blob: 81a1fe661579d365ff82dfac8c0de06b53045110 [file] [log] [blame]
/*
comedi/drivers/s626.c
Sensoray s626 Comedi driver
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2000 David A. Schleef <ds@schleef.org>
Based on Sensoray Model 626 Linux driver Version 0.2
Copyright (C) 2002-2004 Sensoray Co., Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: s626
Description: Sensoray 626 driver
Devices: [Sensoray] 626 (s626)
Authors: Gianluca Palli <gpalli@deis.unibo.it>,
Updated: Fri, 15 Feb 2008 10:28:42 +0000
Status: experimental
Configuration options: not applicable, uses PCI auto config
INSN_CONFIG instructions:
analog input:
none
analog output:
none
digital channel:
s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
supported configuration options:
INSN_CONFIG_DIO_QUERY
COMEDI_INPUT
COMEDI_OUTPUT
encoder:
Every channel must be configured before reading.
Example code
insn.insn=INSN_CONFIG; //configuration instruction
insn.n=1; //number of operation (must be 1)
insn.data=&initialvalue; //initial value loaded into encoder
//during configuration
insn.subdev=5; //encoder subdevice
insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
//to configure
comedi_do_insn(cf,&insn); //executing configuration
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include "../comedidev.h"
#include "comedi_fc.h"
#include "s626.h"
#define PCI_VENDOR_ID_S626 0x1131
#define PCI_DEVICE_ID_S626 0x7146
#define PCI_SUBVENDOR_ID_S626 0x6000
#define PCI_SUBDEVICE_ID_S626 0x0272
struct s626_private {
void __iomem *base_addr;
uint8_t ai_cmd_running; /* ai_cmd is running */
uint8_t ai_continous; /* continous acquisition */
int ai_sample_count; /* number of samples to acquire */
unsigned int ai_sample_timer;
/* time between samples in units of the timer */
int ai_convert_count; /* conversion counter */
unsigned int ai_convert_timer;
/* time between conversion in units of the timer */
uint16_t CounterIntEnabs;
/* Counter interrupt enable mask for MISC2 register. */
uint8_t AdcItems; /* Number of items in ADC poll list. */
struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
struct bufferDMA ANABuf;
/* DMA buffer used to receive ADC data and hold DAC data. */
uint32_t *pDacWBuf;
/* Pointer to logical adrs of DMA buffer used to hold DAC data. */
uint16_t Dacpol; /* Image of DAC polarity register. */
uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
uint32_t I2CAdrs;
/* I2C device address for onboard EEPROM (board rev dependent). */
/* short I2Cards; */
unsigned int ao_readback[S626_DAC_CHANNELS];
};
struct dio_private {
uint16_t RDDIn;
uint16_t WRDOut;
uint16_t RDEdgSel;
uint16_t WREdgSel;
uint16_t RDCapSel;
uint16_t WRCapSel;
uint16_t RDCapFlg;
uint16_t RDIntSel;
uint16_t WRIntSel;
};
static struct dio_private dio_private_A = {
.RDDIn = LP_RDDINA,
.WRDOut = LP_WRDOUTA,
.RDEdgSel = LP_RDEDGSELA,
.WREdgSel = LP_WREDGSELA,
.RDCapSel = LP_RDCAPSELA,
.WRCapSel = LP_WRCAPSELA,
.RDCapFlg = LP_RDCAPFLGA,
.RDIntSel = LP_RDINTSELA,
.WRIntSel = LP_WRINTSELA,
};
static struct dio_private dio_private_B = {
.RDDIn = LP_RDDINB,
.WRDOut = LP_WRDOUTB,
.RDEdgSel = LP_RDEDGSELB,
.WREdgSel = LP_WREDGSELB,
.RDCapSel = LP_RDCAPSELB,
.WRCapSel = LP_WRCAPSELB,
.RDCapFlg = LP_RDCAPFLGB,
.RDIntSel = LP_RDINTSELB,
.WRIntSel = LP_WRINTSELB,
};
static struct dio_private dio_private_C = {
.RDDIn = LP_RDDINC,
.WRDOut = LP_WRDOUTC,
.RDEdgSel = LP_RDEDGSELC,
.WREdgSel = LP_WREDGSELC,
.RDCapSel = LP_RDCAPSELC,
.WRCapSel = LP_WRCAPSELC,
.RDCapFlg = LP_RDCAPFLGC,
.RDIntSel = LP_RDINTSELC,
.WRIntSel = LP_WRINTSELC,
};
/* to group dio devices (48 bits mask and data are not allowed ???)
static struct dio_private *dio_private_word[]={
&dio_private_A,
&dio_private_B,
&dio_private_C,
};
*/
#define diopriv ((struct dio_private *)s->private)
/* COUNTER OBJECT ------------------------------------------------ */
struct enc_private {
/* Pointers to functions that differ for A and B counters: */
uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */
uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */
uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */
uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */
void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */
void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */
uint16_t MyCRA; /* Address of CRA register. */
uint16_t MyCRB; /* Address of CRB register. */
uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
/* register. */
uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
};
#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
/* Counter overflow/index event flag masks for RDMISC2. */
#define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
#define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
/* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
/* enab/disable a function or test status bit(s) that are accessed */
/* through Main Control Registers 1 or 2. */
#define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
#define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
#define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
/* #define WR7146(REGARDS,CTRLWORD)
writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
/* #define RR7146(REGARDS)
readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
#define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
#define BUGFIX_STREG(REGADRS) (REGADRS - 4)
/* Write a time slot control record to TSL2. */
#define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
#define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
/* Code macros used for constructing I2C command bytes. */
#define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
#define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
#define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
static const struct comedi_lrange s626_range_table = { 2, {
RANGE(-5, 5),
RANGE(-10, 10),
}
};
/* Execute a DEBI transfer. This must be called from within a */
/* critical section. */
static void DEBItransfer(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
/* Initiate upload of shadow RAM to DEBI control register. */
MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
/* Wait for completion of upload from shadow RAM to DEBI control */
/* register. */
while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
;
/* Wait until DEBI transfer is done. */
while (RR7146(P_PSR) & PSR_DEBI_S)
;
}
/* Initialize the DEBI interface for all transfers. */
static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
{
struct s626_private *devpriv = dev->private;
uint16_t retval;
/* Set up DEBI control register value in shadow RAM. */
WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
/* Execute the DEBI transfer. */
DEBItransfer(dev);
/* Fetch target register value. */
retval = (uint16_t) RR7146(P_DEBIAD);
/* Return register value. */
return retval;
}
/* Write a value to a gate array register. */
static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
{
struct s626_private *devpriv = dev->private;
/* Set up DEBI control register value in shadow RAM. */
WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
WR7146(P_DEBIAD, wdata);
/* Execute the DEBI transfer. */
DEBItransfer(dev);
}
/* Replace the specified bits in a gate array register. Imports: mask
* specifies bits that are to be preserved, wdata is new value to be
* or'd with the masked original.
*/
static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
uint16_t wdata)
{
struct s626_private *devpriv = dev->private;
/* Copy target gate array register into P_DEBIAD register. */
WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
/* Set up DEBI control reg value in shadow RAM. */
DEBItransfer(dev); /* Execute the DEBI Read transfer. */
/* Write back the modified image. */
WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
/* Set up DEBI control reg value in shadow RAM. */
WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
/* Modify the register image. */
DEBItransfer(dev); /* Execute the DEBI Write transfer. */
}
/* ************** EEPROM ACCESS FUNCTIONS ************** */
static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
{
struct s626_private *devpriv = dev->private;
/* Write I2C command to I2C Transfer Control shadow register. */
WR7146(P_I2CCTRL, val);
/* Upload I2C shadow registers into working registers and wait for */
/* upload confirmation. */
MC_ENABLE(P_MC2, MC2_UPLD_IIC);
while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
;
/* Wait until I2C bus transfer is finished or an error occurs. */
while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
;
/* Return non-zero if I2C error occurred. */
return RR7146(P_I2CCTRL) & I2C_ERR;
}
/* Read uint8_t from EEPROM. */
static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
{
struct s626_private *devpriv = dev->private;
uint8_t rtnval;
/* Send EEPROM target address. */
if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
/* Byte2 = I2C command: write to I2C EEPROM device. */
| I2C_B1(I2C_ATTRSTOP, addr)
/* Byte1 = EEPROM internal target address. */
| I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
/* Abort function and declare error if handshake failed. */
return 0;
}
/* Execute EEPROM read. */
if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
/* Byte2 = I2C */
/* command: read */
/* from I2C EEPROM */
/* device. */
|I2C_B1(I2C_ATTRSTOP, 0)
/* Byte1 receives */
/* uint8_t from */
/* EEPROM. */
|I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
/* Abort function and declare error if handshake failed. */
return 0;
}
/* Return copy of EEPROM value. */
rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
return rtnval;
}
/* *********** DAC FUNCTIONS *********** */
/* Slot 0 base settings. */
#define VECT0 (XSD2 | RSD3 | SIB_A2)
/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
/* Private helper function: Transmit serial data to DAC via Audio
* channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
* Dacpol contains valid target image.
*/
static void SendDAC(struct comedi_device *dev, uint32_t val)
{
struct s626_private *devpriv = dev->private;
/* START THE SERIAL CLOCK RUNNING ------------- */
/* Assert DAC polarity control and enable gating of DAC serial clock
* and audio bit stream signals. At this point in time we must be
* assured of being in time slot 0. If we are not in slot 0, the
* serial clock and audio stream signals will be disabled; this is
* because the following DEBIwrite statement (which enables signals
* to be passed through the gate array) would execute before the
* trailing edge of WS1/WS3 (which turns off the signals), thus
* causing the signals to be inactive during the DAC write.
*/
DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
/* Copy DAC setpoint value to DAC's output DMA buffer. */
/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
*devpriv->pDacWBuf = val;
/* enab the output DMA transfer. This will cause the DMAC to copy
* the DAC's data value to A2's output FIFO. The DMA transfer will
* then immediately terminate because the protection address is
* reached upon transfer of the first DWORD value.
*/
MC_ENABLE(P_MC1, MC1_A2OUT);
/* While the DMA transfer is executing ... */
/* Reset Audio2 output FIFO's underflow flag (along with any other
* FIFO underflow/overflow flags). When set, this flag will
* indicate that we have emerged from slot 0.
*/
WR7146(P_ISR, ISR_AFOU);
/* Wait for the DMA transfer to finish so that there will be data
* available in the FIFO when time slot 1 tries to transfer a DWORD
* from the FIFO to the output buffer register. We test for DMA
* Done by polling the DMAC enable flag; this flag is automatically
* cleared when the transfer has finished.
*/
while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
;
/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
/* FIFO data is now available, so we enable execution of time slots
* 1 and higher by clearing the EOS flag in slot 0. Note that SD3
* will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
* detection.
*/
SETVECT(0, XSD2 | RSD3 | SIB_A2);
/* Wait for slot 1 to execute to ensure that the Packet will be
* transmitted. This is detected by polling the Audio2 output FIFO
* underflow flag, which will be set when slot 1 execution has
* finished transferring the DAC's data DWORD from the output FIFO
* to the output buffer register.
*/
while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
;
/* Set up to trap execution at slot 0 when the TSL sequencer cycles
* back to slot 0 after executing the EOS in slot 5. Also,
* simultaneously shift out and in the 0x00 that is ALWAYS the value
* stored in the last byte to be shifted out of the FIFO's DWORD
* buffer register.
*/
SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
/* Wait for the TSL to finish executing all time slots before
* exiting this function. We must do this so that the next DAC
* write doesn't start, thereby enabling clock/chip select signals:
*
* 1. Before the TSL sequence cycles back to slot 0, which disables
* the clock/cs signal gating and traps slot // list execution.
* we have not yet finished slot 5 then the clock/cs signals are
* still gated and we have not finished transmitting the stream.
*
* 2. While slots 2-5 are executing due to a late slot 0 trap. In
* this case, the slot sequence is currently repeating, but with
* clock/cs signals disabled. We must wait for slot 0 to trap
* execution before setting up the next DAC setpoint DMA transfer
* and enabling the clock/cs signals. To detect the end of slot 5,
* we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
* the TSL has not yet finished executing slot 5 ...
*/
if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
/* The trap was set on time and we are still executing somewhere
* in slots 2-5, so we now wait for slot 0 to execute and trap
* TSL execution. This is detected when FB_BUFFER2 MSB changes
* from 0xFF to 0x00, which slot 0 causes to happen by shifting
* out/in on SD2 the 0x00 that is always referenced by slot 5.
*/
while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
;
}
/* Either (1) we were too late setting the slot 0 trap; the TSL
* sequencer restarted slot 0 before we could set the EOS trap flag,
* or (2) we were not late and execution is now trapped at slot 0.
* In either case, we must now change slot 0 so that it will store
* value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
* In order to do this, we reprogram slot 0 so that it will shift in
* SD3, which is driven only by a pull-up resistor.
*/
SETVECT(0, RSD3 | SIB_A2 | EOS);
/* Wait for slot 0 to execute, at which time the TSL is setup for
* the next DAC write. This is detected when FB_BUFFER2 MSB changes
* from 0x00 to 0xFF.
*/
while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
;
}
/* Private helper function: Write setpoint to an application DAC channel. */
static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
{
struct s626_private *devpriv = dev->private;
register uint16_t signmask;
register uint32_t WSImage;
/* Adjust DAC data polarity and set up Polarity Control Register */
/* image. */
signmask = 1 << chan;
if (dacdata < 0) {
dacdata = -dacdata;
devpriv->Dacpol |= signmask;
} else
devpriv->Dacpol &= ~signmask;
/* Limit DAC setpoint value to valid range. */
if ((uint16_t) dacdata > 0x1FFF)
dacdata = 0x1FFF;
/* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
* and V3 transmit the setpoint to the target DAC. V4 and V5 send
* data to a non-existent TrimDac channel just to keep the clock
* running after sending data to the target DAC. This is necessary
* to eliminate the clock glitch that would otherwise occur at the
* end of the target DAC's serial data stream. When the sequence
* restarts at V0 (after executing V5), the gate array automatically
* disables gating for the DAC clock and all DAC chip selects.
*/
WSImage = (chan & 2) ? WS1 : WS2;
/* Choose DAC chip select to be asserted. */
SETVECT(2, XSD2 | XFIFO_1 | WSImage);
/* Slot 2: Transmit high data byte to target DAC. */
SETVECT(3, XSD2 | XFIFO_0 | WSImage);
/* Slot 3: Transmit low data byte to target DAC. */
SETVECT(4, XSD2 | XFIFO_3 | WS3);
/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
/* Slot 5: running after writing target DAC's low data byte. */
/* Construct and transmit target DAC's serial packet:
* ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
* and D<12:0> is the DAC setpoint. Append a WORD value (that writes
* to a non-existent TrimDac channel) that serves to keep the clock
* running after the packet has been sent to the target DAC.
*/
SendDAC(dev, 0x0F000000
/* Continue clock after target DAC data (write to non-existent trimdac). */
| 0x00004000
/* Address the two main dual-DAC devices (TSL's chip select enables
* target device). */
| ((uint32_t) (chan & 1) << 15)
/* Address the DAC channel within the device. */
| (uint32_t) dacdata); /* Include DAC setpoint data. */
}
static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
uint8_t DacData)
{
struct s626_private *devpriv = dev->private;
uint32_t chan;
/* Save the new setpoint in case the application needs to read it back later. */
devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
/* Map logical channel number to physical channel number. */
chan = (uint32_t) trimchan[LogicalChan];
/* Set up TSL2 records for TrimDac write operation. All slots shift
* 0xFF in from pulled-up SD3 so that the end of the slot sequence
* can be detected.
*/
SETVECT(2, XSD2 | XFIFO_1 | WS3);
/* Slot 2: Send high uint8_t to target TrimDac. */
SETVECT(3, XSD2 | XFIFO_0 | WS3);
/* Slot 3: Send low uint8_t to target TrimDac. */
SETVECT(4, XSD2 | XFIFO_3 | WS1);
/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
/* Slot 5: Send NOP low uint8_t to DAC0. */
/* Construct and transmit target DAC's serial packet:
* ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
* DAC channel's address, and D<7:0> is the DAC setpoint. Append a
* WORD value (that writes a channel 0 NOP command to a non-existent
* main DAC channel) that serves to keep the clock running after the
* packet has been sent to the target DAC.
*/
/* Address the DAC channel within the trimdac device. */
SendDAC(dev, ((uint32_t) chan << 8)
| (uint32_t) DacData); /* Include DAC setpoint data. */
}
static void LoadTrimDACs(struct comedi_device *dev)
{
register uint8_t i;
/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
for (i = 0; i < ARRAY_SIZE(trimchan); i++)
WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
}
/* ****** COUNTER FUNCTIONS ******* */
/* All counter functions address a specific counter by means of the
* "Counter" argument, which is a logical counter number. The Counter
* argument may have any of the following legal values: 0=0A, 1=1A,
* 2=2A, 3=0B, 4=1B, 5=2B.
*/
/* Read a counter's output latch. */
static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
{
register uint32_t value;
/* Latch counts and fetch LSW of latched counts value. */
value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
/* Fetch MSW of latched counts and combine with LSW. */
value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
/* Return latched counts. */
return value;
}
/* Return/set a counter pair's latch trigger source. 0: On read
* access, 1: A index latches A, 2: B index latches B, 3: A overflow
* latches B.
*/
static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
uint16_t value)
{
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
(uint16_t) (value << CRBBIT_LATCHSRC));
}
/* Write value into counter preload register. */
static void Preload(struct comedi_device *dev, struct enc_private *k,
uint32_t value)
{
DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);
DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
(uint16_t) (value >> 16));
}
static unsigned int s626_ai_reg_to_uint(int data)
{
unsigned int tempdata;
tempdata = (data >> 18);
if (tempdata & 0x2000)
tempdata &= 0x1fff;
else
tempdata += (1 << 13);
return tempdata;
}
/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
/* return 0; */
/* } */
static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
{
unsigned int group;
unsigned int bitmask;
unsigned int status;
/* select dio bank */
group = chan / 16;
bitmask = 1 << (chan - (16 * group));
/* set channel to capture positive edge */
status = DEBIread(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->RDEdgSel);
DEBIwrite(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->WREdgSel,
bitmask | status);
/* enable interrupt on selected channel */
status = DEBIread(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->RDIntSel);
DEBIwrite(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->WRIntSel,
bitmask | status);
/* enable edge capture write command */
DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
/* enable edge capture on selected channel */
status = DEBIread(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->RDCapSel);
DEBIwrite(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->WRCapSel,
bitmask | status);
return 0;
}
static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
unsigned int mask)
{
/* disable edge capture write command */
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
/* enable edge capture on selected channel */
DEBIwrite(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->WRCapSel, mask);
return 0;
}
static int s626_dio_clear_irq(struct comedi_device *dev)
{
unsigned int group;
/* disable edge capture write command */
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
for (group = 0; group < S626_DIO_BANKS; group++) {
/* clear pending events and interrupt */
DEBIwrite(dev,
((struct dio_private *)(dev->subdevices + 2 +
group)->private)->WRCapSel,
0xffff);
}
return 0;
}
static irqreturn_t s626_irq_handler(int irq, void *d)
{
struct comedi_device *dev = d;
struct s626_private *devpriv = dev->private;
struct comedi_subdevice *s;
struct comedi_cmd *cmd;
struct enc_private *k;
unsigned long flags;
int32_t *readaddr;
uint32_t irqtype, irqstatus;
int i = 0;
short tempdata;
uint8_t group;
uint16_t irqbit;
if (dev->attached == 0)
return IRQ_NONE;
/* lock to avoid race with comedi_poll */
spin_lock_irqsave(&dev->spinlock, flags);
/* save interrupt enable register state */
irqstatus = readl(devpriv->base_addr + P_IER);
/* read interrupt type */
irqtype = readl(devpriv->base_addr + P_ISR);
/* disable master interrupt */
writel(0, devpriv->base_addr + P_IER);
/* clear interrupt */
writel(irqtype, devpriv->base_addr + P_ISR);
switch (irqtype) {
case IRQ_RPS1: /* end_of_scan occurs */
/* manage ai subdevice */
s = dev->subdevices;
cmd = &(s->async->cmd);
/* Init ptr to DMA buffer that holds new ADC data. We skip the
* first uint16_t in the buffer because it contains junk data from
* the final ADC of the previous poll list scan.
*/
readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
/* get the data and hand it over to comedi */
for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
/* Convert ADC data to 16-bit integer values and copy to application */
/* buffer. */
tempdata = s626_ai_reg_to_uint((int)*readaddr);
readaddr++;
/* put data into read buffer */
/* comedi_buf_put(s->async, tempdata); */
if (cfc_write_to_buffer(s, tempdata) == 0)
printk
("s626_irq_handler: cfc_write_to_buffer error!\n");
}
/* end of scan occurs */
s->async->events |= COMEDI_CB_EOS;
if (!(devpriv->ai_continous))
devpriv->ai_sample_count--;
if (devpriv->ai_sample_count <= 0) {
devpriv->ai_cmd_running = 0;
/* Stop RPS program. */
MC_DISABLE(P_MC1, MC1_ERPS1);
/* send end of acquisition */
s->async->events |= COMEDI_CB_EOA;
/* disable master interrupt */
irqstatus = 0;
}
if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
/* tell comedi that data is there */
comedi_event(dev, s);
break;
case IRQ_GPIO3: /* check dio and conter interrupt */
/* manage ai subdevice */
s = dev->subdevices;
cmd = &(s->async->cmd);
/* s626_dio_clear_irq(dev); */
for (group = 0; group < S626_DIO_BANKS; group++) {
irqbit = 0;
/* read interrupt type */
irqbit = DEBIread(dev,
((struct dio_private *)(dev->
subdevices +
2 +
group)->
private)->RDCapFlg);
/* check if interrupt is generated from dio channels */
if (irqbit) {
s626_dio_reset_irq(dev, group, irqbit);
if (devpriv->ai_cmd_running) {
/* check if interrupt is an ai acquisition start trigger */
if ((irqbit >> (cmd->start_arg -
(16 * group)))
== 1 && cmd->start_src == TRIG_EXT) {
/* Start executing the RPS program. */
MC_ENABLE(P_MC1, MC1_ERPS1);
if (cmd->scan_begin_src ==
TRIG_EXT) {
s626_dio_set_irq(dev,
cmd->scan_begin_arg);
}
}
if ((irqbit >> (cmd->scan_begin_arg -
(16 * group)))
== 1
&& cmd->scan_begin_src ==
TRIG_EXT) {
/* Trigger ADC scan loop start by setting RPS Signal 0. */
MC_ENABLE(P_MC2, MC2_ADC_RPS);
if (cmd->convert_src ==
TRIG_EXT) {
devpriv->ai_convert_count
= cmd->chanlist_len;
s626_dio_set_irq(dev,
cmd->convert_arg);
}
if (cmd->convert_src ==
TRIG_TIMER) {
k = &encpriv[5];
devpriv->ai_convert_count
= cmd->chanlist_len;
k->SetEnable(dev, k,
CLKENAB_ALWAYS);
}
}
if ((irqbit >> (cmd->convert_arg -
(16 * group)))
== 1
&& cmd->convert_src == TRIG_EXT) {
/* Trigger ADC scan loop start by setting RPS Signal 0. */
MC_ENABLE(P_MC2, MC2_ADC_RPS);
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count >
0) {
s626_dio_set_irq(dev,
cmd->convert_arg);
}
}
}
break;
}
}
/* read interrupt type */
irqbit = DEBIread(dev, LP_RDMISC2);
/* check interrupt on counters */
if (irqbit & IRQ_COINT1A) {
k = &encpriv[0];
/* clear interrupt capture flag */
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT2A) {
k = &encpriv[1];
/* clear interrupt capture flag */
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT3A) {
k = &encpriv[2];
/* clear interrupt capture flag */
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT1B) {
k = &encpriv[3];
/* clear interrupt capture flag */
k->ResetCapFlags(dev, k);
}
if (irqbit & IRQ_COINT2B) {
k = &encpriv[4];
/* clear interrupt capture flag */
k->ResetCapFlags(dev, k);
if (devpriv->ai_convert_count > 0) {
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count == 0)
k->SetEnable(dev, k, CLKENAB_INDEX);
if (cmd->convert_src == TRIG_TIMER) {
/* Trigger ADC scan loop start by setting RPS Signal 0. */
MC_ENABLE(P_MC2, MC2_ADC_RPS);
}
}
}
if (irqbit & IRQ_COINT3B) {
k = &encpriv[5];
/* clear interrupt capture flag */
k->ResetCapFlags(dev, k);
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Trigger ADC scan loop start by setting RPS Signal 0. */
MC_ENABLE(P_MC2, MC2_ADC_RPS);
}
if (cmd->convert_src == TRIG_TIMER) {
k = &encpriv[4];
devpriv->ai_convert_count = cmd->chanlist_len;
k->SetEnable(dev, k, CLKENAB_ALWAYS);
}
}
}
/* enable interrupt */
writel(irqstatus, devpriv->base_addr + P_IER);
spin_unlock_irqrestore(&dev->spinlock, flags);
return IRQ_HANDLED;
}
/*
* this functions build the RPS program for hardware driven acquistion
*/
static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
{
struct s626_private *devpriv = dev->private;
register uint32_t *pRPS;
uint32_t JmpAdrs;
uint16_t i;
uint16_t n;
uint32_t LocalPPL;
struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
/* Stop RPS program in case it is currently running. */
MC_DISABLE(P_MC1, MC1_ERPS1);
/* Set starting logical address to write RPS commands. */
pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
/* Initialize RPS instruction pointer. */
WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
/* Construct RPS program in RPSBuf DMA buffer */
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
/* Wait for Start trigger. */
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
* because the first RPS DEBI Write following a non-RPS DEBI write
* seems to always fail. If we don't do this dummy write, the ADC
* gain might not be set to the value required for the first slot in
* the poll list; the ADC gain would instead remain unchanged from
* the previously programmed value.
*/
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
/* Write DEBI Write command and address to shadow RAM. */
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM: */
*pRPS++ = GSEL_BIPOLAR5V;
/* arbitrary immediate data value. */
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
/* Reset "shadow RAM uploaded" flag. */
*pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
*pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
/* Digitize all slots in the poll list. This is implemented as a
* for loop to limit the slot count to 16 in case the application
* forgot to set the EOPL flag in the final slot.
*/
for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
/* Convert application's poll list item to private board class
* format. Each app poll list item is an uint8_t with form
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
LocalPPL =
(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
/* and address to */
/* shadow RAM. */
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
/* immediate data to */
/* shadow RAM. */
*pRPS++ = LocalPPL;
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
/* flag. */
*pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
*pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
/* finish. */
/* Select ADC analog input channel. */
*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
/* Write DEBI command and address to shadow RAM. */
*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM. */
*pRPS++ = LocalPPL;
*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
/* Reset "shadow RAM uploaded" flag. */
*pRPS++ = RPS_UPLOAD | RPS_DEBI;
/* Invoke shadow RAM upload. */
*pRPS++ = RPS_PAUSE | RPS_DEBI;
/* Wait for shadow upload to finish. */
/* Delay at least 10 microseconds for analog input settling.
* Instead of padding with NOPs, we use RPS_JUMP instructions
* here; this allows us to produce a longer delay than is
* possible with NOPs because each RPS_JUMP flushes the RPS'
* instruction prefetch pipeline.
*/
JmpAdrs =
(uint32_t) devpriv->RPSBuf.PhysicalBase +
(uint32_t) ((unsigned long)pRPS -
(unsigned long)devpriv->RPSBuf.LogicalBase);
for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
JmpAdrs += 8; /* Repeat to implement time delay: */
*pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
*pRPS++ = JmpAdrs;
}
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
/* Wait for Start trigger. */
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
}
/* Start ADC by pulsing GPIO1. */
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
*pRPS++ = GPIO_BASE | GPIO1_LO;
*pRPS++ = RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
*pRPS++ = GPIO_BASE | GPIO1_HI;
/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
* busy) and for data from previous conversion to shift into FB
* BUFFER 1 register.
*/
*pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
*pRPS++ =
(uint32_t) devpriv->ANABuf.PhysicalBase +
(devpriv->AdcItems << 2);
/* If this slot's EndOfPollList flag is set, all channels have */
/* now been processed. */
if (*ppl++ & EOPL) {
devpriv->AdcItems++; /* Adjust poll list item count. */
break; /* Exit poll list processing loop. */
}
}
/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
* ADC to stabilize for 2 microseconds before starting the final
* (dummy) conversion. This delay is necessary to allow sufficient
* time between last conversion finished and the start of the dummy
* conversion. Without this delay, the last conversion's data value
* is sometimes set to the previous conversion's data value.
*/
for (n = 0; n < (2 * RPSCLK_PER_US); n++)
*pRPS++ = RPS_NOP;
/* Start a dummy conversion to cause the data from the last
* conversion of interest to be shifted in.
*/
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
*pRPS++ = GPIO_BASE | GPIO1_LO;
*pRPS++ = RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
*pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
*pRPS++ = GPIO_BASE | GPIO1_HI;
/* Wait for the data from the last conversion of interest to arrive
* in FB BUFFER 1 register.
*/
*pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
*pRPS++ =
(uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
/* Indicate ADC scan loop is finished. */
/* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
/* invoke interrupt */
if (devpriv->ai_cmd_running == 1) {
*pRPS++ = RPS_IRQ;
}
/* Restart RPS program at its beginning. */
*pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
/* End of RPS program build */
}
/* TO COMPLETE, IF NECESSARY */
static int s626_ai_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
return -EINVAL;
}
/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
/* { */
/* struct s626_private *devpriv = dev->private; */
/* register uint8_t i; */
/* register int32_t *readaddr; */
/* Trigger ADC scan loop start by setting RPS Signal 0. */
/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
/* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
/* Init ptr to DMA buffer that holds new ADC data. We skip the
* first uint16_t in the buffer because it contains junk data from
* the final ADC of the previous poll list scan.
*/
/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
/* Convert ADC data to 16-bit integer values and copy to application buffer. */
/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
/* data++; */
/* } */
/* return i; */
/* } */
static int s626_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct s626_private *devpriv = dev->private;
uint16_t chan = CR_CHAN(insn->chanspec);
uint16_t range = CR_RANGE(insn->chanspec);
uint16_t AdcSpec = 0;
uint32_t GpioImage;
int n;
/* interrupt call test */
/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
/* Writing a logical 1 into any of the RPS_PSR bits causes the
* corresponding interrupt to be generated if enabled
*/
/* Convert application's ADC specification into form
* appropriate for register programming.
*/
if (range == 0)
AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
else
AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
/* Select ADC analog input channel. */
DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
for (n = 0; n < insn->n; n++) {
/* Delay 10 microseconds for analog input settling. */
udelay(10);
/* Start ADC by pulsing GPIO1 low. */
GpioImage = RR7146(P_GPIO);
/* Assert ADC Start command */
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
/* and stretch it out. */
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
/* Negate ADC Start command. */
WR7146(P_GPIO, GpioImage | GPIO1_HI);
/* Wait for ADC to complete (GPIO2 is asserted high when */
/* ADC not busy) and for data from previous conversion to */
/* shift into FB BUFFER 1 register. */
/* Wait for ADC done. */
while (!(RR7146(P_PSR) & PSR_GPIO2))
;
/* Fetch ADC data. */
if (n != 0)
data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
/* Allow the ADC to stabilize for 4 microseconds before
* starting the next (final) conversion. This delay is
* necessary to allow sufficient time between last
* conversion finished and the start of the next
* conversion. Without this delay, the last conversion's
* data value is sometimes set to the previous
* conversion's data value.
*/
udelay(4);
}
/* Start a dummy conversion to cause the data from the
* previous conversion to be shifted in. */
GpioImage = RR7146(P_GPIO);
/* Assert ADC Start command */
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
/* and stretch it out. */
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
/* Negate ADC Start command. */
WR7146(P_GPIO, GpioImage | GPIO1_HI);
/* Wait for the data to arrive in FB BUFFER 1 register. */
/* Wait for ADC done. */
while (!(RR7146(P_PSR) & PSR_GPIO2))
;
/* Fetch ADC data from audio interface's input shift register. */
/* Fetch ADC data. */
if (n != 0)
data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
return n;
}
static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
{
int n;
for (n = 0; n < cmd->chanlist_len; n++) {
if (CR_RANGE((cmd->chanlist)[n]) == 0)
ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
else
ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
}
if (n != 0)
ppl[n - 1] |= EOPL;
return n;
}
static int s626_ai_inttrig(struct comedi_device *dev,
struct comedi_subdevice *s, unsigned int trignum)
{
struct s626_private *devpriv = dev->private;
if (trignum != 0)
return -EINVAL;
/* Start executing the RPS program. */
MC_ENABLE(P_MC1, MC1_ERPS1);
s->async->inttrig = NULL;
return 1;
}
/* This function doesn't require a particular form, this is just what
* happens to be used in some of the drivers. It should convert ns
* nanoseconds to a counter value suitable for programming the device.
* Also, it should adjust ns so that it cooresponds to the actual time
* that the device will use. */
static int s626_ns_to_timer(int *nanosec, int round_mode)
{
int divider, base;
base = 500; /* 2MHz internal clock */
switch (round_mode) {
case TRIG_ROUND_NEAREST:
default:
divider = (*nanosec + base / 2) / base;
break;
case TRIG_ROUND_DOWN:
divider = (*nanosec) / base;
break;
case TRIG_ROUND_UP:
divider = (*nanosec + base - 1) / base;
break;
}
*nanosec = base * divider;
return divider - 1;
}
static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
int tick)
{
uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
/* index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
(CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB);
uint16_t valueSrclatch = LATCHSRC_A_INDXA;
/* uint16_t enab=CLKENAB_ALWAYS; */
k->SetMode(dev, k, Setup, FALSE);
/* Set the preload register */
Preload(dev, k, tick);
/* Software index pulse forces the preload register to load */
/* into the counter */
k->SetLoadTrig(dev, k, 0);
k->PulseIndex(dev, k);
/* set reload on counter overflow */
k->SetLoadTrig(dev, k, 1);
/* set interrupt on overflow */
k->SetIntSrc(dev, k, INTSRC_OVER);
SetLatchSource(dev, k, valueSrclatch);
/* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
}
/* TO COMPLETE */
static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct s626_private *devpriv = dev->private;
uint8_t ppl[16];
struct comedi_cmd *cmd = &s->async->cmd;
struct enc_private *k;
int tick;
if (devpriv->ai_cmd_running) {
printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n",
dev->minor);
return -EBUSY;
}
/* disable interrupt */
writel(0, devpriv->base_addr + P_IER);
/* clear interrupt request */
writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
/* clear any pending interrupt */
s626_dio_clear_irq(dev);
/* s626_enc_clear_irq(dev); */
/* reset ai_cmd_running flag */
devpriv->ai_cmd_running = 0;
/* test if cmd is valid */
if (cmd == NULL)
return -EINVAL;
if (dev->irq == 0) {
comedi_error(dev,
"s626_ai_cmd: cannot run command without an irq");
return -EIO;
}
s626_ai_load_polllist(ppl, cmd);
devpriv->ai_cmd_running = 1;
devpriv->ai_convert_count = 0;
switch (cmd->scan_begin_src) {
case TRIG_FOLLOW:
break;
case TRIG_TIMER:
/* set a conter to generate adc trigger at scan_begin_arg interval */
k = &encpriv[5];
tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
/* load timer value and enable interrupt */
s626_timer_load(dev, k, tick);
k->SetEnable(dev, k, CLKENAB_ALWAYS);
break;
case TRIG_EXT:
/* set the digital line and interrupt for scan trigger */
if (cmd->start_src != TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
break;
}
switch (cmd->convert_src) {
case TRIG_NOW:
break;
case TRIG_TIMER:
/* set a conter to generate adc trigger at convert_arg interval */
k = &encpriv[4];
tick = s626_ns_to_timer((int *)&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
/* load timer value and enable interrupt */
s626_timer_load(dev, k, tick);
k->SetEnable(dev, k, CLKENAB_INDEX);
break;
case TRIG_EXT:
/* set the digital line and interrupt for convert trigger */
if (cmd->scan_begin_src != TRIG_EXT
&& cmd->start_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->convert_arg);
break;
}
switch (cmd->stop_src) {
case TRIG_COUNT:
/* data arrives as one packet */
devpriv->ai_sample_count = cmd->stop_arg;
devpriv->ai_continous = 0;
break;
case TRIG_NONE:
/* continous acquisition */
devpriv->ai_continous = 1;
devpriv->ai_sample_count = 0;
break;
}
ResetADC(dev, ppl);
switch (cmd->start_src) {
case TRIG_NOW:
/* Trigger ADC scan loop start by setting RPS Signal 0. */
/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
/* Start executing the RPS program. */
MC_ENABLE(P_MC1, MC1_ERPS1);
s->async->inttrig = NULL;
break;
case TRIG_EXT:
/* configure DIO channel for acquisition trigger */
s626_dio_set_irq(dev, cmd->start_arg);
s->async->inttrig = NULL;
break;
case TRIG_INT:
s->async->inttrig = s626_ai_inttrig;
break;
}
/* enable interrupt */
writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
return 0;
}
static int s626_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
int err = 0;
int tmp;
/* Step 1 : check if triggers are trivially valid */
err |= cfc_check_trigger_src(&cmd->start_src,
TRIG_NOW | TRIG_INT | TRIG_EXT);
err |= cfc_check_trigger_src(&cmd->scan_begin_src,
TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
err |= cfc_check_trigger_src(&cmd->convert_src,
TRIG_TIMER | TRIG_EXT | TRIG_NOW);
err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
if (err)
return 1;
/* Step 2a : make sure trigger sources are unique */
err |= cfc_check_trigger_is_unique(cmd->start_src);
err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
err |= cfc_check_trigger_is_unique(cmd->convert_src);
err |= cfc_check_trigger_is_unique(cmd->stop_src);
/* Step 2b : and mutually compatible */
if (err)
return 2;
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_src != TRIG_EXT)
err |= cfc_check_trigger_arg_is(&cmd->start_arg, 0);
if (cmd->start_src == TRIG_EXT)
err |= cfc_check_trigger_arg_max(&cmd->start_arg, 39);
if (cmd->scan_begin_src == TRIG_EXT)
err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
if (cmd->convert_src == TRIG_EXT)
err |= cfc_check_trigger_arg_max(&cmd->convert_arg, 39);
#define MAX_SPEED 200000 /* in nanoseconds */
#define MIN_SPEED 2000000000 /* in nanoseconds */
if (cmd->scan_begin_src == TRIG_TIMER) {
err |= cfc_check_trigger_arg_min(&cmd->scan_begin_arg,
MAX_SPEED);
err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg,
MIN_SPEED);
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
/* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
}
if (cmd->convert_src == TRIG_TIMER) {
err |= cfc_check_trigger_arg_min(&cmd->convert_arg, MAX_SPEED);
err |= cfc_check_trigger_arg_max(&cmd->convert_arg, MIN_SPEED);
} else {
/* external trigger */
/* see above */
/* err |= cfc_check_trigger_arg_max(&cmd->scan_begin_arg, 9); */
}
err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);
if (cmd->stop_src == TRIG_COUNT)
err |= cfc_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff);
else /* TRIG_NONE */
err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp = cmd->scan_begin_arg;
s626_ns_to_timer((int *)&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->scan_begin_arg)
err++;
}
if (cmd->convert_src == TRIG_TIMER) {
tmp = cmd->convert_arg;
s626_ns_to_timer((int *)&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->convert_arg)
err++;
if (cmd->scan_begin_src == TRIG_TIMER &&
cmd->scan_begin_arg <
cmd->convert_arg * cmd->scan_end_arg) {
cmd->scan_begin_arg =
cmd->convert_arg * cmd->scan_end_arg;
err++;
}
}
if (err)
return 4;
return 0;
}
static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct s626_private *devpriv = dev->private;
/* Stop RPS program in case it is currently running. */
MC_DISABLE(P_MC1, MC1_ERPS1);
/* disable master interrupt */
writel(0, devpriv->base_addr + P_IER);
devpriv->ai_cmd_running = 0;
return 0;
}
static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct s626_private *devpriv = dev->private;
int i;
uint16_t chan = CR_CHAN(insn->chanspec);
int16_t dacdata;
for (i = 0; i < insn->n; i++) {
dacdata = (int16_t) data[i];
devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
dacdata -= (0x1fff);
SetDAC(dev, chan, dacdata);
}
return i;
}
static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct s626_private *devpriv = dev->private;
int i;
for (i = 0; i < insn->n; i++)
data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
return i;
}
/* *************** DIGITAL I/O FUNCTIONS ***************
* All DIO functions address a group of DIO channels by means of
* "group" argument. group may be 0, 1 or 2, which correspond to DIO
* ports A, B and C, respectively.
*/
static void s626_dio_init(struct comedi_device *dev)
{
uint16_t group;
struct comedi_subdevice *s;
/* Prepare to treat writes to WRCapSel as capture disables. */
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
/* For each group of sixteen channels ... */
for (group = 0; group < S626_DIO_BANKS; group++) {
s = dev->subdevices + 2 + group;
DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
/* captures. */
DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
/* default edge */
/* polarity. */
DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
/* to inactive state. */
}
}
/* DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The comedi
* core can convert between insn_bits and insn_read/write */
static int s626_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
/*
* The insn data consists of a mask in data[0] and the new data in
* data[1]. The mask defines which bits we are concerning about.
* The new data must be anded with the mask. Each channel
* corresponds to a bit.
*/
if (data[0]) {
/* Check if requested ports are configured for output */
if ((s->io_bits & data[0]) != data[0])
return -EIO;
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */
DEBIwrite(dev, diopriv->WRDOut, s->state);
}
data[1] = DEBIread(dev, diopriv->RDDIn);
return insn->n;
}
static int s626_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
switch (data[0]) {
case INSN_CONFIG_DIO_QUERY:
data[1] =
(s->
io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
COMEDI_INPUT;
return insn->n;
break;
case COMEDI_INPUT:
s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
break;
case COMEDI_OUTPUT:
s->io_bits |= 1 << CR_CHAN(insn->chanspec);
break;
default:
return -EINVAL;
break;
}
DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
return 1;
}
/* Now this function initializes the value of the counter (data[0])
and set the subdevice. To complete with trigger and interrupt
configuration */
/* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
* what is being configured, but this function appears to be using data[0]
* as a variable. */
static int s626_enc_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
/* index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
/* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB);
/* uint16_t DisableIntSrc=TRUE; */
/* uint32_t Preloadvalue; //Counter initial value */
uint16_t valueSrclatch = LATCHSRC_AB_READ;
uint16_t enab = CLKENAB_ALWAYS;
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
k->SetMode(dev, k, Setup, TRUE);
Preload(dev, k, data[0]);
k->PulseIndex(dev, k);
SetLatchSource(dev, k, valueSrclatch);
k->SetEnable(dev, k, (uint16_t) (enab != 0));
return insn->n;
}
static int s626_enc_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int n;
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
for (n = 0; n < insn->n; n++)
data[n] = ReadLatch(dev, k);
return n;
}
static int s626_enc_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
/* Set the preload register */
Preload(dev, k, data[0]);
/* Software index pulse forces the preload register to load */
/* into the counter */
k->SetLoadTrig(dev, k, 0);
k->PulseIndex(dev, k);
k->SetLoadTrig(dev, k, 2);
return 1;
}
static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
{
DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
/* MISC2 register. */
DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
}
static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
size_t bsize)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
void *vbptr;
dma_addr_t vpptr;
if (pdma == NULL)
return;
/* find the matching allocation from the board struct */
vbptr = pdma->LogicalBase;
vpptr = pdma->PhysicalBase;
if (vbptr) {
pci_free_consistent(pcidev, bsize, vbptr, vpptr);
pdma->LogicalBase = NULL;
pdma->PhysicalBase = 0;
}
}
/* ****** PRIVATE COUNTER FUNCTIONS ****** */
/* Reset a counter's index and overflow event capture flags. */
static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
{
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
}
static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
{
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
}
/* Return counter setup in a format (COUNTER_SETUP) that is consistent */
/* for both A and B counters. */
static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
{
register uint16_t cra;
register uint16_t crb;
register uint16_t setup;
/* Fetch CRA and CRB register images. */
cra = DEBIread(dev, k->MyCRA);
crb = DEBIread(dev, k->MyCRB);
/* Populate the standardized counter setup bit fields. Note: */
/* IndexSrc is restricted to ENC_X or IndxPol. */
setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
|((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
|((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
|((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
|((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
|((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
/* Adjust mode-dependent parameters. */
if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
|((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
|(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
else /* If Counter mode (ClkSrcA<1> == 0): */
setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
|((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
|(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
(MULT_X1 << STDBIT_CLKMULT) :
((cra >> (CRABIT_CLKMULT_A -
STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
/* Return adjusted counter setup. */
return setup;
}
static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
{
register uint16_t cra;
register uint16_t crb;
register uint16_t setup;
/* Fetch CRA and CRB register images. */
cra = DEBIread(dev, k->MyCRA);
crb = DEBIread(dev, k->MyCRB);
/* Populate the standardized counter setup bit fields. Note: */
/* IndexSrc is restricted to ENC_X or IndxPol. */
setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
|((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
|((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
|((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
|((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
|((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
/* Adjust mode-dependent parameters. */
if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
|(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
|((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
|(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
|((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
else /* If Counter mode (ClkSrcB<1> == 0): */
setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
|((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
|((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
/* Return adjusted counter setup. */
return setup;
}
/*
* Set the operating mode for the specified counter. The setup
* parameter is treated as a COUNTER_SETUP data type. The following
* parameters are programmable (all other parms are ignored): ClkMult,
* ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
*/
static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
uint16_t Setup, uint16_t DisableIntSrc)
{
struct s626_private *devpriv = dev->private;
register uint16_t cra;
register uint16_t crb;
register uint16_t setup = Setup; /* Cache the Standard Setup. */
/* Initialize CRA and CRB images. */
cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
|((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
/* Force IntSrc to Disabled if DisableIntSrc is asserted. */
if (!DisableIntSrc)
cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRABIT_INTSRC_A));
/* Populate all mode-dependent attributes of CRA & CRB images. */
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
/* (Extender valid only for B counters). */
case CLKSRC_TIMER: /* Timer Mode: */
cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
|((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
|(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
|(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
break;
default: /* Counter Mode: */
cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
|(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
(MULT_X1 << CRABIT_CLKMULT_A) :
((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
STDBIT_CLKMULT))));
}
/* Force positive index polarity if IndxSrc is software-driven only, */
/* otherwise pass it through. */
if (~setup & STDMSK_INDXSRC)
cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
STDBIT_INDXPOL));
/* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
/* enable mask to indicate the counter interrupt is disabled. */
if (DisableIntSrc)
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
/* While retaining CounterB and LatchSrc configurations, program the */
/* new counter operating mode. */
DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
}
static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
uint16_t Setup, uint16_t DisableIntSrc)
{
struct s626_private *devpriv = dev->private;
register uint16_t cra;
register uint16_t crb;
register uint16_t setup = Setup; /* Cache the Standard Setup. */
/* Initialize CRA and CRB images. */
cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
|((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
/* Force IntSrc to Disabled if DisableIntSrc is asserted. */
if (!DisableIntSrc)
crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRBBIT_INTSRC_B));
/* Populate all mode-dependent attributes of CRA & CRB images. */
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
case CLKSRC_TIMER: /* Timer Mode: */
cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
|((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
|(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
break;
case CLKSRC_EXTENDER: /* Extender Mode: */
cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
|((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
|(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
break;
default: /* Counter Mode: */
cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
|(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
(MULT_X1 << CRBBIT_CLKMULT_B) :
((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
STDBIT_CLKMULT))));
}
/* Force positive index polarity if IndxSrc is software-driven only, */
/* otherwise pass it through. */
if (~setup & STDMSK_INDXSRC)
crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
CRBBIT_INDXPOL_B));
/* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
/* enable mask to indicate the counter interrupt is disabled. */
if (DisableIntSrc)
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
/* While retaining CounterA and LatchSrc configurations, program the */
/* new counter operating mode. */
DEBIreplace(dev, k->MyCRA,
(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
}
/* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
uint16_t enab)
{
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
(uint16_t) (enab << CRBBIT_CLKENAB_A));
}
static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
uint16_t enab)
{
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
(uint16_t) (enab << CRBBIT_CLKENAB_B));
}
static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
}
static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
}
/*
* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
* {
* return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
* }
*/
/*
* Return/set the event that will trigger transfer of the preload
* register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
* 2=OverflowA (B counters only), 3=disabled.
*/
static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
uint16_t Trig)
{
DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
(uint16_t) (Trig << CRABIT_LOADSRC_A));
}
static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
uint16_t Trig)
{
DEBIreplace(dev, k->MyCRB,
(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
(uint16_t) (Trig << CRBBIT_LOADSRC_B));
}
static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
{
return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
}
static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
}
/* Return/set counter interrupt source and clear any captured
* index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
* 2=IndexOnly, 3=IndexAndOverflow.
*/
static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
uint16_t IntSource)
{
struct s626_private *devpriv = dev->private;
/* Reset any pending counter overflow or index captures. */
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
/* Program counter interrupt source. */
DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
(uint16_t) (IntSource << CRABIT_INTSRC_A));
/* Update MISC2 interrupt enable mask. */
devpriv->CounterIntEnabs =
(devpriv->CounterIntEnabs & ~k->
MyEventBits[3]) | k->MyEventBits[IntSource];
}
static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
uint16_t IntSource)
{
struct s626_private *devpriv = dev->private;
uint16_t crb;
/* Cache writeable CRB register image. */
crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
/* Reset any pending counter overflow or index captures. */
DEBIwrite(dev, k->MyCRB,
(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
/* Program counter interrupt source. */
DEBIwrite(dev, k->MyCRB,
(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
CRBBIT_INTSRC_B)));
/* Update MISC2 interrupt enable mask. */
devpriv->CounterIntEnabs =
(devpriv->CounterIntEnabs & ~k->
MyEventBits[3]) | k->MyEventBits[IntSource];
}
static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
{
return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
}
static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
{
return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
}
/* Return/set the clock multiplier. */
/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
/* } */
/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
/* } */
/* Return/set the clock polarity. */
/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
/* } */
/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
/* } */
/* Return/set the clock source. */
/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
/* } */
/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
/* } */
/* Return/set the index polarity. */
/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
/* } */
/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
/* } */
/* Return/set the index source. */
/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
/* { */
/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
/* } */
/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
/* { */
/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
/* } */
/* Generate an index pulse. */
static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
{
register uint16_t cra;
cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
DEBIwrite(dev, k->MyCRA, cra);
}
static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
{
register uint16_t crb;
crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
DEBIwrite(dev, k->MyCRB, crb);
}
static struct enc_private enc_private_data[] = {
{
.GetEnable = GetEnable_A,
.GetIntSrc = GetIntSrc_A,
.GetLoadTrig = GetLoadTrig_A,
.GetMode = GetMode_A,
.PulseIndex = PulseIndex_A,
.SetEnable = SetEnable_A,
.SetIntSrc = SetIntSrc_A,
.SetLoadTrig = SetLoadTrig_A,
.SetMode = SetMode_A,
.ResetCapFlags = ResetCapFlags_A,
.MyCRA = LP_CR0A,
.MyCRB = LP_CR0B,
.MyLatchLsw = LP_CNTR0ALSW,
.MyEventBits = EVBITS(0),
}, {
.GetEnable = GetEnable_A,
.GetIntSrc = GetIntSrc_A,
.GetLoadTrig = GetLoadTrig_A,
.GetMode = GetMode_A,
.PulseIndex = PulseIndex_A,
.SetEnable = SetEnable_A,
.SetIntSrc = SetIntSrc_A,
.SetLoadTrig = SetLoadTrig_A,
.SetMode = SetMode_A,
.ResetCapFlags = ResetCapFlags_A,
.MyCRA = LP_CR1A,
.MyCRB = LP_CR1B,
.MyLatchLsw = LP_CNTR1ALSW,
.MyEventBits = EVBITS(1),
}, {
.GetEnable = GetEnable_A,
.GetIntSrc = GetIntSrc_A,
.GetLoadTrig = GetLoadTrig_A,
.GetMode = GetMode_A,
.PulseIndex = PulseIndex_A,
.SetEnable = SetEnable_A,
.SetIntSrc = SetIntSrc_A,
.SetLoadTrig = SetLoadTrig_A,
.SetMode = SetMode_A,
.ResetCapFlags = ResetCapFlags_A,
.MyCRA = LP_CR2A,
.MyCRB = LP_CR2B,
.MyLatchLsw = LP_CNTR2ALSW,
.MyEventBits = EVBITS(2),
}, {
.GetEnable = GetEnable_B,
.GetIntSrc = GetIntSrc_B,
.GetLoadTrig = GetLoadTrig_B,
.GetMode = GetMode_B,
.PulseIndex = PulseIndex_B,
.SetEnable = SetEnable_B,
.SetIntSrc = SetIntSrc_B,
.SetLoadTrig = SetLoadTrig_B,
.SetMode = SetMode_B,
.ResetCapFlags = ResetCapFlags_B,
.MyCRA = LP_CR0A,
.MyCRB = LP_CR0B,
.MyLatchLsw = LP_CNTR0BLSW,
.MyEventBits = EVBITS(3),
}, {
.GetEnable = GetEnable_B,
.GetIntSrc = GetIntSrc_B,
.GetLoadTrig = GetLoadTrig_B,
.GetMode = GetMode_B,
.PulseIndex = PulseIndex_B,
.SetEnable = SetEnable_B,
.SetIntSrc = SetIntSrc_B,
.SetLoadTrig = SetLoadTrig_B,
.SetMode = SetMode_B,
.ResetCapFlags = ResetCapFlags_B,
.MyCRA = LP_CR1A,
.MyCRB = LP_CR1B,
.MyLatchLsw = LP_CNTR1BLSW,
.MyEventBits = EVBITS(4),
}, {
.GetEnable = GetEnable_B,
.GetIntSrc = GetIntSrc_B,
.GetLoadTrig = GetLoadTrig_B,
.GetMode = GetMode_B,
.PulseIndex = PulseIndex_B,
.SetEnable = SetEnable_B,
.SetIntSrc = SetIntSrc_B,
.SetLoadTrig = SetLoadTrig_B,
.SetMode = SetMode_B,
.ResetCapFlags = ResetCapFlags_B,
.MyCRA = LP_CR2A,
.MyCRB = LP_CR2B,
.MyLatchLsw = LP_CNTR2BLSW,
.MyEventBits = EVBITS(5),
},
};
static void CountersInit(struct comedi_device *dev)
{
int chan;
struct enc_private *k;
uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
/* index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
(CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
/* Disable all counter interrupts and clear any captured counter events. */
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
k = &encpriv[chan];
k->SetMode(dev, k, Setup, TRUE);
k->SetIntSrc(dev, k, 0);
k->ResetCapFlags(dev, k);
k->SetEnable(dev, k, CLKENAB_ALWAYS);
}
}
static int s626_allocate_dma_buffers(struct comedi_device *dev)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct s626_private *devpriv = dev->private;
void *addr;
dma_addr_t appdma;
addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
if (!addr)
return -ENOMEM;
devpriv->ANABuf.LogicalBase = addr;
devpriv->ANABuf.PhysicalBase = appdma;
addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
if (!addr)
return -ENOMEM;
devpriv->RPSBuf.LogicalBase = addr;
devpriv->RPSBuf.PhysicalBase = appdma;
return 0;
}
static void s626_initialize(struct comedi_device *dev)
{
struct s626_private *devpriv = dev->private;
dma_addr_t pPhysBuf;
uint16_t chan;
int i;
/* Enable DEBI and audio pins, enable I2C interface */
MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
/*
* Configure DEBI operating mode
*
* Local bus is 16 bits wide
* Declare DEBI transfer timeout interval
* Set up byte lane steering
* Intel-compatible local bus (DEBI never times out)
*/
WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 |
(DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
DEBI_SWAP | DEBI_CFG_INTEL);
/* Disable MMU paging */
WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);
/* Init GPIO so that ADC Start* is negated */
WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
/* I2C device address for onboard eeprom (revb) */
devpriv->I2CAdrs = 0xA0;
/*
* Issue an I2C ABORT command to halt any I2C
* operation in progress and reset BUSY flag.
*/
WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
MC_ENABLE(P_MC2, MC2_UPLD_IIC);
while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
;
/*
* Per SAA7146 data sheet, write to STATUS
* reg twice to reset all I2C error flags.
*/
for (i = 0; i < 2; i++) {
WR7146(P_I2CSTAT, I2C_CLKSEL);
MC_ENABLE(P_MC2, MC2_UPLD_IIC);
while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
;
}
/*
* Init audio interface functional attributes: set DAC/ADC
* serial clock rates, invert DAC serial clock so that
* DAC data setup times are satisfied, enable DAC serial
* clock out.
*/
WR7146(P_ACON2, ACON2_INIT);
/*
* Set up TSL1 slot list, which is used to control the
* accumulation of ADC data: RSD1 = shift data in on SD1.
* SIB_A1 = store data uint8_t at next available location
* in FB BUFFER1 register.
*/
WR7146(P_TSL1, RSD1 | SIB_A1);
WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
/* Enable TSL1 slot list so that it executes all the time */
WR7146(P_ACON1, ACON1_ADCSTART);
/*
* Initialize RPS registers used for ADC
*/
/* Physical start of RPS program */
WR7146(P_RPSADDR1, (uint32_t)devpriv->RPSBuf.PhysicalBase);
/* RPS program performs no explicit mem writes */
WR7146(P_RPSPAGE1, 0);
/* Disable RPS timeouts */
WR7146(P_RPS1_TOUT, 0);
#if 0
/*
* SAA7146 BUG WORKAROUND
*
* Initialize SAA7146 ADC interface to a known state by
* invoking ADCs until FB BUFFER 1 register shows that it
* is correctly receiving ADC data. This is necessary
* because the SAA7146 ADC interface does not start up in
* a defined state after a PCI reset.
*/
{
uint8_t PollList;
uint16_t AdcData;
uint16_t StartVal;
uint16_t index;
unsigned int data[16];
/* Create a simple polling list for analog input channel 0 */
PollList = EOPL;
ResetADC(dev, &PollList);
/* Get initial ADC value */
s626_ai_rinsn(dev, dev->subdevices, NULL, data);
StartVal = data[0];
/*
* VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION.
*
* Invoke ADCs until the new ADC value differs from the initial
* value or a timeout occurs. The timeout protects against the
* possibility that the driver is restarting and the ADC data is a
* fixed value resulting from the applied ADC analog input being
* unusually quiet or at the rail.
*/
for (index = 0; index < 500; index++) {
s626_ai_rinsn(dev, dev->subdevices, NULL, data);
AdcData = data[0];
if (AdcData != StartVal)
break;
}
}
#endif /* SAA7146 BUG WORKAROUND */
/*
* Initialize the DAC interface
*/
/*
* Init Audio2's output DMAC attributes:
* burst length = 1 DWORD
* threshold = 1 DWORD.
*/
WR7146(P_PCI_BT_A, 0);
/*
* Init Audio2's output DMA physical addresses. The protection
* address is set to 1 DWORD past the base address so that a
* single DWORD will be transferred each time a DMA transfer is
* enabled.
*/
pPhysBuf = devpriv->ANABuf.PhysicalBase +
(DAC_WDMABUF_OS * sizeof(uint32_t));
WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);
WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));
/*
* Cache Audio2's output DMA buffer logical address. This is
* where DAC data is buffered for A2 output DMA transfers.
*/
devpriv->pDacWBuf = (uint32_t *)devpriv->ANABuf.LogicalBase +
DAC_WDMABUF_OS;
/*
* Audio2's output channels does not use paging. The
* protection violation handling bit is set so that the
* DMAC will automatically halt and its PCI address pointer
* will be reset when the protection address is reached.
*/
WR7146(P_PAGEA2_OUT, 8);
/*
* Initialize time slot list 2 (TSL2), which is used to control
* the clock generation for and serialization of data to be sent
* to the DAC devices. Slot 0 is a NOP that is used to trap TSL
* execution; this permits other slots to be safely modified
* without first turning off the TSL sequencer (which is
* apparently impossible to do). Also, SD3 (which is driven by a
* pull-up resistor) is shifted in and stored to the MSB of
* FB_BUFFER2 to be used as evidence that the slot sequence has
* not yet finished executing.
*/
/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
/*
* Initialize slot 1, which is constant. Slot 1 causes a
* DWORD to be transferred from audio channel 2's output FIFO
* to the FIFO's output buffer so that it can be serialized
* and sent to the DAC during subsequent slots. All remaining
* slots are dynamically populated as required by the target
* DAC device.
*/
/* Slot 1: Fetch DWORD from Audio2's output FIFO */
SETVECT(1, LF_A2);
/* Start DAC's audio interface (TSL2) running */
WR7146(P_ACON1, ACON1_DACSTART);
/*
* Init Trim DACs to calibrated values. Do it twice because the
* SAA7146 audio channel does not always reset properly and
* sometimes causes the first few TrimDAC writes to malfunction.
*/
LoadTrimDACs(dev);
LoadTrimDACs(dev);
/*
* Manually init all gate array hardware in case this is a soft
* reset (we have no way of determining whether this is a warm
* or cold start). This is necessary because the gate array will
* reset only in response to a PCI hard reset; there is no soft
* reset function.
*/
/*
* Init all DAC outputs to 0V and init all DAC setpoint and
* polarity images.
*/
for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
SetDAC(dev, chan, 0);
/* Init counters */
CountersInit(dev);
/*
* Without modifying the state of the Battery Backup enab, disable
* the watchdog timer, set DIO channels 0-5 to operate in the
* standard DIO (vs. counter overflow) mode, disable the battery
* charger, and reset the watchdog interval selector to zero.
*/
WriteMISC2(dev, (uint16_t)(DEBIread(dev, LP_RDMISC2) &
MISC2_BATT_ENABLE));
/* Initialize the digital I/O subsystem */
s626_dio_init(dev);
/* enable interrupt test */
/* writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); */
}
static int s626_auto_attach(struct comedi_device *dev,
unsigned long context_unused)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct s626_private *devpriv;
struct comedi_subdevice *s;
int ret;
dev->board_name = dev->driver->driver_name;
devpriv = kzalloc(sizeof(*devpriv), GFP_KERNEL);
if (!devpriv)
return -ENOMEM;
dev->private = devpriv;
ret = comedi_pci_enable(pcidev, dev->board_name);
if (ret)
return ret;
dev->iobase = 1; /* detach needs this */
devpriv->base_addr = ioremap(pci_resource_start(pcidev, 0),
pci_resource_len(pcidev, 0));
if (!devpriv->base_addr)
return -ENOMEM;
/* disable master interrupt */
writel(0, devpriv->base_addr + P_IER);
/* soft reset */
writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
/* DMA FIXME DMA// */
ret = s626_allocate_dma_buffers(dev);
if (ret)
return ret;
if (pcidev->irq) {
ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
dev->board_name, dev);
if (ret == 0)
dev->irq = pcidev->irq;
}
ret = comedi_alloc_subdevices(dev, 6);
if (ret)
return ret;
s = dev->subdevices + 0;
/* analog input subdevice */
dev->read_subdev = s;
/* we support single-ended (ground) and differential */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
s->n_chan = S626_ADC_CHANNELS;
s->maxdata = (0xffff >> 2);
s->range_table = &s626_range_table;
s->len_chanlist = S626_ADC_CHANNELS;
s->insn_config = s626_ai_insn_config;
s->insn_read = s626_ai_insn_read;
s->do_cmd = s626_ai_cmd;
s->do_cmdtest = s626_ai_cmdtest;
s->cancel = s626_ai_cancel;
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = S626_DAC_CHANNELS;
s->maxdata = (0x3fff);
s->range_table = &range_bipolar10;
s->insn_write = s626_ao_winsn;
s->insn_read = s626_ao_rinsn;
s = dev->subdevices + 2;
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = &dio_private_A;
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = dev->subdevices + 3;
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = &dio_private_B;
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = dev->subdevices + 4;
/* digital I/O subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
s->n_chan = 16;
s->maxdata = 1;
s->io_bits = 0xffff;
s->private = &dio_private_C;
s->range_table = &range_digital;
s->insn_config = s626_dio_insn_config;
s->insn_bits = s626_dio_insn_bits;
s = dev->subdevices + 5;
/* encoder (counter) subdevice */
s->type = COMEDI_SUBD_COUNTER;
s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
s->n_chan = S626_ENCODER_CHANNELS;
s->private = enc_private_data;
s->insn_config = s626_enc_insn_config;
s->insn_read = s626_enc_insn_read;
s->insn_write = s626_enc_insn_write;
s->maxdata = 0xffffff;
s->range_table = &range_unknown;
s626_initialize(dev);
dev_info(dev->class_dev, "%s attached\n", dev->board_name);
return 0;
}
static void s626_detach(struct comedi_device *dev)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct s626_private *devpriv = dev->private;
if (devpriv) {
/* stop ai_command */
devpriv->ai_cmd_running = 0;
if (devpriv->base_addr) {
/* interrupt mask */
WR7146(P_IER, 0); /* Disable master interrupt. */
WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
/* Disable the watchdog timer and battery charger. */
WriteMISC2(dev, 0);
/* Close all interfaces on 7146 device. */
WR7146(P_MC1, MC1_SHUTDOWN);
WR7146(P_ACON1, ACON1_BASE);
CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
}
if (dev->irq)
free_irq(dev->irq, dev);
if (devpriv->base_addr)
iounmap(devpriv->base_addr);
}
if (pcidev) {
if (dev->iobase)
comedi_pci_disable(pcidev);
}
}
static struct comedi_driver s626_driver = {
.driver_name = "s626",
.module = THIS_MODULE,
.auto_attach = s626_auto_attach,
.detach = s626_detach,
};
static int s626_pci_probe(struct pci_dev *dev,
const struct pci_device_id *ent)
{
return comedi_pci_auto_config(dev, &s626_driver);
}
/*
* For devices with vendor:device id == 0x1131:0x7146 you must specify
* also subvendor:subdevice ids, because otherwise it will conflict with
* Philips SAA7146 media/dvb based cards.
*/
static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
{ PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
PCI_SUBVENDOR_ID_S626, PCI_SUBDEVICE_ID_S626, 0, 0, 0 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, s626_pci_table);
static struct pci_driver s626_pci_driver = {
.name = "s626",
.id_table = s626_pci_table,
.probe = s626_pci_probe,
.remove = comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(s626_driver, s626_pci_driver);
MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
MODULE_LICENSE("GPL");