| // SPDX-License-Identifier: GPL-2.0 |
| |
| //! Types and functions to work with pointers and addresses. |
| |
| use core::fmt::Debug; |
| use core::mem::align_of; |
| use core::num::NonZero; |
| |
| use crate::build_assert; |
| |
| /// Type representing an alignment, which is always a power of two. |
| /// |
| /// It is used to validate that a given value is a valid alignment, and to perform masking and |
| /// alignment operations. |
| /// |
| /// This is a temporary substitute for the [`Alignment`] nightly type from the standard library, |
| /// and to be eventually replaced by it. |
| /// |
| /// [`Alignment`]: https://github.com/rust-lang/rust/issues/102070 |
| /// |
| /// # Invariants |
| /// |
| /// An alignment is always a power of two. |
| #[repr(transparent)] |
| #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| pub struct Alignment(NonZero<usize>); |
| |
| impl Alignment { |
| /// Validates that `ALIGN` is a power of two at build-time, and returns an [`Alignment`] of the |
| /// same value. |
| /// |
| /// A build error is triggered if `ALIGN` is not a power of two. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::Alignment; |
| /// |
| /// let v = Alignment::new::<16>(); |
| /// assert_eq!(v.as_usize(), 16); |
| /// ``` |
| #[inline(always)] |
| pub const fn new<const ALIGN: usize>() -> Self { |
| build_assert!( |
| ALIGN.is_power_of_two(), |
| "Provided alignment is not a power of two." |
| ); |
| |
| // INVARIANT: `align` is a power of two. |
| // SAFETY: `align` is a power of two, and thus non-zero. |
| Self(unsafe { NonZero::new_unchecked(ALIGN) }) |
| } |
| |
| /// Validates that `align` is a power of two at runtime, and returns an |
| /// [`Alignment`] of the same value. |
| /// |
| /// Returns [`None`] if `align` is not a power of two. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::Alignment; |
| /// |
| /// assert_eq!(Alignment::new_checked(16), Some(Alignment::new::<16>())); |
| /// assert_eq!(Alignment::new_checked(15), None); |
| /// assert_eq!(Alignment::new_checked(1), Some(Alignment::new::<1>())); |
| /// assert_eq!(Alignment::new_checked(0), None); |
| /// ``` |
| #[inline(always)] |
| pub const fn new_checked(align: usize) -> Option<Self> { |
| if align.is_power_of_two() { |
| // INVARIANT: `align` is a power of two. |
| // SAFETY: `align` is a power of two, and thus non-zero. |
| Some(Self(unsafe { NonZero::new_unchecked(align) })) |
| } else { |
| None |
| } |
| } |
| |
| /// Returns the alignment of `T`. |
| /// |
| /// This is equivalent to [`align_of`], but with the return value provided as an [`Alignment`]. |
| #[inline(always)] |
| pub const fn of<T>() -> Self { |
| #![allow(clippy::incompatible_msrv)] |
| // This cannot panic since alignments are always powers of two. |
| // |
| // We unfortunately cannot use `new` as it would require the `generic_const_exprs` feature. |
| const { Alignment::new_checked(align_of::<T>()).unwrap() } |
| } |
| |
| /// Returns this alignment as a [`usize`]. |
| /// |
| /// It is guaranteed to be a power of two. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::Alignment; |
| /// |
| /// assert_eq!(Alignment::new::<16>().as_usize(), 16); |
| /// ``` |
| #[inline(always)] |
| pub const fn as_usize(self) -> usize { |
| self.as_nonzero().get() |
| } |
| |
| /// Returns this alignment as a [`NonZero`]. |
| /// |
| /// It is guaranteed to be a power of two. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::Alignment; |
| /// |
| /// assert_eq!(Alignment::new::<16>().as_nonzero().get(), 16); |
| /// ``` |
| #[inline(always)] |
| pub const fn as_nonzero(self) -> NonZero<usize> { |
| // Allow the compiler to know that the value is indeed a power of two. This can help |
| // optimize some operations down the line, like e.g. replacing divisions by bit shifts. |
| if !self.0.is_power_of_two() { |
| // SAFETY: Per the invariants, `self.0` is always a power of two so this block will |
| // never be reached. |
| unsafe { core::hint::unreachable_unchecked() } |
| } |
| self.0 |
| } |
| |
| /// Returns the base-2 logarithm of the alignment. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::Alignment; |
| /// |
| /// assert_eq!(Alignment::of::<u8>().log2(), 0); |
| /// assert_eq!(Alignment::new::<16>().log2(), 4); |
| /// ``` |
| #[inline(always)] |
| pub const fn log2(self) -> u32 { |
| self.0.ilog2() |
| } |
| |
| /// Returns the mask for this alignment. |
| /// |
| /// This is equivalent to `!(self.as_usize() - 1)`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::Alignment; |
| /// |
| /// assert_eq!(Alignment::new::<0x10>().mask(), !0xf); |
| /// ``` |
| #[inline(always)] |
| pub const fn mask(self) -> usize { |
| // No underflow can occur as the alignment is guaranteed to be a power of two, and thus is |
| // non-zero. |
| !(self.as_usize() - 1) |
| } |
| } |
| |
| /// Trait for items that can be aligned against an [`Alignment`]. |
| pub trait Alignable: Sized { |
| /// Aligns `self` down to `alignment`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::{Alignable, Alignment}; |
| /// |
| /// assert_eq!(0x2f_usize.align_down(Alignment::new::<0x10>()), 0x20); |
| /// assert_eq!(0x30usize.align_down(Alignment::new::<0x10>()), 0x30); |
| /// assert_eq!(0xf0u8.align_down(Alignment::new::<0x1000>()), 0x0); |
| /// ``` |
| fn align_down(self, alignment: Alignment) -> Self; |
| |
| /// Aligns `self` up to `alignment`, returning `None` if aligning would result in an overflow. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use kernel::ptr::{Alignable, Alignment}; |
| /// |
| /// assert_eq!(0x4fusize.align_up(Alignment::new::<0x10>()), Some(0x50)); |
| /// assert_eq!(0x40usize.align_up(Alignment::new::<0x10>()), Some(0x40)); |
| /// assert_eq!(0x0usize.align_up(Alignment::new::<0x10>()), Some(0x0)); |
| /// assert_eq!(u8::MAX.align_up(Alignment::new::<0x10>()), None); |
| /// assert_eq!(0x10u8.align_up(Alignment::new::<0x100>()), None); |
| /// assert_eq!(0x0u8.align_up(Alignment::new::<0x100>()), Some(0x0)); |
| /// ``` |
| fn align_up(self, alignment: Alignment) -> Option<Self>; |
| } |
| |
| /// Implement [`Alignable`] for unsigned integer types. |
| macro_rules! impl_alignable_uint { |
| ($($t:ty),*) => { |
| $( |
| impl Alignable for $t { |
| #[inline(always)] |
| fn align_down(self, alignment: Alignment) -> Self { |
| // The operands of `&` need to be of the same type so convert the alignment to |
| // `Self`. This means we need to compute the mask ourselves. |
| ::core::num::NonZero::<Self>::try_from(alignment.as_nonzero()) |
| .map(|align| self & !(align.get() - 1)) |
| // An alignment larger than `Self` always aligns down to `0`. |
| .unwrap_or(0) |
| } |
| |
| #[inline(always)] |
| fn align_up(self, alignment: Alignment) -> Option<Self> { |
| let aligned_down = self.align_down(alignment); |
| if self == aligned_down { |
| Some(aligned_down) |
| } else { |
| Self::try_from(alignment.as_usize()) |
| .ok() |
| .and_then(|align| aligned_down.checked_add(align)) |
| } |
| } |
| } |
| )* |
| }; |
| } |
| |
| impl_alignable_uint!(u8, u16, u32, u64, usize); |