blob: 83f15fe411b3f4834b20ea588146dfe913a850d0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Jacob Shin <jacob.shin@amd.com>
*/
#include <linux/perf_event.h>
#include <linux/percpu.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufeature.h>
#include <linux/smp.h>
#include <asm/perf_event.h>
#include <asm/msr.h>
#define NUM_COUNTERS_NB 4
#define NUM_COUNTERS_L2 4
#define NUM_COUNTERS_L3 6
#define RDPMC_BASE_NB 6
#define RDPMC_BASE_LLC 10
#define COUNTER_SHIFT 16
#undef pr_fmt
#define pr_fmt(fmt) "amd_uncore: " fmt
static int pmu_version;
static int num_counters_llc;
static int num_counters_nb;
static bool l3_mask;
static HLIST_HEAD(uncore_unused_list);
struct amd_uncore {
int id;
int refcnt;
int cpu;
int num_counters;
int rdpmc_base;
u32 msr_base;
cpumask_t *active_mask;
struct pmu *pmu;
struct perf_event **events;
struct hlist_node node;
};
static struct amd_uncore * __percpu *amd_uncore_nb;
static struct amd_uncore * __percpu *amd_uncore_llc;
static struct pmu amd_nb_pmu;
static struct pmu amd_llc_pmu;
static cpumask_t amd_nb_active_mask;
static cpumask_t amd_llc_active_mask;
static bool is_nb_event(struct perf_event *event)
{
return event->pmu->type == amd_nb_pmu.type;
}
static bool is_llc_event(struct perf_event *event)
{
return event->pmu->type == amd_llc_pmu.type;
}
static struct amd_uncore *event_to_amd_uncore(struct perf_event *event)
{
if (is_nb_event(event) && amd_uncore_nb)
return *per_cpu_ptr(amd_uncore_nb, event->cpu);
else if (is_llc_event(event) && amd_uncore_llc)
return *per_cpu_ptr(amd_uncore_llc, event->cpu);
return NULL;
}
static void amd_uncore_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
u64 prev, new;
s64 delta;
/*
* since we do not enable counter overflow interrupts,
* we do not have to worry about prev_count changing on us
*/
prev = local64_read(&hwc->prev_count);
rdpmcl(hwc->event_base_rdpmc, new);
local64_set(&hwc->prev_count, new);
delta = (new << COUNTER_SHIFT) - (prev << COUNTER_SHIFT);
delta >>= COUNTER_SHIFT;
local64_add(delta, &event->count);
}
static void amd_uncore_start(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (flags & PERF_EF_RELOAD)
wrmsrl(hwc->event_base, (u64)local64_read(&hwc->prev_count));
hwc->state = 0;
wrmsrl(hwc->config_base, (hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE));
perf_event_update_userpage(event);
}
static void amd_uncore_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
wrmsrl(hwc->config_base, hwc->config);
hwc->state |= PERF_HES_STOPPED;
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
amd_uncore_read(event);
hwc->state |= PERF_HES_UPTODATE;
}
}
static int amd_uncore_add(struct perf_event *event, int flags)
{
int i;
struct amd_uncore *uncore = event_to_amd_uncore(event);
struct hw_perf_event *hwc = &event->hw;
/* are we already assigned? */
if (hwc->idx != -1 && uncore->events[hwc->idx] == event)
goto out;
for (i = 0; i < uncore->num_counters; i++) {
if (uncore->events[i] == event) {
hwc->idx = i;
goto out;
}
}
/* if not, take the first available counter */
hwc->idx = -1;
for (i = 0; i < uncore->num_counters; i++) {
if (cmpxchg(&uncore->events[i], NULL, event) == NULL) {
hwc->idx = i;
break;
}
}
out:
if (hwc->idx == -1)
return -EBUSY;
hwc->config_base = uncore->msr_base + (2 * hwc->idx);
hwc->event_base = uncore->msr_base + 1 + (2 * hwc->idx);
hwc->event_base_rdpmc = uncore->rdpmc_base + hwc->idx;
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
/*
* The first four DF counters are accessible via RDPMC index 6 to 9
* followed by the L3 counters from index 10 to 15. For processors
* with more than four DF counters, the DF RDPMC assignments become
* discontiguous as the additional counters are accessible starting
* from index 16.
*/
if (is_nb_event(event) && hwc->idx >= NUM_COUNTERS_NB)
hwc->event_base_rdpmc += NUM_COUNTERS_L3;
if (flags & PERF_EF_START)
amd_uncore_start(event, PERF_EF_RELOAD);
return 0;
}
static void amd_uncore_del(struct perf_event *event, int flags)
{
int i;
struct amd_uncore *uncore = event_to_amd_uncore(event);
struct hw_perf_event *hwc = &event->hw;
amd_uncore_stop(event, PERF_EF_UPDATE);
for (i = 0; i < uncore->num_counters; i++) {
if (cmpxchg(&uncore->events[i], event, NULL) == event)
break;
}
hwc->idx = -1;
}
/*
* Return a full thread and slice mask unless user
* has provided them
*/
static u64 l3_thread_slice_mask(u64 config)
{
if (boot_cpu_data.x86 <= 0x18)
return ((config & AMD64_L3_SLICE_MASK) ? : AMD64_L3_SLICE_MASK) |
((config & AMD64_L3_THREAD_MASK) ? : AMD64_L3_THREAD_MASK);
/*
* If the user doesn't specify a threadmask, they're not trying to
* count core 0, so we enable all cores & threads.
* We'll also assume that they want to count slice 0 if they specify
* a threadmask and leave sliceid and enallslices unpopulated.
*/
if (!(config & AMD64_L3_F19H_THREAD_MASK))
return AMD64_L3_F19H_THREAD_MASK | AMD64_L3_EN_ALL_SLICES |
AMD64_L3_EN_ALL_CORES;
return config & (AMD64_L3_F19H_THREAD_MASK | AMD64_L3_SLICEID_MASK |
AMD64_L3_EN_ALL_CORES | AMD64_L3_EN_ALL_SLICES |
AMD64_L3_COREID_MASK);
}
static int amd_uncore_event_init(struct perf_event *event)
{
struct amd_uncore *uncore;
struct hw_perf_event *hwc = &event->hw;
u64 event_mask = AMD64_RAW_EVENT_MASK_NB;
if (event->attr.type != event->pmu->type)
return -ENOENT;
if (pmu_version >= 2 && is_nb_event(event))
event_mask = AMD64_PERFMON_V2_RAW_EVENT_MASK_NB;
/*
* NB and Last level cache counters (MSRs) are shared across all cores
* that share the same NB / Last level cache. On family 16h and below,
* Interrupts can be directed to a single target core, however, event
* counts generated by processes running on other cores cannot be masked
* out. So we do not support sampling and per-thread events via
* CAP_NO_INTERRUPT, and we do not enable counter overflow interrupts:
*/
hwc->config = event->attr.config & event_mask;
hwc->idx = -1;
if (event->cpu < 0)
return -EINVAL;
/*
* SliceMask and ThreadMask need to be set for certain L3 events.
* For other events, the two fields do not affect the count.
*/
if (l3_mask && is_llc_event(event))
hwc->config |= l3_thread_slice_mask(event->attr.config);
uncore = event_to_amd_uncore(event);
if (!uncore)
return -ENODEV;
/*
* since request can come in to any of the shared cores, we will remap
* to a single common cpu.
*/
event->cpu = uncore->cpu;
return 0;
}
static umode_t
amd_f17h_uncore_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return boot_cpu_data.x86 >= 0x17 && boot_cpu_data.x86 < 0x19 ?
attr->mode : 0;
}
static umode_t
amd_f19h_uncore_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
return boot_cpu_data.x86 >= 0x19 ? attr->mode : 0;
}
static ssize_t amd_uncore_attr_show_cpumask(struct device *dev,
struct device_attribute *attr,
char *buf)
{
cpumask_t *active_mask;
struct pmu *pmu = dev_get_drvdata(dev);
if (pmu->type == amd_nb_pmu.type)
active_mask = &amd_nb_active_mask;
else if (pmu->type == amd_llc_pmu.type)
active_mask = &amd_llc_active_mask;
else
return 0;
return cpumap_print_to_pagebuf(true, buf, active_mask);
}
static DEVICE_ATTR(cpumask, S_IRUGO, amd_uncore_attr_show_cpumask, NULL);
static struct attribute *amd_uncore_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static struct attribute_group amd_uncore_attr_group = {
.attrs = amd_uncore_attrs,
};
#define DEFINE_UNCORE_FORMAT_ATTR(_var, _name, _format) \
static ssize_t __uncore_##_var##_show(struct device *dev, \
struct device_attribute *attr, \
char *page) \
{ \
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
return sprintf(page, _format "\n"); \
} \
static struct device_attribute format_attr_##_var = \
__ATTR(_name, 0444, __uncore_##_var##_show, NULL)
DEFINE_UNCORE_FORMAT_ATTR(event12, event, "config:0-7,32-35");
DEFINE_UNCORE_FORMAT_ATTR(event14, event, "config:0-7,32-35,59-60"); /* F17h+ DF */
DEFINE_UNCORE_FORMAT_ATTR(event14v2, event, "config:0-7,32-37"); /* PerfMonV2 DF */
DEFINE_UNCORE_FORMAT_ATTR(event8, event, "config:0-7"); /* F17h+ L3 */
DEFINE_UNCORE_FORMAT_ATTR(umask8, umask, "config:8-15");
DEFINE_UNCORE_FORMAT_ATTR(umask12, umask, "config:8-15,24-27"); /* PerfMonV2 DF */
DEFINE_UNCORE_FORMAT_ATTR(coreid, coreid, "config:42-44"); /* F19h L3 */
DEFINE_UNCORE_FORMAT_ATTR(slicemask, slicemask, "config:48-51"); /* F17h L3 */
DEFINE_UNCORE_FORMAT_ATTR(threadmask8, threadmask, "config:56-63"); /* F17h L3 */
DEFINE_UNCORE_FORMAT_ATTR(threadmask2, threadmask, "config:56-57"); /* F19h L3 */
DEFINE_UNCORE_FORMAT_ATTR(enallslices, enallslices, "config:46"); /* F19h L3 */
DEFINE_UNCORE_FORMAT_ATTR(enallcores, enallcores, "config:47"); /* F19h L3 */
DEFINE_UNCORE_FORMAT_ATTR(sliceid, sliceid, "config:48-50"); /* F19h L3 */
/* Common DF and NB attributes */
static struct attribute *amd_uncore_df_format_attr[] = {
&format_attr_event12.attr, /* event */
&format_attr_umask8.attr, /* umask */
NULL,
};
/* Common L2 and L3 attributes */
static struct attribute *amd_uncore_l3_format_attr[] = {
&format_attr_event12.attr, /* event */
&format_attr_umask8.attr, /* umask */
NULL, /* threadmask */
NULL,
};
/* F17h unique L3 attributes */
static struct attribute *amd_f17h_uncore_l3_format_attr[] = {
&format_attr_slicemask.attr, /* slicemask */
NULL,
};
/* F19h unique L3 attributes */
static struct attribute *amd_f19h_uncore_l3_format_attr[] = {
&format_attr_coreid.attr, /* coreid */
&format_attr_enallslices.attr, /* enallslices */
&format_attr_enallcores.attr, /* enallcores */
&format_attr_sliceid.attr, /* sliceid */
NULL,
};
static struct attribute_group amd_uncore_df_format_group = {
.name = "format",
.attrs = amd_uncore_df_format_attr,
};
static struct attribute_group amd_uncore_l3_format_group = {
.name = "format",
.attrs = amd_uncore_l3_format_attr,
};
static struct attribute_group amd_f17h_uncore_l3_format_group = {
.name = "format",
.attrs = amd_f17h_uncore_l3_format_attr,
.is_visible = amd_f17h_uncore_is_visible,
};
static struct attribute_group amd_f19h_uncore_l3_format_group = {
.name = "format",
.attrs = amd_f19h_uncore_l3_format_attr,
.is_visible = amd_f19h_uncore_is_visible,
};
static const struct attribute_group *amd_uncore_df_attr_groups[] = {
&amd_uncore_attr_group,
&amd_uncore_df_format_group,
NULL,
};
static const struct attribute_group *amd_uncore_l3_attr_groups[] = {
&amd_uncore_attr_group,
&amd_uncore_l3_format_group,
NULL,
};
static const struct attribute_group *amd_uncore_l3_attr_update[] = {
&amd_f17h_uncore_l3_format_group,
&amd_f19h_uncore_l3_format_group,
NULL,
};
static struct pmu amd_nb_pmu = {
.task_ctx_nr = perf_invalid_context,
.attr_groups = amd_uncore_df_attr_groups,
.name = "amd_nb",
.event_init = amd_uncore_event_init,
.add = amd_uncore_add,
.del = amd_uncore_del,
.start = amd_uncore_start,
.stop = amd_uncore_stop,
.read = amd_uncore_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT,
.module = THIS_MODULE,
};
static struct pmu amd_llc_pmu = {
.task_ctx_nr = perf_invalid_context,
.attr_groups = amd_uncore_l3_attr_groups,
.attr_update = amd_uncore_l3_attr_update,
.name = "amd_l2",
.event_init = amd_uncore_event_init,
.add = amd_uncore_add,
.del = amd_uncore_del,
.start = amd_uncore_start,
.stop = amd_uncore_stop,
.read = amd_uncore_read,
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT,
.module = THIS_MODULE,
};
static struct amd_uncore *amd_uncore_alloc(unsigned int cpu)
{
return kzalloc_node(sizeof(struct amd_uncore), GFP_KERNEL,
cpu_to_node(cpu));
}
static inline struct perf_event **
amd_uncore_events_alloc(unsigned int num, unsigned int cpu)
{
return kzalloc_node(sizeof(struct perf_event *) * num, GFP_KERNEL,
cpu_to_node(cpu));
}
static int amd_uncore_cpu_up_prepare(unsigned int cpu)
{
struct amd_uncore *uncore_nb = NULL, *uncore_llc = NULL;
if (amd_uncore_nb) {
*per_cpu_ptr(amd_uncore_nb, cpu) = NULL;
uncore_nb = amd_uncore_alloc(cpu);
if (!uncore_nb)
goto fail;
uncore_nb->cpu = cpu;
uncore_nb->num_counters = num_counters_nb;
uncore_nb->rdpmc_base = RDPMC_BASE_NB;
uncore_nb->msr_base = MSR_F15H_NB_PERF_CTL;
uncore_nb->active_mask = &amd_nb_active_mask;
uncore_nb->pmu = &amd_nb_pmu;
uncore_nb->events = amd_uncore_events_alloc(num_counters_nb, cpu);
if (!uncore_nb->events)
goto fail;
uncore_nb->id = -1;
*per_cpu_ptr(amd_uncore_nb, cpu) = uncore_nb;
}
if (amd_uncore_llc) {
*per_cpu_ptr(amd_uncore_llc, cpu) = NULL;
uncore_llc = amd_uncore_alloc(cpu);
if (!uncore_llc)
goto fail;
uncore_llc->cpu = cpu;
uncore_llc->num_counters = num_counters_llc;
uncore_llc->rdpmc_base = RDPMC_BASE_LLC;
uncore_llc->msr_base = MSR_F16H_L2I_PERF_CTL;
uncore_llc->active_mask = &amd_llc_active_mask;
uncore_llc->pmu = &amd_llc_pmu;
uncore_llc->events = amd_uncore_events_alloc(num_counters_llc, cpu);
if (!uncore_llc->events)
goto fail;
uncore_llc->id = -1;
*per_cpu_ptr(amd_uncore_llc, cpu) = uncore_llc;
}
return 0;
fail:
if (uncore_nb) {
kfree(uncore_nb->events);
kfree(uncore_nb);
}
if (uncore_llc) {
kfree(uncore_llc->events);
kfree(uncore_llc);
}
return -ENOMEM;
}
static struct amd_uncore *
amd_uncore_find_online_sibling(struct amd_uncore *this,
struct amd_uncore * __percpu *uncores)
{
unsigned int cpu;
struct amd_uncore *that;
for_each_online_cpu(cpu) {
that = *per_cpu_ptr(uncores, cpu);
if (!that)
continue;
if (this == that)
continue;
if (this->id == that->id) {
hlist_add_head(&this->node, &uncore_unused_list);
this = that;
break;
}
}
this->refcnt++;
return this;
}
static int amd_uncore_cpu_starting(unsigned int cpu)
{
unsigned int eax, ebx, ecx, edx;
struct amd_uncore *uncore;
if (amd_uncore_nb) {
uncore = *per_cpu_ptr(amd_uncore_nb, cpu);
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
uncore->id = ecx & 0xff;
uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_nb);
*per_cpu_ptr(amd_uncore_nb, cpu) = uncore;
}
if (amd_uncore_llc) {
uncore = *per_cpu_ptr(amd_uncore_llc, cpu);
uncore->id = get_llc_id(cpu);
uncore = amd_uncore_find_online_sibling(uncore, amd_uncore_llc);
*per_cpu_ptr(amd_uncore_llc, cpu) = uncore;
}
return 0;
}
static void uncore_clean_online(void)
{
struct amd_uncore *uncore;
struct hlist_node *n;
hlist_for_each_entry_safe(uncore, n, &uncore_unused_list, node) {
hlist_del(&uncore->node);
kfree(uncore->events);
kfree(uncore);
}
}
static void uncore_online(unsigned int cpu,
struct amd_uncore * __percpu *uncores)
{
struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu);
uncore_clean_online();
if (cpu == uncore->cpu)
cpumask_set_cpu(cpu, uncore->active_mask);
}
static int amd_uncore_cpu_online(unsigned int cpu)
{
if (amd_uncore_nb)
uncore_online(cpu, amd_uncore_nb);
if (amd_uncore_llc)
uncore_online(cpu, amd_uncore_llc);
return 0;
}
static void uncore_down_prepare(unsigned int cpu,
struct amd_uncore * __percpu *uncores)
{
unsigned int i;
struct amd_uncore *this = *per_cpu_ptr(uncores, cpu);
if (this->cpu != cpu)
return;
/* this cpu is going down, migrate to a shared sibling if possible */
for_each_online_cpu(i) {
struct amd_uncore *that = *per_cpu_ptr(uncores, i);
if (cpu == i)
continue;
if (this == that) {
perf_pmu_migrate_context(this->pmu, cpu, i);
cpumask_clear_cpu(cpu, that->active_mask);
cpumask_set_cpu(i, that->active_mask);
that->cpu = i;
break;
}
}
}
static int amd_uncore_cpu_down_prepare(unsigned int cpu)
{
if (amd_uncore_nb)
uncore_down_prepare(cpu, amd_uncore_nb);
if (amd_uncore_llc)
uncore_down_prepare(cpu, amd_uncore_llc);
return 0;
}
static void uncore_dead(unsigned int cpu, struct amd_uncore * __percpu *uncores)
{
struct amd_uncore *uncore = *per_cpu_ptr(uncores, cpu);
if (cpu == uncore->cpu)
cpumask_clear_cpu(cpu, uncore->active_mask);
if (!--uncore->refcnt) {
kfree(uncore->events);
kfree(uncore);
}
*per_cpu_ptr(uncores, cpu) = NULL;
}
static int amd_uncore_cpu_dead(unsigned int cpu)
{
if (amd_uncore_nb)
uncore_dead(cpu, amd_uncore_nb);
if (amd_uncore_llc)
uncore_dead(cpu, amd_uncore_llc);
return 0;
}
static int __init amd_uncore_init(void)
{
struct attribute **df_attr = amd_uncore_df_format_attr;
struct attribute **l3_attr = amd_uncore_l3_format_attr;
union cpuid_0x80000022_ebx ebx;
int ret = -ENODEV;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
return -ENODEV;
if (!boot_cpu_has(X86_FEATURE_TOPOEXT))
return -ENODEV;
if (boot_cpu_has(X86_FEATURE_PERFMON_V2))
pmu_version = 2;
num_counters_nb = NUM_COUNTERS_NB;
num_counters_llc = NUM_COUNTERS_L2;
if (boot_cpu_data.x86 >= 0x17) {
/*
* For F17h and above, the Northbridge counters are
* repurposed as Data Fabric counters. Also, L3
* counters are supported too. The PMUs are exported
* based on family as either L2 or L3 and NB or DF.
*/
num_counters_llc = NUM_COUNTERS_L3;
amd_nb_pmu.name = "amd_df";
amd_llc_pmu.name = "amd_l3";
l3_mask = true;
}
if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) {
if (pmu_version >= 2) {
*df_attr++ = &format_attr_event14v2.attr;
*df_attr++ = &format_attr_umask12.attr;
} else if (boot_cpu_data.x86 >= 0x17) {
*df_attr = &format_attr_event14.attr;
}
amd_uncore_nb = alloc_percpu(struct amd_uncore *);
if (!amd_uncore_nb) {
ret = -ENOMEM;
goto fail_nb;
}
ret = perf_pmu_register(&amd_nb_pmu, amd_nb_pmu.name, -1);
if (ret)
goto fail_nb;
if (pmu_version >= 2) {
ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
num_counters_nb = ebx.split.num_df_pmc;
}
pr_info("%d %s %s counters detected\n", num_counters_nb,
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "",
amd_nb_pmu.name);
ret = 0;
}
if (boot_cpu_has(X86_FEATURE_PERFCTR_LLC)) {
if (boot_cpu_data.x86 >= 0x19) {
*l3_attr++ = &format_attr_event8.attr;
*l3_attr++ = &format_attr_umask8.attr;
*l3_attr++ = &format_attr_threadmask2.attr;
} else if (boot_cpu_data.x86 >= 0x17) {
*l3_attr++ = &format_attr_event8.attr;
*l3_attr++ = &format_attr_umask8.attr;
*l3_attr++ = &format_attr_threadmask8.attr;
}
amd_uncore_llc = alloc_percpu(struct amd_uncore *);
if (!amd_uncore_llc) {
ret = -ENOMEM;
goto fail_llc;
}
ret = perf_pmu_register(&amd_llc_pmu, amd_llc_pmu.name, -1);
if (ret)
goto fail_llc;
pr_info("%d %s %s counters detected\n", num_counters_llc,
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ? "HYGON" : "",
amd_llc_pmu.name);
ret = 0;
}
/*
* Install callbacks. Core will call them for each online cpu.
*/
if (cpuhp_setup_state(CPUHP_PERF_X86_AMD_UNCORE_PREP,
"perf/x86/amd/uncore:prepare",
amd_uncore_cpu_up_prepare, amd_uncore_cpu_dead))
goto fail_llc;
if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING,
"perf/x86/amd/uncore:starting",
amd_uncore_cpu_starting, NULL))
goto fail_prep;
if (cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE,
"perf/x86/amd/uncore:online",
amd_uncore_cpu_online,
amd_uncore_cpu_down_prepare))
goto fail_start;
return 0;
fail_start:
cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING);
fail_prep:
cpuhp_remove_state(CPUHP_PERF_X86_AMD_UNCORE_PREP);
fail_llc:
if (boot_cpu_has(X86_FEATURE_PERFCTR_NB))
perf_pmu_unregister(&amd_nb_pmu);
free_percpu(amd_uncore_llc);
fail_nb:
free_percpu(amd_uncore_nb);
return ret;
}
static void __exit amd_uncore_exit(void)
{
cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE);
cpuhp_remove_state(CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING);
cpuhp_remove_state(CPUHP_PERF_X86_AMD_UNCORE_PREP);
if (boot_cpu_has(X86_FEATURE_PERFCTR_LLC)) {
perf_pmu_unregister(&amd_llc_pmu);
free_percpu(amd_uncore_llc);
amd_uncore_llc = NULL;
}
if (boot_cpu_has(X86_FEATURE_PERFCTR_NB)) {
perf_pmu_unregister(&amd_nb_pmu);
free_percpu(amd_uncore_nb);
amd_uncore_nb = NULL;
}
}
module_init(amd_uncore_init);
module_exit(amd_uncore_exit);
MODULE_DESCRIPTION("AMD Uncore Driver");
MODULE_LICENSE("GPL v2");