent pages of a huge page.
*/
static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
int nr_pages, struct page *hpage)
{
int i, j;
/* check current page array */
for (i = 0; i < nr_pages; i++) {
if (!PageCompound(pages[i]))
continue;
if (compound_head(pages[i]) == hpage)
return true;
}
/* check previously registered pages */
for (i = 0; i < ctx->nr_user_bufs; i++) {
struct io_mapped_ubuf *imu = ctx->user_bufs[i];
for (j = 0; j < imu->nr_bvecs; j++) {
if (!PageCompound(imu->bvec[j].bv_page))
continue;
if (compound_head(imu->bvec[j].bv_page) == hpage)
return true;
}
}
return false;
}
static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
int nr_pages, struct io_mapped_ubuf *imu,
struct page **last_hpage)
{
int i, ret;
imu->acct_pages = 0;
for (i = 0; i < nr_pages; i++) {
if (!PageCompound(pages[i])) {
imu->acct_pages++;
} else {
struct page *hpage;
hpage = compound_head(pages[i]);
if (hpage == *last_hpage)
continue;
*last_hpage = hpage;
if (headpage_already_acct(ctx, pages, i, hpage))
continue;
imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
}
}
if (!imu->acct_pages)
return 0;
ret = io_account_mem(ctx, imu->acct_pages);
if (ret)
imu->acct_pages = 0;
return ret;
}
struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages)
{
unsigned long start, end, nr_pages;
struct vm_area_struct **vmas = NULL;
struct page **pages = NULL;
int i, pret, ret = -ENOMEM;
end = (ubuf + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
start = ubuf >> PAGE_SHIFT;
nr_pages = end - start;
pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
goto done;
vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
GFP_KERNEL);
if (!vmas)
goto done;
ret = 0;
mmap_read_lock(current->mm);
pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
pages, vmas);
if (pret == nr_pages) {
/* don't support file backed memory */
for (i = 0; i < nr_pages; i++) {
struct vm_area_struct *vma = vmas[i];
if (vma_is_shmem(vma))
continue;
if (vma->vm_file &&
!is_file_hugepages(vma->vm_file)) {
ret = -EOPNOTSUPP;
break;
}
}
*npages = nr_pages;
} else {
ret = pret < 0 ? pret : -EFAULT;
}
mmap_read_unlock(current->mm);
if (ret) {
/*
* if we did partial map, or found file backed vmas,
* release any pages we did get
*/
if (pret > 0)
unpin_user_pages(pages, pret);
goto done;
}
ret = 0;
done:
kvfree(vmas);
if (ret < 0) {
kvfree(pages);
pages = ERR_PTR(ret);
}
return pages;
}
static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
struct io_mapped_ubuf **pimu,
struct page **last_hpage)
{
struct io_mapped_ubuf *imu = NULL;
struct page **pages = NULL;
unsigned long off;
size_t size;
int ret, nr_pages, i;
*pimu = ctx->dummy_ubuf;
if (!iov->iov_base)
return 0;
ret = -ENOMEM;
pages = io_pin_pages((unsigned long) iov->iov_base, iov->iov_len,
&nr_pages);
if (IS_ERR(pages)) {
ret = PTR_ERR(pages);
pages = NULL;
goto done;
}
imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
if (!imu)
goto done;
ret = io_buffer_account_pin(ctx, pages, nr_pages, imu, last_hpage);
if (ret) {
unpin_user_pages(pages, nr_pages);
goto done;
}
off = (unsigned long) iov->iov_base & ~PAGE_MASK;
size = iov->iov_len;
for (i = 0; i < nr_pages; i++) {
size_t vec_len;
vec_len = min_t(size_t, size, PAGE_SIZE - off);
imu->bvec[i].bv_page = pages[i];
imu->bvec[i].bv_len = vec_len;
imu->bvec[i].bv_offset = off;
off = 0;
size -= vec_len;
}
/* store original address for later verification */
imu->ubuf = (unsigned long) iov->iov_base;
imu->ubuf_end = imu->ubuf + iov->iov_len;
imu->nr_bvecs = nr_pages;
*pimu = imu;
ret = 0;
done:
if (ret)
kvfree(imu);
kvfree(pages);
return ret;
}
static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
{
ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
return ctx->user_bufs ? 0 : -ENOMEM;
}
int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
unsigned int nr_args, u64 __user *tags)
{
struct page *last_hpage = NULL;
struct io_rsrc_data *data;
int i, ret;
struct iovec iov;
BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
if (ctx->user_bufs)
return -EBUSY;
if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
return -EINVAL;
ret = io_rsrc_node_switch_start(ctx);
if (ret)
return ret;
ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
if (ret)
return ret;
ret = io_buffers_map_alloc(ctx, nr_args);
if (ret) {
io_rsrc_data_free(data);
return ret;
}
for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
if (arg) {
ret = io_copy_iov(ctx, &iov, arg, i);
if (ret)
break;
ret = io_buffer_validate(&iov);
if (ret)
break;
} else {
memset(&iov, 0, sizeof(iov));
}
if (!iov.iov_base && *io_get_tag_slot(data, i)) {
ret = -EINVAL;
break;
}
ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
&last_hpage);
if (ret)
break;
}
WARN_ON_ONCE(ctx->buf_data);
ctx->buf_data = data;
if (ret)
__io_sqe_buffers_unregister(ctx);
else
io_rsrc_node_switch(ctx, NULL);
return ret;
}
int io_import_fixed(int ddir, struct iov_iter *iter,
struct io_mapped_ubuf *imu,
u64 buf_addr, size_t len)
{
u64 buf_end;
size_t offset;
if (WARN_ON_ONCE(!imu))
return -EFAULT;
if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
return -EFAULT;
/* not inside the mapped region */
if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
return -EFAULT;
/*
* May not be a start of buffer, set size appropriately
* and advance us to the beginning.
*/
offset = buf_addr - imu->ubuf;
iov_iter_bvec(iter, ddir, imu->bvec, imu->nr_bvecs, offset + len);
if (offset) {
/*
* Don't use iov_iter_advance() here, as it's really slow for
* using the latter parts of a big fixed buffer - it iterates
* over each segment manually. We can cheat a bit here, because
* we know that:
*
* 1) it's a BVEC iter, we set it up
* 2) all bvecs are PAGE_SIZE in size, except potentially the
* first and last bvec
*
* So just find our index, and adjust the iterator afterwards.
* If the offset is within the first bvec (or the whole first
* bvec, just use iov_iter_advance(). This makes it easier
* since we can just skip the first segment, which may not
* be PAGE_SIZE aligned.
*/
const struct bio_vec *bvec = imu->bvec;
if (offset <= bvec->bv_len) {
iov_iter_advance(iter, offset);
} else {
unsigned long seg_skip;
/* skip first vec */
offset -= bvec->bv_len;
seg_skip = 1 + (offset >> PAGE_SHIFT);
iter->bvec = bvec + seg_skip;
iter->nr_segs -= seg_skip;
iter->count -= bvec->bv_len + offset;
iter->iov_offset = offset & ~PAGE_MASK;
}
}
return 0;
}