| /* |
| * Macros and functions to manipulate Meta page tables. |
| */ |
| |
| #ifndef _METAG_PGTABLE_H |
| #define _METAG_PGTABLE_H |
| |
| #include <asm/pgtable-bits.h> |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| /* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */ |
| #if PAGE_OFFSET >= LINGLOBAL_BASE |
| #define CONSISTENT_START 0xF7000000 |
| #define CONSISTENT_END 0xF73FFFFF |
| #define VMALLOC_START 0xF8000000 |
| #define VMALLOC_END 0xFFFEFFFF |
| #else |
| #define CONSISTENT_START 0x77000000 |
| #define CONSISTENT_END 0x773FFFFF |
| #define VMALLOC_START 0x78000000 |
| #define VMALLOC_END 0x7FFFFFFF |
| #endif |
| |
| /* |
| * The Linux memory management assumes a three-level page table setup. On |
| * Meta, we use that, but "fold" the mid level into the top-level page |
| * table. |
| */ |
| |
| /* PGDIR_SHIFT determines the size of the area a second-level page table can |
| * map. This is always 4MB. |
| */ |
| |
| #define PGDIR_SHIFT 22 |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * Entries per page directory level: we use a two-level, so |
| * we don't really have any PMD directory physically. First level tables |
| * always map 2Gb (local or global) at a granularity of 4MB, second-level |
| * tables map 4MB with a granularity between 4MB and 4kB (between 1 and |
| * 1024 entries). |
| */ |
| #define PTRS_PER_PTE (PGDIR_SIZE/PAGE_SIZE) |
| #define HPTRS_PER_PTE (PGDIR_SIZE/HPAGE_SIZE) |
| #define PTRS_PER_PGD 512 |
| |
| #define USER_PTRS_PER_PGD 256 |
| #define FIRST_USER_ADDRESS META_MEMORY_BASE |
| #define FIRST_USER_PGD_NR pgd_index(FIRST_USER_ADDRESS) |
| |
| #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ |
| _PAGE_CACHEABLE) |
| |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \ |
| _PAGE_ACCESSED | _PAGE_CACHEABLE) |
| #define PAGE_SHARED_C PAGE_SHARED |
| #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ |
| _PAGE_CACHEABLE) |
| #define PAGE_COPY_C PAGE_COPY |
| |
| #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ |
| _PAGE_CACHEABLE) |
| #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \ |
| _PAGE_ACCESSED | _PAGE_WRITE | \ |
| _PAGE_CACHEABLE | _PAGE_KERNEL) |
| |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY |
| #define __P100 PAGE_READONLY |
| #define __P101 PAGE_READONLY |
| #define __P110 PAGE_COPY_C |
| #define __P111 PAGE_COPY_C |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_READONLY |
| #define __S101 PAGE_READONLY |
| #define __S110 PAGE_SHARED_C |
| #define __S111 PAGE_SHARED_C |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <asm/page.h> |
| |
| /* zero page used for uninitialized stuff */ |
| extern unsigned long empty_zero_page; |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| /* Certain architectures need to do special things when pte's |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) |
| #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) |
| |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| |
| #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| |
| #define pte_none(x) (!pte_val(x)) |
| #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) |
| |
| #define pmd_none(x) (!pmd_val(x)) |
| #define pmd_bad(x) ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \ |
| != (_PAGE_TABLE & ~_PAGE_SZ_MASK)) |
| #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) |
| #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) |
| |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_special(pte_t pte) { return 0; } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
| static inline pte_t pte_mkhuge(pte_t pte) { return pte; } |
| |
| /* |
| * Macro and implementation to make a page protection as uncacheable. |
| */ |
| #define pgprot_writecombine(prot) \ |
| __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0)) |
| |
| #define pgprot_noncached(prot) \ |
| __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE) |
| |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| return pte; |
| } |
| |
| static inline unsigned long pmd_page_vaddr(pmd_t pmd) |
| { |
| unsigned long paddr = pmd_val(pmd) & PAGE_MASK; |
| if (!paddr) |
| return 0; |
| return (unsigned long)__va(paddr); |
| } |
| |
| #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) |
| #define pmd_page_shift(pmd) (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \ |
| >> _PAGE_SZ_SHIFT)) |
| #define pmd_num_ptrs(pmd) (PGDIR_SIZE >> pmd_page_shift(pmd)) |
| |
| /* |
| * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global |
| * space drop the top bit before indexing the pgd. |
| */ |
| #if PAGE_OFFSET >= LINGLOBAL_BASE |
| #define pgd_index(address) ((((address) & ~0x80000000) >> PGDIR_SHIFT) \ |
| & (PTRS_PER_PGD-1)) |
| #else |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| #endif |
| |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| |
| /* Find an entry in the second-level page table.. */ |
| #if !defined(CONFIG_HUGETLB_PAGE) |
| /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */ |
| # define pte_index(pmd, address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #else |
| /* some pages are huge, so read 1st level pt to find out */ |
| # define pte_index(pmd, address) \ |
| (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1)) |
| #endif |
| #define pte_offset_kernel(dir, address) \ |
| ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address)) |
| #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) |
| #define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address) |
| |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * Meta doesn't have any external MMU info: the kernel page |
| * tables contain all the necessary information. |
| */ |
| static inline void update_mmu_cache(struct vm_area_struct *vma, |
| unsigned long address, pte_t *pte) |
| { |
| } |
| |
| /* |
| * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e)) |
| * Since PAGE_PRESENT is bit 1, we can use the bits above that. |
| */ |
| #define __swp_type(x) (((x).val >> 1) & 0xff) |
| #define __swp_offset(x) ((x).val >> 10) |
| #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | \ |
| ((offset) << 10) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #define kern_addr_valid(addr) (1) |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| void paging_init(unsigned long mem_end); |
| |
| #ifdef CONFIG_METAG_META12 |
| /* This is a workaround for an issue in Meta 1 cores. These cores cache |
| * invalid entries in the TLB so we always need to flush whenever we add |
| * a new pte. Unfortunately we can only flush the whole TLB not shoot down |
| * single entries so this is sub-optimal. This implementation ensures that |
| * we will get a flush at the second attempt, so we may still get repeated |
| * faults, we just don't overflow the kernel stack handling them. |
| */ |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ |
| ({ \ |
| int __changed = !pte_same(*(__ptep), __entry); \ |
| if (__changed) { \ |
| set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ |
| } \ |
| flush_tlb_page(__vma, __address); \ |
| __changed; \ |
| }) |
| #endif |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _METAG_PGTABLE_H */ |