blob: 394a4c7e46abcc8c39eba6c71128f03375b5f556 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 MaxLinear, Inc.
*
* This driver is a hardware monitoring driver for PVT controller
* (MR75203) which is used to configure & control Moortec embedded
* analog IP to enable multiple embedded temperature sensor(TS),
* voltage monitor(VM) & process detector(PD) modules.
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/units.h>
/* PVT Common register */
#define PVT_IP_CONFIG 0x04
#define TS_NUM_MSK GENMASK(4, 0)
#define TS_NUM_SFT 0
#define PD_NUM_MSK GENMASK(12, 8)
#define PD_NUM_SFT 8
#define VM_NUM_MSK GENMASK(20, 16)
#define VM_NUM_SFT 16
#define CH_NUM_MSK GENMASK(31, 24)
#define CH_NUM_SFT 24
#define VM_NUM_MAX (VM_NUM_MSK >> VM_NUM_SFT)
/* Macro Common Register */
#define CLK_SYNTH 0x00
#define CLK_SYNTH_LO_SFT 0
#define CLK_SYNTH_HI_SFT 8
#define CLK_SYNTH_HOLD_SFT 16
#define CLK_SYNTH_EN BIT(24)
#define CLK_SYS_CYCLES_MAX 514
#define CLK_SYS_CYCLES_MIN 2
#define SDIF_DISABLE 0x04
#define SDIF_STAT 0x08
#define SDIF_BUSY BIT(0)
#define SDIF_LOCK BIT(1)
#define SDIF_W 0x0c
#define SDIF_PROG BIT(31)
#define SDIF_WRN_W BIT(27)
#define SDIF_WRN_R 0x00
#define SDIF_ADDR_SFT 24
#define SDIF_HALT 0x10
#define SDIF_CTRL 0x14
#define SDIF_SMPL_CTRL 0x20
/* TS & PD Individual Macro Register */
#define COM_REG_SIZE 0x40
#define SDIF_DONE(n) (COM_REG_SIZE + 0x14 + 0x40 * (n))
#define SDIF_SMPL_DONE BIT(0)
#define SDIF_DATA(n) (COM_REG_SIZE + 0x18 + 0x40 * (n))
#define SAMPLE_DATA_MSK GENMASK(15, 0)
#define HILO_RESET(n) (COM_REG_SIZE + 0x2c + 0x40 * (n))
/* VM Individual Macro Register */
#define VM_COM_REG_SIZE 0x200
#define VM_SDIF_DONE(vm) (VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
#define VM_SDIF_DATA(vm, ch) \
(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
/* SDA Slave Register */
#define IP_CTRL 0x00
#define IP_RST_REL BIT(1)
#define IP_RUN_CONT BIT(3)
#define IP_AUTO BIT(8)
#define IP_VM_MODE BIT(10)
#define IP_CFG 0x01
#define CFG0_MODE_2 BIT(0)
#define CFG0_PARALLEL_OUT 0
#define CFG0_12_BIT 0
#define CFG1_VOL_MEAS_MODE 0
#define CFG1_PARALLEL_OUT 0
#define CFG1_14_BIT 0
#define IP_DATA 0x03
#define IP_POLL 0x04
#define VM_CH_INIT BIT(20)
#define VM_CH_REQ BIT(21)
#define IP_TMR 0x05
#define POWER_DELAY_CYCLE_256 0x100
#define POWER_DELAY_CYCLE_64 0x40
#define PVT_POLL_DELAY_US 20
#define PVT_POLL_TIMEOUT_US 20000
#define PVT_CONV_BITS 10
#define PVT_N_CONST 90
#define PVT_R_CONST 245805
#define PVT_TEMP_MIN_mC -40000
#define PVT_TEMP_MAX_mC 125000
/* Temperature coefficients for series 5 */
#define PVT_SERIES5_H_CONST 200000
#define PVT_SERIES5_G_CONST 60000
#define PVT_SERIES5_J_CONST -100
#define PVT_SERIES5_CAL5_CONST 4094
/* Temperature coefficients for series 6 */
#define PVT_SERIES6_H_CONST 249400
#define PVT_SERIES6_G_CONST 57400
#define PVT_SERIES6_J_CONST 0
#define PVT_SERIES6_CAL5_CONST 4096
#define TEMPERATURE_SENSOR_SERIES_5 5
#define TEMPERATURE_SENSOR_SERIES_6 6
#define PRE_SCALER_X1 1
#define PRE_SCALER_X2 2
/**
* struct voltage_device - VM single input parameters.
* @vm_map: Map channel number to VM index.
* @ch_map: Map channel number to channel index.
* @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
* result.
*
* The structure provides mapping between channel-number (0..N-1) to VM-index
* (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
* It also provides normalization factor for the VM equation.
*/
struct voltage_device {
u32 vm_map;
u32 ch_map;
u32 pre_scaler;
};
/**
* struct voltage_channels - VM channel count.
* @total: Total number of channels in all VMs.
* @max: Maximum number of channels among all VMs.
*
* The structure provides channel count information across all VMs.
*/
struct voltage_channels {
u32 total;
u8 max;
};
struct temp_coeff {
u32 h;
u32 g;
u32 cal5;
s32 j;
};
struct pvt_device {
struct regmap *c_map;
struct regmap *t_map;
struct regmap *p_map;
struct regmap *v_map;
struct clk *clk;
struct reset_control *rst;
struct dentry *dbgfs_dir;
struct voltage_device *vd;
struct voltage_channels vm_channels;
struct temp_coeff ts_coeff;
u32 t_num;
u32 p_num;
u32 v_num;
u32 ip_freq;
};
static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct pvt_device *pvt = file->private_data;
unsigned int len;
char buf[13];
len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
static ssize_t pvt_ts_coeff_j_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct pvt_device *pvt = file->private_data;
int ret;
ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
if (ret)
return ret;
return count;
}
static const struct file_operations pvt_ts_coeff_j_fops = {
.read = pvt_ts_coeff_j_read,
.write = pvt_ts_coeff_j_write,
.open = simple_open,
.owner = THIS_MODULE,
.llseek = default_llseek,
};
static void devm_pvt_ts_dbgfs_remove(void *data)
{
struct pvt_device *pvt = (struct pvt_device *)data;
debugfs_remove_recursive(pvt->dbgfs_dir);
pvt->dbgfs_dir = NULL;
}
static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
{
pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
&pvt->ts_coeff.h);
debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
&pvt->ts_coeff.g);
debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
&pvt->ts_coeff.cal5);
debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
&pvt_ts_coeff_j_fops);
return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
}
static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
if (attr == hwmon_temp_input)
return 0444;
break;
case hwmon_in:
if (attr == hwmon_in_input)
return 0444;
break;
default:
break;
}
return 0;
}
static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
{
/*
* Convert the register value to degrees centigrade temperature:
* T = G + H * (n / cal5 - 0.5) + J * F
*/
struct temp_coeff *ts_coeff = &pvt->ts_coeff;
s64 tmp = ts_coeff->g +
div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
ts_coeff->h / 2 +
div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
}
static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
{
struct pvt_device *pvt = dev_get_drvdata(dev);
struct regmap *t_map = pvt->t_map;
u32 stat, nbs;
int ret;
switch (attr) {
case hwmon_temp_input:
ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
stat, stat & SDIF_SMPL_DONE,
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
if (ret < 0)
return ret;
nbs &= SAMPLE_DATA_MSK;
/*
* Convert the register value to
* degrees centigrade temperature
*/
*val = pvt_calc_temp(pvt, nbs);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
{
struct pvt_device *pvt = dev_get_drvdata(dev);
struct regmap *v_map = pvt->v_map;
u32 n, stat, pre_scaler;
u8 vm_idx, ch_idx;
int ret;
if (channel >= pvt->vm_channels.total)
return -EINVAL;
vm_idx = pvt->vd[channel].vm_map;
ch_idx = pvt->vd[channel].ch_map;
switch (attr) {
case hwmon_in_input:
ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
stat, stat & SDIF_SMPL_DONE,
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
if (ret < 0)
return ret;
n &= SAMPLE_DATA_MSK;
pre_scaler = pvt->vd[channel].pre_scaler;
/*
* Convert the N bitstream count into voltage.
* To support negative voltage calculation for 64bit machines
* n must be cast to long, since n and *val differ both in
* signedness and in size.
* Division is used instead of right shift, because for signed
* numbers, the sign bit is used to fill the vacated bit
* positions, and if the number is negative, 1 is used.
* BIT(x) may not be used instead of (1 << x) because it's
* unsigned.
*/
*val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
(1 << PVT_CONV_BITS);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return pvt_read_temp(dev, attr, channel, val);
case hwmon_in:
return pvt_read_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static struct hwmon_channel_info pvt_temp = {
.type = hwmon_temp,
};
static struct hwmon_channel_info pvt_in = {
.type = hwmon_in,
};
static const struct hwmon_ops pvt_hwmon_ops = {
.is_visible = pvt_is_visible,
.read = pvt_read,
};
static struct hwmon_chip_info pvt_chip_info = {
.ops = &pvt_hwmon_ops,
};
static int pvt_init(struct pvt_device *pvt)
{
u16 sys_freq, key, middle, low = 4, high = 8;
struct regmap *t_map = pvt->t_map;
struct regmap *p_map = pvt->p_map;
struct regmap *v_map = pvt->v_map;
u32 t_num = pvt->t_num;
u32 p_num = pvt->p_num;
u32 v_num = pvt->v_num;
u32 clk_synth, val;
int ret;
sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
while (high >= low) {
middle = (low + high + 1) / 2;
key = DIV_ROUND_CLOSEST(sys_freq, middle);
if (key > CLK_SYS_CYCLES_MAX) {
low = middle + 1;
continue;
} else if (key < CLK_SYS_CYCLES_MIN) {
high = middle - 1;
continue;
} else {
break;
}
}
/*
* The system supports 'clk_sys' to 'clk_ip' frequency ratios
* from 2:1 to 512:1
*/
key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
(key >> 1) << CLK_SYNTH_HI_SFT |
(key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
if (t_num) {
ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(t_map, SDIF_HALT, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
if (ret < 0)
return ret;
ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
IP_CTRL << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if (ret < 0)
return ret;
}
if (p_num) {
ret = regmap_write(p_map, SDIF_HALT, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
if (ret < 0)
return ret;
ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
if (ret < 0)
return ret;
}
if (v_num) {
ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(v_map, SDIF_HALT, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
if (ret < 0)
return ret;
ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
IP_CTRL << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
}
return 0;
}
static struct regmap_config pvt_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
};
static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
struct pvt_device *pvt)
{
struct device *dev = &pdev->dev;
struct regmap **reg_map;
void __iomem *io_base;
if (!strcmp(reg_name, "common"))
reg_map = &pvt->c_map;
else if (!strcmp(reg_name, "ts"))
reg_map = &pvt->t_map;
else if (!strcmp(reg_name, "pd"))
reg_map = &pvt->p_map;
else if (!strcmp(reg_name, "vm"))
reg_map = &pvt->v_map;
else
return -EINVAL;
io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
if (IS_ERR(io_base))
return PTR_ERR(io_base);
pvt_regmap_config.name = reg_name;
*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
if (IS_ERR(*reg_map)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(*reg_map);
}
return 0;
}
static void pvt_reset_control_assert(void *data)
{
struct pvt_device *pvt = data;
reset_control_assert(pvt->rst);
}
static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
{
int ret;
ret = reset_control_deassert(pvt->rst);
if (ret)
return ret;
return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
}
static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
u32 vm_num, u32 ch_num, u8 *vm_idx)
{
u8 vm_active_ch[VM_NUM_MAX];
int ret, i, j, k;
ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
vm_active_ch, vm_num);
if (ret) {
/*
* Incase "moortec,vm-active-channels" property is not defined,
* we assume each VM sensor has all of its channels active.
*/
memset(vm_active_ch, ch_num, vm_num);
pvt->vm_channels.max = ch_num;
pvt->vm_channels.total = ch_num * vm_num;
} else {
for (i = 0; i < vm_num; i++) {
if (vm_active_ch[i] > ch_num) {
dev_err(dev, "invalid active channels: %u\n",
vm_active_ch[i]);
return -EINVAL;
}
pvt->vm_channels.total += vm_active_ch[i];
if (vm_active_ch[i] > pvt->vm_channels.max)
pvt->vm_channels.max = vm_active_ch[i];
}
}
/*
* Map between the channel-number to VM-index and channel-index.
* Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
* vm_map = [0 0 0 0 0 1 1 2 2 2 2]
* ch_map = [0 1 2 3 4 0 1 0 1 2 3]
*/
pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
GFP_KERNEL);
if (!pvt->vd)
return -ENOMEM;
k = 0;
for (i = 0; i < vm_num; i++) {
for (j = 0; j < vm_active_ch[i]; j++) {
pvt->vd[k].vm_map = vm_idx[i];
pvt->vd[k].ch_map = j;
k++;
}
}
return 0;
}
static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
{
u8 *pre_scaler_ch_list;
int i, ret, num_ch;
u32 channel;
/* Set default pre-scaler value to be 1. */
for (i = 0; i < pvt->vm_channels.total; i++)
pvt->vd[i].pre_scaler = PRE_SCALER_X1;
/* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
if (num_ch <= 0)
return 0;
pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
GFP_KERNEL);
if (!pre_scaler_ch_list)
return -ENOMEM;
/* Get list of all channels that have pre-scaler of 2. */
ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
pre_scaler_ch_list, num_ch);
if (ret)
goto out;
for (i = 0; i < num_ch; i++) {
channel = pre_scaler_ch_list[i];
pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
}
out:
kfree(pre_scaler_ch_list);
return ret;
}
static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
{
struct temp_coeff *ts_coeff = &pvt->ts_coeff;
u32 series;
int ret;
/* Incase ts-series property is not defined, use default 5. */
ret = device_property_read_u32(dev, "moortec,ts-series", &series);
if (ret)
series = TEMPERATURE_SENSOR_SERIES_5;
switch (series) {
case TEMPERATURE_SENSOR_SERIES_5:
ts_coeff->h = PVT_SERIES5_H_CONST;
ts_coeff->g = PVT_SERIES5_G_CONST;
ts_coeff->j = PVT_SERIES5_J_CONST;
ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
break;
case TEMPERATURE_SENSOR_SERIES_6:
ts_coeff->h = PVT_SERIES6_H_CONST;
ts_coeff->g = PVT_SERIES6_G_CONST;
ts_coeff->j = PVT_SERIES6_J_CONST;
ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
break;
default:
dev_err(dev, "invalid temperature sensor series (%u)\n",
series);
return -EINVAL;
}
dev_dbg(dev, "temperature sensor series = %u\n", series);
/* Override ts-coeff-h/g/j/cal5 if they are defined. */
device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
return 0;
}
static int mr75203_probe(struct platform_device *pdev)
{
u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
const struct hwmon_channel_info **pvt_info;
struct device *dev = &pdev->dev;
u32 *temp_config, *in_config;
struct device *hwmon_dev;
struct pvt_device *pvt;
int ret;
pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
if (!pvt)
return -ENOMEM;
ret = pvt_get_regmap(pdev, "common", pvt);
if (ret)
return ret;
pvt->clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(pvt->clk))
return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(pvt->rst))
return dev_err_probe(dev, PTR_ERR(pvt->rst),
"failed to get reset control\n");
if (pvt->rst) {
ret = pvt_reset_control_deassert(dev, pvt);
if (ret)
return dev_err_probe(dev, ret,
"cannot deassert reset control\n");
}
ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
if (ret < 0)
return ret;
ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
pvt->t_num = ts_num;
pvt->p_num = pd_num;
pvt->v_num = vm_num;
val = 0;
if (ts_num)
val++;
if (vm_num)
val++;
if (!val)
return -ENODEV;
pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
if (!pvt_info)
return -ENOMEM;
pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
index = 1;
if (ts_num) {
ret = pvt_get_regmap(pdev, "ts", pvt);
if (ret)
return ret;
ret = pvt_set_temp_coeff(dev, pvt);
if (ret)
return ret;
temp_config = devm_kcalloc(dev, ts_num + 1,
sizeof(*temp_config), GFP_KERNEL);
if (!temp_config)
return -ENOMEM;
memset32(temp_config, HWMON_T_INPUT, ts_num);
pvt_temp.config = temp_config;
pvt_info[index++] = &pvt_temp;
pvt_ts_dbgfs_create(pvt, dev);
}
if (pd_num) {
ret = pvt_get_regmap(pdev, "pd", pvt);
if (ret)
return ret;
}
if (vm_num) {
u8 vm_idx[VM_NUM_MAX];
ret = pvt_get_regmap(pdev, "vm", pvt);
if (ret)
return ret;
ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
vm_num);
if (ret) {
/*
* Incase intel,vm-map property is not defined, we
* assume incremental channel numbers.
*/
for (i = 0; i < vm_num; i++)
vm_idx[i] = i;
} else {
for (i = 0; i < vm_num; i++)
if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
pvt->v_num = i;
vm_num = i;
break;
}
}
ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
if (ret)
return ret;
ret = pvt_get_pre_scaler(dev, pvt);
if (ret)
return ret;
in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
sizeof(*in_config), GFP_KERNEL);
if (!in_config)
return -ENOMEM;
memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
in_config[pvt->vm_channels.total] = 0;
pvt_in.config = in_config;
pvt_info[index++] = &pvt_in;
}
ret = pvt_init(pvt);
if (ret) {
dev_err(dev, "failed to init pvt: %d\n", ret);
return ret;
}
pvt_chip_info.info = pvt_info;
hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
pvt,
&pvt_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct of_device_id moortec_pvt_of_match[] = {
{ .compatible = "moortec,mr75203" },
{ }
};
MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
static struct platform_driver moortec_pvt_driver = {
.driver = {
.name = "moortec-pvt",
.of_match_table = moortec_pvt_of_match,
},
.probe = mr75203_probe,
};
module_platform_driver(moortec_pvt_driver);
MODULE_LICENSE("GPL v2");