blob: 7eb2ddbe9bad6b3f5586704be0a0ff8474346c20 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Cavium, Inc.
*/
#include <linux/acpi.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/phy.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include "nic_reg.h"
#include "nic.h"
#include "thunder_bgx.h"
#define DRV_NAME "thunder_bgx"
#define DRV_VERSION "1.0"
/* RX_DMAC_CTL configuration */
enum MCAST_MODE {
MCAST_MODE_REJECT = 0x0,
MCAST_MODE_ACCEPT = 0x1,
MCAST_MODE_CAM_FILTER = 0x2,
RSVD = 0x3
};
#define BCAST_ACCEPT BIT(0)
#define CAM_ACCEPT BIT(3)
#define MCAST_MODE_MASK 0x3
#define BGX_MCAST_MODE(x) (x << 1)
struct dmac_map {
u64 vf_map;
u64 dmac;
};
struct lmac {
struct bgx *bgx;
/* actual number of DMACs configured */
u8 dmacs_cfg;
/* overal number of possible DMACs could be configured per LMAC */
u8 dmacs_count;
struct dmac_map *dmacs; /* DMAC:VFs tracking filter array */
u8 mac[ETH_ALEN];
u8 lmac_type;
u8 lane_to_sds;
bool use_training;
bool autoneg;
bool link_up;
int lmacid; /* ID within BGX */
int lmacid_bd; /* ID on board */
struct net_device netdev;
struct phy_device *phydev;
unsigned int last_duplex;
unsigned int last_link;
unsigned int last_speed;
bool is_sgmii;
struct delayed_work dwork;
struct workqueue_struct *check_link;
};
struct bgx {
u8 bgx_id;
struct lmac lmac[MAX_LMAC_PER_BGX];
u8 lmac_count;
u8 max_lmac;
u8 acpi_lmac_idx;
void __iomem *reg_base;
struct pci_dev *pdev;
bool is_dlm;
bool is_rgx;
};
static struct bgx *bgx_vnic[MAX_BGX_THUNDER];
static int lmac_count; /* Total no of LMACs in system */
static int bgx_xaui_check_link(struct lmac *lmac);
/* Supported devices */
static const struct pci_device_id bgx_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_BGX) },
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_RGX) },
{ 0, } /* end of table */
};
MODULE_AUTHOR("Cavium Inc");
MODULE_DESCRIPTION("Cavium Thunder BGX/MAC Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, bgx_id_table);
/* The Cavium ThunderX network controller can *only* be found in SoCs
* containing the ThunderX ARM64 CPU implementation. All accesses to the device
* registers on this platform are implicitly strongly ordered with respect
* to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
* with no memory barriers in this driver. The readq()/writeq() functions add
* explicit ordering operation which in this case are redundant, and only
* add overhead.
*/
/* Register read/write APIs */
static u64 bgx_reg_read(struct bgx *bgx, u8 lmac, u64 offset)
{
void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset;
return readq_relaxed(addr);
}
static void bgx_reg_write(struct bgx *bgx, u8 lmac, u64 offset, u64 val)
{
void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset;
writeq_relaxed(val, addr);
}
static void bgx_reg_modify(struct bgx *bgx, u8 lmac, u64 offset, u64 val)
{
void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset;
writeq_relaxed(val | readq_relaxed(addr), addr);
}
static int bgx_poll_reg(struct bgx *bgx, u8 lmac, u64 reg, u64 mask, bool zero)
{
int timeout = 100;
u64 reg_val;
while (timeout) {
reg_val = bgx_reg_read(bgx, lmac, reg);
if (zero && !(reg_val & mask))
return 0;
if (!zero && (reg_val & mask))
return 0;
usleep_range(1000, 2000);
timeout--;
}
return 1;
}
static int max_bgx_per_node;
static void set_max_bgx_per_node(struct pci_dev *pdev)
{
u16 sdevid;
if (max_bgx_per_node)
return;
pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sdevid);
switch (sdevid) {
case PCI_SUBSYS_DEVID_81XX_BGX:
case PCI_SUBSYS_DEVID_81XX_RGX:
max_bgx_per_node = MAX_BGX_PER_CN81XX;
break;
case PCI_SUBSYS_DEVID_83XX_BGX:
max_bgx_per_node = MAX_BGX_PER_CN83XX;
break;
case PCI_SUBSYS_DEVID_88XX_BGX:
default:
max_bgx_per_node = MAX_BGX_PER_CN88XX;
break;
}
}
static struct bgx *get_bgx(int node, int bgx_idx)
{
int idx = (node * max_bgx_per_node) + bgx_idx;
return bgx_vnic[idx];
}
/* Return number of BGX present in HW */
unsigned bgx_get_map(int node)
{
int i;
unsigned map = 0;
for (i = 0; i < max_bgx_per_node; i++) {
if (bgx_vnic[(node * max_bgx_per_node) + i])
map |= (1 << i);
}
return map;
}
EXPORT_SYMBOL(bgx_get_map);
/* Return number of LMAC configured for this BGX */
int bgx_get_lmac_count(int node, int bgx_idx)
{
struct bgx *bgx;
bgx = get_bgx(node, bgx_idx);
if (bgx)
return bgx->lmac_count;
return 0;
}
EXPORT_SYMBOL(bgx_get_lmac_count);
/* Returns the current link status of LMAC */
void bgx_get_lmac_link_state(int node, int bgx_idx, int lmacid, void *status)
{
struct bgx_link_status *link = (struct bgx_link_status *)status;
struct bgx *bgx;
struct lmac *lmac;
bgx = get_bgx(node, bgx_idx);
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
link->mac_type = lmac->lmac_type;
link->link_up = lmac->link_up;
link->duplex = lmac->last_duplex;
link->speed = lmac->last_speed;
}
EXPORT_SYMBOL(bgx_get_lmac_link_state);
const u8 *bgx_get_lmac_mac(int node, int bgx_idx, int lmacid)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
if (bgx)
return bgx->lmac[lmacid].mac;
return NULL;
}
EXPORT_SYMBOL(bgx_get_lmac_mac);
void bgx_set_lmac_mac(int node, int bgx_idx, int lmacid, const u8 *mac)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
if (!bgx)
return;
ether_addr_copy(bgx->lmac[lmacid].mac, mac);
}
EXPORT_SYMBOL(bgx_set_lmac_mac);
static void bgx_flush_dmac_cam_filter(struct bgx *bgx, int lmacid)
{
struct lmac *lmac = NULL;
u8 idx = 0;
lmac = &bgx->lmac[lmacid];
/* reset CAM filters */
for (idx = 0; idx < lmac->dmacs_count; idx++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM +
((lmacid * lmac->dmacs_count) + idx) *
sizeof(u64), 0);
}
static void bgx_lmac_remove_filters(struct lmac *lmac, u8 vf_id)
{
int i = 0;
if (!lmac)
return;
/* We've got reset filters request from some of attached VF, while the
* others might want to keep their configuration. So in this case lets
* iterate over all of configured filters and decrease number of
* referencies. if some addresses get zero refs remove them from list
*/
for (i = lmac->dmacs_cfg - 1; i >= 0; i--) {
lmac->dmacs[i].vf_map &= ~BIT_ULL(vf_id);
if (!lmac->dmacs[i].vf_map) {
lmac->dmacs_cfg--;
lmac->dmacs[i].dmac = 0;
lmac->dmacs[i].vf_map = 0;
}
}
}
static int bgx_lmac_save_filter(struct lmac *lmac, u64 dmac, u8 vf_id)
{
u8 i = 0;
if (!lmac)
return -1;
/* At the same time we could have several VFs 'attached' to some
* particular LMAC, and each VF is represented as network interface
* for kernel. So from user perspective it should be possible to
* manipulate with its' (VF) receive modes. However from PF
* driver perspective we need to keep track of filter configurations
* for different VFs to prevent filter values dupes
*/
for (i = 0; i < lmac->dmacs_cfg; i++) {
if (lmac->dmacs[i].dmac == dmac) {
lmac->dmacs[i].vf_map |= BIT_ULL(vf_id);
return -1;
}
}
if (!(lmac->dmacs_cfg < lmac->dmacs_count))
return -1;
/* keep it for further tracking */
lmac->dmacs[lmac->dmacs_cfg].dmac = dmac;
lmac->dmacs[lmac->dmacs_cfg].vf_map = BIT_ULL(vf_id);
lmac->dmacs_cfg++;
return 0;
}
static int bgx_set_dmac_cam_filter_mac(struct bgx *bgx, int lmacid,
u64 cam_dmac, u8 idx)
{
struct lmac *lmac = NULL;
u64 cfg = 0;
/* skip zero addresses as meaningless */
if (!cam_dmac || !bgx)
return -1;
lmac = &bgx->lmac[lmacid];
/* configure DCAM filtering for designated LMAC */
cfg = RX_DMACX_CAM_LMACID(lmacid & LMAC_ID_MASK) |
RX_DMACX_CAM_EN | cam_dmac;
bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM +
((lmacid * lmac->dmacs_count) + idx) * sizeof(u64), cfg);
return 0;
}
void bgx_set_dmac_cam_filter(int node, int bgx_idx, int lmacid,
u64 cam_dmac, u8 vf_id)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
struct lmac *lmac = NULL;
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
if (!cam_dmac)
cam_dmac = ether_addr_to_u64(lmac->mac);
/* since we might have several VFs attached to particular LMAC
* and kernel could call mcast config for each of them with the
* same MAC, check if requested MAC is already in filtering list and
* updare/prepare list of MACs to be applied later to HW filters
*/
bgx_lmac_save_filter(lmac, cam_dmac, vf_id);
}
EXPORT_SYMBOL(bgx_set_dmac_cam_filter);
void bgx_set_xcast_mode(int node, int bgx_idx, int lmacid, u8 mode)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
struct lmac *lmac = NULL;
u64 cfg = 0;
u8 i = 0;
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL);
if (mode & BGX_XCAST_BCAST_ACCEPT)
cfg |= BCAST_ACCEPT;
else
cfg &= ~BCAST_ACCEPT;
/* disable all MCASTs and DMAC filtering */
cfg &= ~(CAM_ACCEPT | BGX_MCAST_MODE(MCAST_MODE_MASK));
/* check requested bits and set filtergin mode appropriately */
if (mode & (BGX_XCAST_MCAST_ACCEPT)) {
cfg |= (BGX_MCAST_MODE(MCAST_MODE_ACCEPT));
} else if (mode & BGX_XCAST_MCAST_FILTER) {
cfg |= (BGX_MCAST_MODE(MCAST_MODE_CAM_FILTER) | CAM_ACCEPT);
for (i = 0; i < lmac->dmacs_cfg; i++)
bgx_set_dmac_cam_filter_mac(bgx, lmacid,
lmac->dmacs[i].dmac, i);
}
bgx_reg_write(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL, cfg);
}
EXPORT_SYMBOL(bgx_set_xcast_mode);
void bgx_reset_xcast_mode(int node, int bgx_idx, int lmacid, u8 vf_id)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
if (!bgx)
return;
bgx_lmac_remove_filters(&bgx->lmac[lmacid], vf_id);
bgx_flush_dmac_cam_filter(bgx, lmacid);
bgx_set_xcast_mode(node, bgx_idx, lmacid,
(BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT));
}
EXPORT_SYMBOL(bgx_reset_xcast_mode);
void bgx_lmac_rx_tx_enable(int node, int bgx_idx, int lmacid, bool enable)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
struct lmac *lmac;
u64 cfg;
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
if (enable) {
cfg |= CMR_PKT_RX_EN | CMR_PKT_TX_EN;
/* enable TX FIFO Underflow interrupt */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_INT_ENA_W1S,
GMI_TXX_INT_UNDFLW);
} else {
cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN);
/* Disable TX FIFO Underflow interrupt */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_INT_ENA_W1C,
GMI_TXX_INT_UNDFLW);
}
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
if (bgx->is_rgx)
xcv_setup_link(enable ? lmac->link_up : 0, lmac->last_speed);
}
EXPORT_SYMBOL(bgx_lmac_rx_tx_enable);
/* Enables or disables timestamp insertion by BGX for Rx packets */
void bgx_config_timestamping(int node, int bgx_idx, int lmacid, bool enable)
{
struct bgx *bgx = get_bgx(node, bgx_idx);
struct lmac *lmac;
u64 csr_offset, cfg;
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
if (lmac->lmac_type == BGX_MODE_SGMII ||
lmac->lmac_type == BGX_MODE_QSGMII ||
lmac->lmac_type == BGX_MODE_RGMII)
csr_offset = BGX_GMP_GMI_RXX_FRM_CTL;
else
csr_offset = BGX_SMUX_RX_FRM_CTL;
cfg = bgx_reg_read(bgx, lmacid, csr_offset);
if (enable)
cfg |= BGX_PKT_RX_PTP_EN;
else
cfg &= ~BGX_PKT_RX_PTP_EN;
bgx_reg_write(bgx, lmacid, csr_offset, cfg);
}
EXPORT_SYMBOL(bgx_config_timestamping);
void bgx_lmac_get_pfc(int node, int bgx_idx, int lmacid, void *pause)
{
struct pfc *pfc = (struct pfc *)pause;
struct bgx *bgx = get_bgx(node, bgx_idx);
struct lmac *lmac;
u64 cfg;
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
if (lmac->is_sgmii)
return;
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_CBFC_CTL);
pfc->fc_rx = cfg & RX_EN;
pfc->fc_tx = cfg & TX_EN;
pfc->autoneg = 0;
}
EXPORT_SYMBOL(bgx_lmac_get_pfc);
void bgx_lmac_set_pfc(int node, int bgx_idx, int lmacid, void *pause)
{
struct pfc *pfc = (struct pfc *)pause;
struct bgx *bgx = get_bgx(node, bgx_idx);
struct lmac *lmac;
u64 cfg;
if (!bgx)
return;
lmac = &bgx->lmac[lmacid];
if (lmac->is_sgmii)
return;
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_CBFC_CTL);
cfg &= ~(RX_EN | TX_EN);
cfg |= (pfc->fc_rx ? RX_EN : 0x00);
cfg |= (pfc->fc_tx ? TX_EN : 0x00);
bgx_reg_write(bgx, lmacid, BGX_SMUX_CBFC_CTL, cfg);
}
EXPORT_SYMBOL(bgx_lmac_set_pfc);
static void bgx_sgmii_change_link_state(struct lmac *lmac)
{
struct bgx *bgx = lmac->bgx;
u64 cmr_cfg;
u64 port_cfg = 0;
u64 misc_ctl = 0;
bool tx_en, rx_en;
cmr_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_CMRX_CFG);
tx_en = cmr_cfg & CMR_PKT_TX_EN;
rx_en = cmr_cfg & CMR_PKT_RX_EN;
cmr_cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN);
bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg);
/* Wait for BGX RX to be idle */
if (bgx_poll_reg(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG,
GMI_PORT_CFG_RX_IDLE, false)) {
dev_err(&bgx->pdev->dev, "BGX%d LMAC%d GMI RX not idle\n",
bgx->bgx_id, lmac->lmacid);
return;
}
/* Wait for BGX TX to be idle */
if (bgx_poll_reg(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG,
GMI_PORT_CFG_TX_IDLE, false)) {
dev_err(&bgx->pdev->dev, "BGX%d LMAC%d GMI TX not idle\n",
bgx->bgx_id, lmac->lmacid);
return;
}
port_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG);
misc_ctl = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL);
if (lmac->link_up) {
misc_ctl &= ~PCS_MISC_CTL_GMX_ENO;
port_cfg &= ~GMI_PORT_CFG_DUPLEX;
port_cfg |= (lmac->last_duplex << 2);
} else {
misc_ctl |= PCS_MISC_CTL_GMX_ENO;
}
switch (lmac->last_speed) {
case 10:
port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */
port_cfg |= GMI_PORT_CFG_SPEED_MSB; /* speed_msb 1 */
port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */
misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK;
misc_ctl |= 50; /* samp_pt */
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64);
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0);
break;
case 100:
port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */
port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */
port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */
misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK;
misc_ctl |= 5; /* samp_pt */
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64);
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0);
break;
case 1000:
port_cfg |= GMI_PORT_CFG_SPEED; /* speed 1 */
port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */
port_cfg |= GMI_PORT_CFG_SLOT_TIME; /* slottime 1 */
misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK;
misc_ctl |= 1; /* samp_pt */
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 512);
if (lmac->last_duplex)
bgx_reg_write(bgx, lmac->lmacid,
BGX_GMP_GMI_TXX_BURST, 0);
else
bgx_reg_write(bgx, lmac->lmacid,
BGX_GMP_GMI_TXX_BURST, 8192);
break;
default:
break;
}
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL, misc_ctl);
bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG, port_cfg);
/* Restore CMR config settings */
cmr_cfg |= (rx_en ? CMR_PKT_RX_EN : 0) | (tx_en ? CMR_PKT_TX_EN : 0);
bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg);
if (bgx->is_rgx && (cmr_cfg & (CMR_PKT_RX_EN | CMR_PKT_TX_EN)))
xcv_setup_link(lmac->link_up, lmac->last_speed);
}
static void bgx_lmac_handler(struct net_device *netdev)
{
struct lmac *lmac = container_of(netdev, struct lmac, netdev);
struct phy_device *phydev;
int link_changed = 0;
phydev = lmac->phydev;
if (!phydev->link && lmac->last_link)
link_changed = -1;
if (phydev->link &&
(lmac->last_duplex != phydev->duplex ||
lmac->last_link != phydev->link ||
lmac->last_speed != phydev->speed)) {
link_changed = 1;
}
lmac->last_link = phydev->link;
lmac->last_speed = phydev->speed;
lmac->last_duplex = phydev->duplex;
if (!link_changed)
return;
if (link_changed > 0)
lmac->link_up = true;
else
lmac->link_up = false;
if (lmac->is_sgmii)
bgx_sgmii_change_link_state(lmac);
else
bgx_xaui_check_link(lmac);
}
u64 bgx_get_rx_stats(int node, int bgx_idx, int lmac, int idx)
{
struct bgx *bgx;
bgx = get_bgx(node, bgx_idx);
if (!bgx)
return 0;
if (idx > 8)
lmac = 0;
return bgx_reg_read(bgx, lmac, BGX_CMRX_RX_STAT0 + (idx * 8));
}
EXPORT_SYMBOL(bgx_get_rx_stats);
u64 bgx_get_tx_stats(int node, int bgx_idx, int lmac, int idx)
{
struct bgx *bgx;
bgx = get_bgx(node, bgx_idx);
if (!bgx)
return 0;
return bgx_reg_read(bgx, lmac, BGX_CMRX_TX_STAT0 + (idx * 8));
}
EXPORT_SYMBOL(bgx_get_tx_stats);
/* Configure BGX LMAC in internal loopback mode */
void bgx_lmac_internal_loopback(int node, int bgx_idx,
int lmac_idx, bool enable)
{
struct bgx *bgx;
struct lmac *lmac;
u64 cfg;
bgx = get_bgx(node, bgx_idx);
if (!bgx)
return;
lmac = &bgx->lmac[lmac_idx];
if (lmac->is_sgmii) {
cfg = bgx_reg_read(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL);
if (enable)
cfg |= PCS_MRX_CTL_LOOPBACK1;
else
cfg &= ~PCS_MRX_CTL_LOOPBACK1;
bgx_reg_write(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL, cfg);
} else {
cfg = bgx_reg_read(bgx, lmac_idx, BGX_SPUX_CONTROL1);
if (enable)
cfg |= SPU_CTL_LOOPBACK;
else
cfg &= ~SPU_CTL_LOOPBACK;
bgx_reg_write(bgx, lmac_idx, BGX_SPUX_CONTROL1, cfg);
}
}
EXPORT_SYMBOL(bgx_lmac_internal_loopback);
static int bgx_lmac_sgmii_init(struct bgx *bgx, struct lmac *lmac)
{
int lmacid = lmac->lmacid;
u64 cfg;
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_THRESH, 0x30);
/* max packet size */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_RXX_JABBER, MAX_FRAME_SIZE);
/* Disable frame alignment if using preamble */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND);
if (cfg & 1)
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SGMII_CTL, 0);
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
/* PCS reset */
bgx_reg_modify(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET);
if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_CTL,
PCS_MRX_CTL_RESET, true)) {
dev_err(&bgx->pdev->dev, "BGX PCS reset not completed\n");
return -1;
}
/* power down, reset autoneg, autoneg enable */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MRX_CTL);
cfg &= ~PCS_MRX_CTL_PWR_DN;
cfg |= PCS_MRX_CTL_RST_AN;
if (lmac->phydev) {
cfg |= PCS_MRX_CTL_AN_EN;
} else {
/* In scenarios where PHY driver is not present or it's a
* non-standard PHY, FW sets AN_EN to inform Linux driver
* to do auto-neg and link polling or not.
*/
if (cfg & PCS_MRX_CTL_AN_EN)
lmac->autoneg = true;
}
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, cfg);
if (lmac->lmac_type == BGX_MODE_QSGMII) {
/* Disable disparity check for QSGMII */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL);
cfg &= ~PCS_MISC_CTL_DISP_EN;
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL, cfg);
return 0;
}
if ((lmac->lmac_type == BGX_MODE_SGMII) && lmac->phydev) {
if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_STATUS,
PCS_MRX_STATUS_AN_CPT, false)) {
dev_err(&bgx->pdev->dev, "BGX AN_CPT not completed\n");
return -1;
}
}
return 0;
}
static int bgx_lmac_xaui_init(struct bgx *bgx, struct lmac *lmac)
{
u64 cfg;
int lmacid = lmac->lmacid;
/* Reset SPU */
bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET);
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) {
dev_err(&bgx->pdev->dev, "BGX SPU reset not completed\n");
return -1;
}
/* Disable LMAC */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER);
/* Set interleaved running disparity for RXAUI */
if (lmac->lmac_type == BGX_MODE_RXAUI)
bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL,
SPU_MISC_CTL_INTLV_RDISP);
/* Clear receive packet disable */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_MISC_CONTROL);
cfg &= ~SPU_MISC_CTL_RX_DIS;
bgx_reg_write(bgx, lmacid, BGX_SPUX_MISC_CONTROL, cfg);
/* clear all interrupts */
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_INT);
bgx_reg_write(bgx, lmacid, BGX_SMUX_RX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_INT);
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
if (lmac->use_training) {
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LP_CUP, 0x00);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_CUP, 0x00);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_REP, 0x00);
/* training enable */
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL, SPU_PMD_CRTL_TRAIN_EN);
}
/* Append FCS to each packet */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, SMU_TX_APPEND_FCS_D);
/* Disable forward error correction */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_FEC_CONTROL);
cfg &= ~SPU_FEC_CTL_FEC_EN;
bgx_reg_write(bgx, lmacid, BGX_SPUX_FEC_CONTROL, cfg);
/* Disable autoneg */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_CONTROL);
cfg = cfg & ~(SPU_AN_CTL_AN_EN | SPU_AN_CTL_XNP_EN);
bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_CONTROL, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_ADV);
if (lmac->lmac_type == BGX_MODE_10G_KR)
cfg |= (1 << 23);
else if (lmac->lmac_type == BGX_MODE_40G_KR)
cfg |= (1 << 24);
else
cfg &= ~((1 << 23) | (1 << 24));
cfg = cfg & (~((1ULL << 25) | (1ULL << 22) | (1ULL << 12)));
bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_ADV, cfg);
cfg = bgx_reg_read(bgx, 0, BGX_SPU_DBG_CONTROL);
cfg &= ~SPU_DBG_CTL_AN_ARB_LINK_CHK_EN;
bgx_reg_write(bgx, 0, BGX_SPU_DBG_CONTROL, cfg);
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_CONTROL1);
cfg &= ~SPU_CTL_LOW_POWER;
bgx_reg_write(bgx, lmacid, BGX_SPUX_CONTROL1, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_CTL);
cfg &= ~SMU_TX_CTL_UNI_EN;
cfg |= SMU_TX_CTL_DIC_EN;
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_CTL, cfg);
/* Enable receive and transmission of pause frames */
bgx_reg_write(bgx, lmacid, BGX_SMUX_CBFC_CTL, ((0xffffULL << 32) |
BCK_EN | DRP_EN | TX_EN | RX_EN));
/* Configure pause time and interval */
bgx_reg_write(bgx, lmacid,
BGX_SMUX_TX_PAUSE_PKT_TIME, DEFAULT_PAUSE_TIME);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_PAUSE_PKT_INTERVAL);
cfg &= ~0xFFFFull;
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_PAUSE_PKT_INTERVAL,
cfg | (DEFAULT_PAUSE_TIME - 0x1000));
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_PAUSE_ZERO, 0x01);
/* take lmac_count into account */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_THRESH, (0x100 - 1));
/* max packet size */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_RX_JABBER, MAX_FRAME_SIZE);
return 0;
}
static int bgx_xaui_check_link(struct lmac *lmac)
{
struct bgx *bgx = lmac->bgx;
int lmacid = lmac->lmacid;
int lmac_type = lmac->lmac_type;
u64 cfg;
if (lmac->use_training) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
if (!(cfg & (1ull << 13))) {
cfg = (1ull << 13) | (1ull << 14);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL);
cfg |= (1ull << 0);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg);
return -1;
}
}
/* wait for PCS to come out of reset */
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) {
dev_err(&bgx->pdev->dev, "BGX SPU reset not completed\n");
return -1;
}
if ((lmac_type == BGX_MODE_10G_KR) || (lmac_type == BGX_MODE_XFI) ||
(lmac_type == BGX_MODE_40G_KR) || (lmac_type == BGX_MODE_XLAUI)) {
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BR_STATUS1,
SPU_BR_STATUS_BLK_LOCK, false)) {
dev_err(&bgx->pdev->dev,
"SPU_BR_STATUS_BLK_LOCK not completed\n");
return -1;
}
} else {
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BX_STATUS,
SPU_BX_STATUS_RX_ALIGN, false)) {
dev_err(&bgx->pdev->dev,
"SPU_BX_STATUS_RX_ALIGN not completed\n");
return -1;
}
}
/* Clear rcvflt bit (latching high) and read it back */
if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT)
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_STATUS2, SPU_STATUS2_RCVFLT);
if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) {
dev_err(&bgx->pdev->dev, "Receive fault, retry training\n");
if (lmac->use_training) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
if (!(cfg & (1ull << 13))) {
cfg = (1ull << 13) | (1ull << 14);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL);
cfg |= (1ull << 0);
bgx_reg_write(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL, cfg);
return -1;
}
}
return -1;
}
/* Wait for BGX RX to be idle */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_RX_IDLE, false)) {
dev_err(&bgx->pdev->dev, "SMU RX not idle\n");
return -1;
}
/* Wait for BGX TX to be idle */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_TX_IDLE, false)) {
dev_err(&bgx->pdev->dev, "SMU TX not idle\n");
return -1;
}
/* Check for MAC RX faults */
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_CTL);
/* 0 - Link is okay, 1 - Local fault, 2 - Remote fault */
cfg &= SMU_RX_CTL_STATUS;
if (!cfg)
return 0;
/* Rx local/remote fault seen.
* Do lmac reinit to see if condition recovers
*/
bgx_lmac_xaui_init(bgx, lmac);
return -1;
}
static void bgx_poll_for_sgmii_link(struct lmac *lmac)
{
u64 pcs_link, an_result;
u8 speed;
pcs_link = bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_GMP_PCS_MRX_STATUS);
/*Link state bit is sticky, read it again*/
if (!(pcs_link & PCS_MRX_STATUS_LINK))
pcs_link = bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_GMP_PCS_MRX_STATUS);
if (bgx_poll_reg(lmac->bgx, lmac->lmacid, BGX_GMP_PCS_MRX_STATUS,
PCS_MRX_STATUS_AN_CPT, false)) {
lmac->link_up = false;
lmac->last_speed = SPEED_UNKNOWN;
lmac->last_duplex = DUPLEX_UNKNOWN;
goto next_poll;
}
lmac->link_up = ((pcs_link & PCS_MRX_STATUS_LINK) != 0) ? true : false;
an_result = bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_GMP_PCS_ANX_AN_RESULTS);
speed = (an_result >> 3) & 0x3;
lmac->last_duplex = (an_result >> 1) & 0x1;
switch (speed) {
case 0:
lmac->last_speed = SPEED_10;
break;
case 1:
lmac->last_speed = SPEED_100;
break;
case 2:
lmac->last_speed = SPEED_1000;
break;
default:
lmac->link_up = false;
lmac->last_speed = SPEED_UNKNOWN;
lmac->last_duplex = DUPLEX_UNKNOWN;
break;
}
next_poll:
if (lmac->last_link != lmac->link_up) {
if (lmac->link_up)
bgx_sgmii_change_link_state(lmac);
lmac->last_link = lmac->link_up;
}
queue_delayed_work(lmac->check_link, &lmac->dwork, HZ * 3);
}
static void bgx_poll_for_link(struct work_struct *work)
{
struct lmac *lmac;
u64 spu_link, smu_link;
lmac = container_of(work, struct lmac, dwork.work);
if (lmac->is_sgmii) {
bgx_poll_for_sgmii_link(lmac);
return;
}
/* Receive link is latching low. Force it high and verify it */
bgx_reg_modify(lmac->bgx, lmac->lmacid,
BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK);
bgx_poll_reg(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1,
SPU_STATUS1_RCV_LNK, false);
spu_link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1);
smu_link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SMUX_RX_CTL);
if ((spu_link & SPU_STATUS1_RCV_LNK) &&
!(smu_link & SMU_RX_CTL_STATUS)) {
lmac->link_up = true;
if (lmac->lmac_type == BGX_MODE_XLAUI)
lmac->last_speed = SPEED_40000;
else
lmac->last_speed = SPEED_10000;
lmac->last_duplex = DUPLEX_FULL;
} else {
lmac->link_up = false;
lmac->last_speed = SPEED_UNKNOWN;
lmac->last_duplex = DUPLEX_UNKNOWN;
}
if (lmac->last_link != lmac->link_up) {
if (lmac->link_up) {
if (bgx_xaui_check_link(lmac)) {
/* Errors, clear link_up state */
lmac->link_up = false;
lmac->last_speed = SPEED_UNKNOWN;
lmac->last_duplex = DUPLEX_UNKNOWN;
}
}
lmac->last_link = lmac->link_up;
}
queue_delayed_work(lmac->check_link, &lmac->dwork, HZ * 2);
}
static int phy_interface_mode(u8 lmac_type)
{
if (lmac_type == BGX_MODE_QSGMII)
return PHY_INTERFACE_MODE_QSGMII;
if (lmac_type == BGX_MODE_RGMII)
return PHY_INTERFACE_MODE_RGMII_RXID;
return PHY_INTERFACE_MODE_SGMII;
}
static int bgx_lmac_enable(struct bgx *bgx, u8 lmacid)
{
struct lmac *lmac;
u64 cfg;
lmac = &bgx->lmac[lmacid];
lmac->bgx = bgx;
if ((lmac->lmac_type == BGX_MODE_SGMII) ||
(lmac->lmac_type == BGX_MODE_QSGMII) ||
(lmac->lmac_type == BGX_MODE_RGMII)) {
lmac->is_sgmii = true;
if (bgx_lmac_sgmii_init(bgx, lmac))
return -1;
} else {
lmac->is_sgmii = false;
if (bgx_lmac_xaui_init(bgx, lmac))
return -1;
}
if (lmac->is_sgmii) {
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND);
cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND, cfg);
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_MIN_PKT, 60 - 1);
} else {
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_APPEND);
cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, cfg);
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_MIN_PKT, 60 + 4);
}
/* actual number of filters available to exact LMAC */
lmac->dmacs_count = (RX_DMAC_COUNT / bgx->lmac_count);
lmac->dmacs = kcalloc(lmac->dmacs_count, sizeof(*lmac->dmacs),
GFP_KERNEL);
if (!lmac->dmacs)
return -ENOMEM;
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
/* Restore default cfg, incase low level firmware changed it */
bgx_reg_write(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL, 0x03);
if ((lmac->lmac_type != BGX_MODE_XFI) &&
(lmac->lmac_type != BGX_MODE_XLAUI) &&
(lmac->lmac_type != BGX_MODE_40G_KR) &&
(lmac->lmac_type != BGX_MODE_10G_KR)) {
if (!lmac->phydev) {
if (lmac->autoneg) {
bgx_reg_write(bgx, lmacid,
BGX_GMP_PCS_LINKX_TIMER,
PCS_LINKX_TIMER_COUNT);
goto poll;
} else {
/* Default to below link speed and duplex */
lmac->link_up = true;
lmac->last_speed = SPEED_1000;
lmac->last_duplex = DUPLEX_FULL;
bgx_sgmii_change_link_state(lmac);
return 0;
}
}
lmac->phydev->dev_flags = 0;
if (phy_connect_direct(&lmac->netdev, lmac->phydev,
bgx_lmac_handler,
phy_interface_mode(lmac->lmac_type)))
return -ENODEV;
phy_start(lmac->phydev);
return 0;
}
poll:
lmac->check_link = alloc_workqueue("check_link", WQ_UNBOUND |
WQ_MEM_RECLAIM, 1);
if (!lmac->check_link)
return -ENOMEM;
INIT_DELAYED_WORK(&lmac->dwork, bgx_poll_for_link);
queue_delayed_work(lmac->check_link, &lmac->dwork, 0);
return 0;
}
static void bgx_lmac_disable(struct bgx *bgx, u8 lmacid)
{
struct lmac *lmac;
u64 cfg;
lmac = &bgx->lmac[lmacid];
if (lmac->check_link) {
/* Destroy work queue */
cancel_delayed_work_sync(&lmac->dwork);
destroy_workqueue(lmac->check_link);
}
/* Disable packet reception */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_PKT_RX_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
/* Give chance for Rx/Tx FIFO to get drained */
bgx_poll_reg(bgx, lmacid, BGX_CMRX_RX_FIFO_LEN, (u64)0x1FFF, true);
bgx_poll_reg(bgx, lmacid, BGX_CMRX_TX_FIFO_LEN, (u64)0x3FFF, true);
/* Disable packet transmission */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_PKT_TX_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
/* Disable serdes lanes */
if (!lmac->is_sgmii)
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER);
else
bgx_reg_modify(bgx, lmacid,
BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_PWR_DN);
/* Disable LMAC */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
bgx_flush_dmac_cam_filter(bgx, lmacid);
kfree(lmac->dmacs);
if ((lmac->lmac_type != BGX_MODE_XFI) &&
(lmac->lmac_type != BGX_MODE_XLAUI) &&
(lmac->lmac_type != BGX_MODE_40G_KR) &&
(lmac->lmac_type != BGX_MODE_10G_KR) && lmac->phydev)
phy_disconnect(lmac->phydev);
lmac->phydev = NULL;
}
static void bgx_init_hw(struct bgx *bgx)
{
int i;
struct lmac *lmac;
bgx_reg_modify(bgx, 0, BGX_CMR_GLOBAL_CFG, CMR_GLOBAL_CFG_FCS_STRIP);
if (bgx_reg_read(bgx, 0, BGX_CMR_BIST_STATUS))
dev_err(&bgx->pdev->dev, "BGX%d BIST failed\n", bgx->bgx_id);
/* Set lmac type and lane2serdes mapping */
for (i = 0; i < bgx->lmac_count; i++) {
lmac = &bgx->lmac[i];
bgx_reg_write(bgx, i, BGX_CMRX_CFG,
(lmac->lmac_type << 8) | lmac->lane_to_sds);
bgx->lmac[i].lmacid_bd = lmac_count;
lmac_count++;
}
bgx_reg_write(bgx, 0, BGX_CMR_TX_LMACS, bgx->lmac_count);
bgx_reg_write(bgx, 0, BGX_CMR_RX_LMACS, bgx->lmac_count);
/* Set the backpressure AND mask */
for (i = 0; i < bgx->lmac_count; i++)
bgx_reg_modify(bgx, 0, BGX_CMR_CHAN_MSK_AND,
((1ULL << MAX_BGX_CHANS_PER_LMAC) - 1) <<
(i * MAX_BGX_CHANS_PER_LMAC));
/* Disable all MAC filtering */
for (i = 0; i < RX_DMAC_COUNT; i++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + (i * 8), 0x00);
/* Disable MAC steering (NCSI traffic) */
for (i = 0; i < RX_TRAFFIC_STEER_RULE_COUNT; i++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_STEERING + (i * 8), 0x00);
}
static u8 bgx_get_lane2sds_cfg(struct bgx *bgx, struct lmac *lmac)
{
return (u8)(bgx_reg_read(bgx, lmac->lmacid, BGX_CMRX_CFG) & 0xFF);
}
static void bgx_print_qlm_mode(struct bgx *bgx, u8 lmacid)
{
struct device *dev = &bgx->pdev->dev;
struct lmac *lmac;
char str[27];
if (!bgx->is_dlm && lmacid)
return;
lmac = &bgx->lmac[lmacid];
if (!bgx->is_dlm)
sprintf(str, "BGX%d QLM mode", bgx->bgx_id);
else
sprintf(str, "BGX%d LMAC%d mode", bgx->bgx_id, lmacid);
switch (lmac->lmac_type) {
case BGX_MODE_SGMII:
dev_info(dev, "%s: SGMII\n", (char *)str);
break;
case BGX_MODE_XAUI:
dev_info(dev, "%s: XAUI\n", (char *)str);
break;
case BGX_MODE_RXAUI:
dev_info(dev, "%s: RXAUI\n", (char *)str);
break;
case BGX_MODE_XFI:
if (!lmac->use_training)
dev_info(dev, "%s: XFI\n", (char *)str);
else
dev_info(dev, "%s: 10G_KR\n", (char *)str);
break;
case BGX_MODE_XLAUI:
if (!lmac->use_training)
dev_info(dev, "%s: XLAUI\n", (char *)str);
else
dev_info(dev, "%s: 40G_KR4\n", (char *)str);
break;
case BGX_MODE_QSGMII:
dev_info(dev, "%s: QSGMII\n", (char *)str);
break;
case BGX_MODE_RGMII:
dev_info(dev, "%s: RGMII\n", (char *)str);
break;
case BGX_MODE_INVALID:
/* Nothing to do */
break;
}
}
static void lmac_set_lane2sds(struct bgx *bgx, struct lmac *lmac)
{
switch (lmac->lmac_type) {
case BGX_MODE_SGMII:
case BGX_MODE_XFI:
lmac->lane_to_sds = lmac->lmacid;
break;
case BGX_MODE_XAUI:
case BGX_MODE_XLAUI:
case BGX_MODE_RGMII:
lmac->lane_to_sds = 0xE4;
break;
case BGX_MODE_RXAUI:
lmac->lane_to_sds = (lmac->lmacid) ? 0xE : 0x4;
break;
case BGX_MODE_QSGMII:
/* There is no way to determine if DLM0/2 is QSGMII or
* DLM1/3 is configured to QSGMII as bootloader will
* configure all LMACs, so take whatever is configured
* by low level firmware.
*/
lmac->lane_to_sds = bgx_get_lane2sds_cfg(bgx, lmac);
break;
default:
lmac->lane_to_sds = 0;
break;
}
}
static void lmac_set_training(struct bgx *bgx, struct lmac *lmac, int lmacid)
{
if ((lmac->lmac_type != BGX_MODE_10G_KR) &&
(lmac->lmac_type != BGX_MODE_40G_KR)) {
lmac->use_training = false;
return;
}
lmac->use_training = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL) &
SPU_PMD_CRTL_TRAIN_EN;
}
static void bgx_set_lmac_config(struct bgx *bgx, u8 idx)
{
struct lmac *lmac;
u64 cmr_cfg;
u8 lmac_type;
u8 lane_to_sds;
lmac = &bgx->lmac[idx];
if (!bgx->is_dlm || bgx->is_rgx) {
/* Read LMAC0 type to figure out QLM mode
* This is configured by low level firmware
*/
cmr_cfg = bgx_reg_read(bgx, 0, BGX_CMRX_CFG);
lmac->lmac_type = (cmr_cfg >> 8) & 0x07;
if (bgx->is_rgx)
lmac->lmac_type = BGX_MODE_RGMII;
lmac_set_training(bgx, lmac, 0);
lmac_set_lane2sds(bgx, lmac);
return;
}
/* For DLMs or SLMs on 80/81/83xx so many lane configurations
* are possible and vary across boards. Also Kernel doesn't have
* any way to identify board type/info and since firmware does,
* just take lmac type and serdes lane config as is.
*/
cmr_cfg = bgx_reg_read(bgx, idx, BGX_CMRX_CFG);
lmac_type = (u8)((cmr_cfg >> 8) & 0x07);
lane_to_sds = (u8)(cmr_cfg & 0xFF);
/* Check if config is reset value */
if ((lmac_type == 0) && (lane_to_sds == 0xE4))
lmac->lmac_type = BGX_MODE_INVALID;
else
lmac->lmac_type = lmac_type;
lmac->lane_to_sds = lane_to_sds;
lmac_set_training(bgx, lmac, lmac->lmacid);
}
static void bgx_get_qlm_mode(struct bgx *bgx)
{
struct lmac *lmac;
u8 idx;
/* Init all LMAC's type to invalid */
for (idx = 0; idx < bgx->max_lmac; idx++) {
lmac = &bgx->lmac[idx];
lmac->lmacid = idx;
lmac->lmac_type = BGX_MODE_INVALID;
lmac->use_training = false;
}
/* It is assumed that low level firmware sets this value */
bgx->lmac_count = bgx_reg_read(bgx, 0, BGX_CMR_RX_LMACS) & 0x7;
if (bgx->lmac_count > bgx->max_lmac)
bgx->lmac_count = bgx->max_lmac;
for (idx = 0; idx < bgx->lmac_count; idx++) {
bgx_set_lmac_config(bgx, idx);
bgx_print_qlm_mode(bgx, idx);
}
}
#ifdef CONFIG_ACPI
static int acpi_get_mac_address(struct device *dev, struct acpi_device *adev,
u8 *dst)
{
u8 mac[ETH_ALEN];
int ret;
ret = fwnode_get_mac_address(acpi_fwnode_handle(adev), mac);
if (ret) {
dev_err(dev, "MAC address invalid: %pM\n", mac);
return -EINVAL;
}
dev_info(dev, "MAC address set to: %pM\n", mac);
ether_addr_copy(dst, mac);
return 0;
}
/* Currently only sets the MAC address. */
static acpi_status bgx_acpi_register_phy(acpi_handle handle,
u32 lvl, void *context, void **rv)
{
struct bgx *bgx = context;
struct device *dev = &bgx->pdev->dev;
struct acpi_device *adev;
adev = acpi_fetch_acpi_dev(handle);
if (!adev)
goto out;
acpi_get_mac_address(dev, adev, bgx->lmac[bgx->acpi_lmac_idx].mac);
SET_NETDEV_DEV(&bgx->lmac[bgx->acpi_lmac_idx].netdev, dev);
bgx->lmac[bgx->acpi_lmac_idx].lmacid = bgx->acpi_lmac_idx;
bgx->acpi_lmac_idx++; /* move to next LMAC */
out:
return AE_OK;
}
static acpi_status bgx_acpi_match_id(acpi_handle handle, u32 lvl,
void *context, void **ret_val)
{
struct acpi_buffer string = { ACPI_ALLOCATE_BUFFER, NULL };
struct bgx *bgx = context;
char bgx_sel[5];
snprintf(bgx_sel, 5, "BGX%d", bgx->bgx_id);
if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &string))) {
pr_warn("Invalid link device\n");
return AE_OK;
}
if (strncmp(string.pointer, bgx_sel, 4)) {
kfree(string.pointer);
return AE_OK;
}
acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
bgx_acpi_register_phy, NULL, bgx, NULL);
kfree(string.pointer);
return AE_CTRL_TERMINATE;
}
static int bgx_init_acpi_phy(struct bgx *bgx)
{
acpi_get_devices(NULL, bgx_acpi_match_id, bgx, (void **)NULL);
return 0;
}
#else
static int bgx_init_acpi_phy(struct bgx *bgx)
{
return -ENODEV;
}
#endif /* CONFIG_ACPI */
#if IS_ENABLED(CONFIG_OF_MDIO)
static int bgx_init_of_phy(struct bgx *bgx)
{
struct fwnode_handle *fwn;
struct device_node *node = NULL;
u8 lmac = 0;
device_for_each_child_node(&bgx->pdev->dev, fwn) {
struct phy_device *pd;
struct device_node *phy_np;
/* Should always be an OF node. But if it is not, we
* cannot handle it, so exit the loop.
*/
node = to_of_node(fwn);
if (!node)
break;
of_get_mac_address(node, bgx->lmac[lmac].mac);
SET_NETDEV_DEV(&bgx->lmac[lmac].netdev, &bgx->pdev->dev);
bgx->lmac[lmac].lmacid = lmac;
phy_np = of_parse_phandle(node, "phy-handle", 0);
/* If there is no phy or defective firmware presents
* this cortina phy, for which there is no driver
* support, ignore it.
*/
if (phy_np &&
!of_device_is_compatible(phy_np, "cortina,cs4223-slice")) {
/* Wait until the phy drivers are available */
pd = of_phy_find_device(phy_np);
if (!pd)
goto defer;
bgx->lmac[lmac].phydev = pd;
}
lmac++;
if (lmac == bgx->max_lmac) {
of_node_put(node);
break;
}
}
return 0;
defer:
/* We are bailing out, try not to leak device reference counts
* for phy devices we may have already found.
*/
while (lmac) {
if (bgx->lmac[lmac].phydev) {
put_device(&bgx->lmac[lmac].phydev->mdio.dev);
bgx->lmac[lmac].phydev = NULL;
}
lmac--;
}
of_node_put(node);
return -EPROBE_DEFER;
}
#else
static int bgx_init_of_phy(struct bgx *bgx)
{
return -ENODEV;
}
#endif /* CONFIG_OF_MDIO */
static int bgx_init_phy(struct bgx *bgx)
{
if (!acpi_disabled)
return bgx_init_acpi_phy(bgx);
return bgx_init_of_phy(bgx);
}
static irqreturn_t bgx_intr_handler(int irq, void *data)
{
struct bgx *bgx = (struct bgx *)data;
u64 status, val;
int lmac;
for (lmac = 0; lmac < bgx->lmac_count; lmac++) {
status = bgx_reg_read(bgx, lmac, BGX_GMP_GMI_TXX_INT);
if (status & GMI_TXX_INT_UNDFLW) {
pci_err(bgx->pdev, "BGX%d lmac%d UNDFLW\n",
bgx->bgx_id, lmac);
val = bgx_reg_read(bgx, lmac, BGX_CMRX_CFG);
val &= ~CMR_EN;
bgx_reg_write(bgx, lmac, BGX_CMRX_CFG, val);
val |= CMR_EN;
bgx_reg_write(bgx, lmac, BGX_CMRX_CFG, val);
}
/* clear interrupts */
bgx_reg_write(bgx, lmac, BGX_GMP_GMI_TXX_INT, status);
}
return IRQ_HANDLED;
}
static void bgx_register_intr(struct pci_dev *pdev)
{
struct bgx *bgx = pci_get_drvdata(pdev);
int ret;
ret = pci_alloc_irq_vectors(pdev, BGX_LMAC_VEC_OFFSET,
BGX_LMAC_VEC_OFFSET, PCI_IRQ_ALL_TYPES);
if (ret < 0) {
pci_err(pdev, "Req for #%d msix vectors failed\n",
BGX_LMAC_VEC_OFFSET);
return;
}
ret = pci_request_irq(pdev, GMPX_GMI_TX_INT, bgx_intr_handler, NULL,
bgx, "BGX%d", bgx->bgx_id);
if (ret)
pci_free_irq(pdev, GMPX_GMI_TX_INT, bgx);
}
static int bgx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int err;
struct device *dev = &pdev->dev;
struct bgx *bgx = NULL;
u8 lmac;
u16 sdevid;
bgx = devm_kzalloc(dev, sizeof(*bgx), GFP_KERNEL);
if (!bgx)
return -ENOMEM;
bgx->pdev = pdev;
pci_set_drvdata(pdev, bgx);
err = pcim_enable_device(pdev);
if (err) {
pci_set_drvdata(pdev, NULL);
return dev_err_probe(dev, err, "Failed to enable PCI device\n");
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto err_disable_device;
}
/* MAP configuration registers */
bgx->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
if (!bgx->reg_base) {
dev_err(dev, "BGX: Cannot map CSR memory space, aborting\n");
err = -ENOMEM;
goto err_release_regions;
}
set_max_bgx_per_node(pdev);
pci_read_config_word(pdev, PCI_DEVICE_ID, &sdevid);
if (sdevid != PCI_DEVICE_ID_THUNDER_RGX) {
bgx->bgx_id = (pci_resource_start(pdev,
PCI_CFG_REG_BAR_NUM) >> 24) & BGX_ID_MASK;
bgx->bgx_id += nic_get_node_id(pdev) * max_bgx_per_node;
bgx->max_lmac = MAX_LMAC_PER_BGX;
bgx_vnic[bgx->bgx_id] = bgx;
} else {
bgx->is_rgx = true;
bgx->max_lmac = 1;
bgx->bgx_id = MAX_BGX_PER_CN81XX - 1;
bgx_vnic[bgx->bgx_id] = bgx;
xcv_init_hw();
}
/* On 81xx all are DLMs and on 83xx there are 3 BGX QLMs and one
* BGX i.e BGX2 can be split across 2 DLMs.
*/
pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sdevid);
if ((sdevid == PCI_SUBSYS_DEVID_81XX_BGX) ||
((sdevid == PCI_SUBSYS_DEVID_83XX_BGX) && (bgx->bgx_id == 2)))
bgx->is_dlm = true;
bgx_get_qlm_mode(bgx);
err = bgx_init_phy(bgx);
if (err)
goto err_enable;
bgx_init_hw(bgx);
bgx_register_intr(pdev);
/* Enable all LMACs */
for (lmac = 0; lmac < bgx->lmac_count; lmac++) {
err = bgx_lmac_enable(bgx, lmac);
if (err) {
dev_err(dev, "BGX%d failed to enable lmac%d\n",
bgx->bgx_id, lmac);
while (lmac)
bgx_lmac_disable(bgx, --lmac);
goto err_enable;
}
}
return 0;
err_enable:
bgx_vnic[bgx->bgx_id] = NULL;
pci_free_irq(pdev, GMPX_GMI_TX_INT, bgx);
err_release_regions:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void bgx_remove(struct pci_dev *pdev)
{
struct bgx *bgx = pci_get_drvdata(pdev);
u8 lmac;
/* Disable all LMACs */
for (lmac = 0; lmac < bgx->lmac_count; lmac++)
bgx_lmac_disable(bgx, lmac);
pci_free_irq(pdev, GMPX_GMI_TX_INT, bgx);
bgx_vnic[bgx->bgx_id] = NULL;
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_driver bgx_driver = {
.name = DRV_NAME,
.id_table = bgx_id_table,
.probe = bgx_probe,
.remove = bgx_remove,
};
static int __init bgx_init_module(void)
{
pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
return pci_register_driver(&bgx_driver);
}
static void __exit bgx_cleanup_module(void)
{
pci_unregister_driver(&bgx_driver);
}
module_init(bgx_init_module);
module_exit(bgx_cleanup_module);