blob: 185c1f10fb30be059727af39d44cbcd16b5adbc5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ov534-ov7xxx gspca driver
*
* Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
* Copyright (C) 2008 Jim Paris <jim@jtan.com>
* Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
*
* Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
* USB protocol reverse engineered by Jim Paris <jim@jtan.com>
* https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
*
* PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
* PS3 Eye camera - brightness, contrast, awb, agc, aec controls
* added by Max Thrun <bear24rw@gmail.com>
* PS3 Eye camera - FPS range extended by Joseph Howse
* <josephhowse@nummist.com> http://nummist.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define MODULE_NAME "ov534"
#include "gspca.h"
#include <linux/fixp-arith.h>
#include <media/v4l2-ctrls.h>
#define OV534_REG_ADDRESS 0xf1 /* sensor address */
#define OV534_REG_SUBADDR 0xf2
#define OV534_REG_WRITE 0xf3
#define OV534_REG_READ 0xf4
#define OV534_REG_OPERATION 0xf5
#define OV534_REG_STATUS 0xf6
#define OV534_OP_WRITE_3 0x37
#define OV534_OP_WRITE_2 0x33
#define OV534_OP_READ_2 0xf9
#define CTRL_TIMEOUT 500
#define DEFAULT_FRAME_RATE 30
MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
MODULE_LICENSE("GPL");
/* specific webcam descriptor */
struct sd {
struct gspca_dev gspca_dev; /* !! must be the first item */
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *hue;
struct v4l2_ctrl *saturation;
struct v4l2_ctrl *brightness;
struct v4l2_ctrl *contrast;
struct { /* gain control cluster */
struct v4l2_ctrl *autogain;
struct v4l2_ctrl *gain;
};
struct v4l2_ctrl *autowhitebalance;
struct { /* exposure control cluster */
struct v4l2_ctrl *autoexposure;
struct v4l2_ctrl *exposure;
};
struct v4l2_ctrl *sharpness;
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
struct v4l2_ctrl *plfreq;
__u32 last_pts;
u16 last_fid;
u8 frame_rate;
u8 sensor;
};
enum sensors {
SENSOR_OV767x,
SENSOR_OV772x,
NSENSORS
};
static int sd_start(struct gspca_dev *gspca_dev);
static void sd_stopN(struct gspca_dev *gspca_dev);
static const struct v4l2_pix_format ov772x_mode[] = {
{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
.bytesperline = 320 * 2,
.sizeimage = 320 * 240 * 2,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 1},
{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
.bytesperline = 640 * 2,
.sizeimage = 640 * 480 * 2,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 0},
{320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 1},
{640, 480, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
.bytesperline = 640,
.sizeimage = 640 * 480,
.colorspace = V4L2_COLORSPACE_SRGB,
.priv = 0},
};
static const struct v4l2_pix_format ov767x_mode[] = {
{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 320,
.sizeimage = 320 * 240 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG},
{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
.bytesperline = 640,
.sizeimage = 640 * 480 * 3 / 8 + 590,
.colorspace = V4L2_COLORSPACE_JPEG},
};
static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
static const u8 vga_rates[] = {60, 50, 40, 30, 15};
static const struct framerates ov772x_framerates[] = {
{ /* 320x240 */
.rates = qvga_rates,
.nrates = ARRAY_SIZE(qvga_rates),
},
{ /* 640x480 */
.rates = vga_rates,
.nrates = ARRAY_SIZE(vga_rates),
},
{ /* 320x240 SGBRG8 */
.rates = qvga_rates,
.nrates = ARRAY_SIZE(qvga_rates),
},
{ /* 640x480 SGBRG8 */
.rates = vga_rates,
.nrates = ARRAY_SIZE(vga_rates),
},
};
struct reg_array {
const u8 (*val)[2];
int len;
};
static const u8 bridge_init_767x[][2] = {
/* comments from the ms-win file apollo7670.set */
/* str1 */
{0xf1, 0x42},
{0x88, 0xf8},
{0x89, 0xff},
{0x76, 0x03},
{0x92, 0x03},
{0x95, 0x10},
{0xe2, 0x00},
{0xe7, 0x3e},
{0x8d, 0x1c},
{0x8e, 0x00},
{0x8f, 0x00},
{0x1f, 0x00},
{0xc3, 0xf9},
{0x89, 0xff},
{0x88, 0xf8},
{0x76, 0x03},
{0x92, 0x01},
{0x93, 0x18},
{0x1c, 0x00},
{0x1d, 0x48},
{0x1d, 0x00},
{0x1d, 0xff},
{0x1d, 0x02},
{0x1d, 0x58},
{0x1d, 0x00},
{0x1c, 0x0a},
{0x1d, 0x0a},
{0x1d, 0x0e},
{0xc0, 0x50}, /* HSize 640 */
{0xc1, 0x3c}, /* VSize 480 */
{0x34, 0x05}, /* enable Audio Suspend mode */
{0xc2, 0x0c}, /* Input YUV */
{0xc3, 0xf9}, /* enable PRE */
{0x34, 0x05}, /* enable Audio Suspend mode */
{0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */
{0x31, 0xf9}, /* enable 1.8V Suspend */
{0x35, 0x02}, /* turn on JPEG */
{0xd9, 0x10},
{0x25, 0x42}, /* GPIO[8]:Input */
{0x94, 0x11}, /* If the default setting is loaded when
* system boots up, this flag is closed here */
};
static const u8 sensor_init_767x[][2] = {
{0x12, 0x80},
{0x11, 0x03},
{0x3a, 0x04},
{0x12, 0x00},
{0x17, 0x13},
{0x18, 0x01},
{0x32, 0xb6},
{0x19, 0x02},
{0x1a, 0x7a},
{0x03, 0x0a},
{0x0c, 0x00},
{0x3e, 0x00},
{0x70, 0x3a},
{0x71, 0x35},
{0x72, 0x11},
{0x73, 0xf0},
{0xa2, 0x02},
{0x7a, 0x2a}, /* set Gamma=1.6 below */
{0x7b, 0x12},
{0x7c, 0x1d},
{0x7d, 0x2d},
{0x7e, 0x45},
{0x7f, 0x50},
{0x80, 0x59},
{0x81, 0x62},
{0x82, 0x6b},
{0x83, 0x73},
{0x84, 0x7b},
{0x85, 0x8a},
{0x86, 0x98},
{0x87, 0xb2},
{0x88, 0xca},
{0x89, 0xe0},
{0x13, 0xe0},
{0x00, 0x00},
{0x10, 0x00},
{0x0d, 0x40},
{0x14, 0x38}, /* gain max 16x */
{0xa5, 0x05},
{0xab, 0x07},
{0x24, 0x95},
{0x25, 0x33},
{0x26, 0xe3},
{0x9f, 0x78},
{0xa0, 0x68},
{0xa1, 0x03},
{0xa6, 0xd8},
{0xa7, 0xd8},
{0xa8, 0xf0},
{0xa9, 0x90},
{0xaa, 0x94},
{0x13, 0xe5},
{0x0e, 0x61},
{0x0f, 0x4b},
{0x16, 0x02},
{0x21, 0x02},
{0x22, 0x91},
{0x29, 0x07},
{0x33, 0x0b},
{0x35, 0x0b},
{0x37, 0x1d},
{0x38, 0x71},
{0x39, 0x2a},
{0x3c, 0x78},
{0x4d, 0x40},
{0x4e, 0x20},
{0x69, 0x00},
{0x6b, 0x4a},
{0x74, 0x10},
{0x8d, 0x4f},
{0x8e, 0x00},
{0x8f, 0x00},
{0x90, 0x00},
{0x91, 0x00},
{0x96, 0x00},
{0x9a, 0x80},
{0xb0, 0x84},
{0xb1, 0x0c},
{0xb2, 0x0e},
{0xb3, 0x82},
{0xb8, 0x0a},
{0x43, 0x0a},
{0x44, 0xf0},
{0x45, 0x34},
{0x46, 0x58},
{0x47, 0x28},
{0x48, 0x3a},
{0x59, 0x88},
{0x5a, 0x88},
{0x5b, 0x44},
{0x5c, 0x67},
{0x5d, 0x49},
{0x5e, 0x0e},
{0x6c, 0x0a},
{0x6d, 0x55},
{0x6e, 0x11},
{0x6f, 0x9f},
{0x6a, 0x40},
{0x01, 0x40},
{0x02, 0x40},
{0x13, 0xe7},
{0x4f, 0x80},
{0x50, 0x80},
{0x51, 0x00},
{0x52, 0x22},
{0x53, 0x5e},
{0x54, 0x80},
{0x58, 0x9e},
{0x41, 0x08},
{0x3f, 0x00},
{0x75, 0x04},
{0x76, 0xe1},
{0x4c, 0x00},
{0x77, 0x01},
{0x3d, 0xc2},
{0x4b, 0x09},
{0xc9, 0x60},
{0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */
{0x56, 0x40},
{0x34, 0x11},
{0x3b, 0xc2},
{0xa4, 0x8a}, /* Night mode trigger point */
{0x96, 0x00},
{0x97, 0x30},
{0x98, 0x20},
{0x99, 0x20},
{0x9a, 0x84},
{0x9b, 0x29},
{0x9c, 0x03},
{0x9d, 0x4c},
{0x9e, 0x3f},
{0x78, 0x04},
{0x79, 0x01},
{0xc8, 0xf0},
{0x79, 0x0f},
{0xc8, 0x00},
{0x79, 0x10},
{0xc8, 0x7e},
{0x79, 0x0a},
{0xc8, 0x80},
{0x79, 0x0b},
{0xc8, 0x01},
{0x79, 0x0c},
{0xc8, 0x0f},
{0x79, 0x0d},
{0xc8, 0x20},
{0x79, 0x09},
{0xc8, 0x80},
{0x79, 0x02},
{0xc8, 0xc0},
{0x79, 0x03},
{0xc8, 0x20},
{0x79, 0x26},
};
static const u8 bridge_start_vga_767x[][2] = {
/* str59 JPG */
{0x94, 0xaa},
{0xf1, 0x42},
{0xe5, 0x04},
{0xc0, 0x50},
{0xc1, 0x3c},
{0xc2, 0x0c},
{0x35, 0x02}, /* turn on JPEG */
{0xd9, 0x10},
{0xda, 0x00}, /* for higher clock rate(30fps) */
{0x34, 0x05}, /* enable Audio Suspend mode */
{0xc3, 0xf9}, /* enable PRE */
{0x8c, 0x00}, /* CIF VSize LSB[2:0] */
{0x8d, 0x1c}, /* output YUV */
/* {0x34, 0x05}, * enable Audio Suspend mode (?) */
{0x50, 0x00}, /* H/V divider=0 */
{0x51, 0xa0}, /* input H=640/4 */
{0x52, 0x3c}, /* input V=480/4 */
{0x53, 0x00}, /* offset X=0 */
{0x54, 0x00}, /* offset Y=0 */
{0x55, 0x00}, /* H/V size[8]=0 */
{0x57, 0x00}, /* H-size[9]=0 */
{0x5c, 0x00}, /* output size[9:8]=0 */
{0x5a, 0xa0}, /* output H=640/4 */
{0x5b, 0x78}, /* output V=480/4 */
{0x1c, 0x0a},
{0x1d, 0x0a},
{0x94, 0x11},
};
static const u8 sensor_start_vga_767x[][2] = {
{0x11, 0x01},
{0x1e, 0x04},
{0x19, 0x02},
{0x1a, 0x7a},
};
static const u8 bridge_start_qvga_767x[][2] = {
/* str86 JPG */
{0x94, 0xaa},
{0xf1, 0x42},
{0xe5, 0x04},
{0xc0, 0x80},
{0xc1, 0x60},
{0xc2, 0x0c},
{0x35, 0x02}, /* turn on JPEG */
{0xd9, 0x10},
{0xc0, 0x50}, /* CIF HSize 640 */
{0xc1, 0x3c}, /* CIF VSize 480 */
{0x8c, 0x00}, /* CIF VSize LSB[2:0] */
{0x8d, 0x1c}, /* output YUV */
{0x34, 0x05}, /* enable Audio Suspend mode */
{0xc2, 0x4c}, /* output YUV and Enable DCW */
{0xc3, 0xf9}, /* enable PRE */
{0x1c, 0x00}, /* indirect addressing */
{0x1d, 0x48}, /* output YUV422 */
{0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */
{0x51, 0xa0}, /* DCW input H=640/4 */
{0x52, 0x78}, /* DCW input V=480/4 */
{0x53, 0x00}, /* offset X=0 */
{0x54, 0x00}, /* offset Y=0 */
{0x55, 0x00}, /* H/V size[8]=0 */
{0x57, 0x00}, /* H-size[9]=0 */
{0x5c, 0x00}, /* DCW output size[9:8]=0 */
{0x5a, 0x50}, /* DCW output H=320/4 */
{0x5b, 0x3c}, /* DCW output V=240/4 */
{0x1c, 0x0a},
{0x1d, 0x0a},
{0x94, 0x11},
};
static const u8 sensor_start_qvga_767x[][2] = {
{0x11, 0x01},
{0x1e, 0x04},
{0x19, 0x02},
{0x1a, 0x7a},
};
static const u8 bridge_init_772x[][2] = {
{ 0x88, 0xf8 },
{ 0x89, 0xff },
{ 0x76, 0x03 },
{ 0x92, 0x01 },
{ 0x93, 0x18 },
{ 0x94, 0x10 },
{ 0x95, 0x10 },
{ 0xe2, 0x00 },
{ 0xe7, 0x3e },
{ 0x96, 0x00 },
{ 0x97, 0x20 },
{ 0x97, 0x20 },
{ 0x97, 0x20 },
{ 0x97, 0x0a },
{ 0x97, 0x3f },
{ 0x97, 0x4a },
{ 0x97, 0x20 },
{ 0x97, 0x15 },
{ 0x97, 0x0b },
{ 0x8e, 0x40 },
{ 0x1f, 0x81 },
{ 0x34, 0x05 },
{ 0xe3, 0x04 },
{ 0x89, 0x00 },
{ 0x76, 0x00 },
{ 0xe7, 0x2e },
{ 0x31, 0xf9 },
{ 0x25, 0x42 },
{ 0x21, 0xf0 },
{ 0x1c, 0x0a },
{ 0x1d, 0x08 }, /* turn on UVC header */
{ 0x1d, 0x0e }, /* .. */
};
static const u8 sensor_init_772x[][2] = {
{ 0x12, 0x80 },
{ 0x11, 0x01 },
/*fixme: better have a delay?*/
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x11, 0x01 },
{ 0x3d, 0x03 },
{ 0x17, 0x26 },
{ 0x18, 0xa0 },
{ 0x19, 0x07 },
{ 0x1a, 0xf0 },
{ 0x32, 0x00 },
{ 0x29, 0xa0 },
{ 0x2c, 0xf0 },
{ 0x65, 0x20 },
{ 0x11, 0x01 },
{ 0x42, 0x7f },
{ 0x63, 0xaa }, /* AWB - was e0 */
{ 0x64, 0xff },
{ 0x66, 0x00 },
{ 0x13, 0xf0 }, /* com8 */
{ 0x0d, 0x41 },
{ 0x0f, 0xc5 },
{ 0x14, 0x11 },
{ 0x22, 0x7f },
{ 0x23, 0x03 },
{ 0x24, 0x40 },
{ 0x25, 0x30 },
{ 0x26, 0xa1 },
{ 0x2a, 0x00 },
{ 0x2b, 0x00 },
{ 0x6b, 0xaa },
{ 0x13, 0xff }, /* AWB */
{ 0x90, 0x05 },
{ 0x91, 0x01 },
{ 0x92, 0x03 },
{ 0x93, 0x00 },
{ 0x94, 0x60 },
{ 0x95, 0x3c },
{ 0x96, 0x24 },
{ 0x97, 0x1e },
{ 0x98, 0x62 },
{ 0x99, 0x80 },
{ 0x9a, 0x1e },
{ 0x9b, 0x08 },
{ 0x9c, 0x20 },
{ 0x9e, 0x81 },
{ 0xa6, 0x07 },
{ 0x7e, 0x0c },
{ 0x7f, 0x16 },
{ 0x80, 0x2a },
{ 0x81, 0x4e },
{ 0x82, 0x61 },
{ 0x83, 0x6f },
{ 0x84, 0x7b },
{ 0x85, 0x86 },
{ 0x86, 0x8e },
{ 0x87, 0x97 },
{ 0x88, 0xa4 },
{ 0x89, 0xaf },
{ 0x8a, 0xc5 },
{ 0x8b, 0xd7 },
{ 0x8c, 0xe8 },
{ 0x8d, 0x20 },
{ 0x2b, 0x00 },
{ 0x22, 0x7f },
{ 0x23, 0x03 },
{ 0x11, 0x01 },
{ 0x64, 0xff },
{ 0x0d, 0x41 },
{ 0x14, 0x41 },
{ 0x0e, 0xcd },
{ 0xac, 0xbf },
{ 0x8e, 0x00 }, /* De-noise threshold */
};
static const u8 bridge_start_vga_yuyv_772x[][2] = {
{0x88, 0x00},
{0x1c, 0x00},
{0x1d, 0x40},
{0x1d, 0x02},
{0x1d, 0x00},
{0x1d, 0x02},
{0x1d, 0x58},
{0x1d, 0x00},
{0x8d, 0x1c},
{0x8e, 0x80},
{0xc0, 0x50},
{0xc1, 0x3c},
{0xc2, 0x0c},
{0xc3, 0x69},
};
static const u8 sensor_start_vga_yuyv_772x[][2] = {
{0x12, 0x00},
{0x17, 0x26},
{0x18, 0xa0},
{0x19, 0x07},
{0x1a, 0xf0},
{0x29, 0xa0},
{0x2c, 0xf0},
{0x65, 0x20},
{0x67, 0x00},
};
static const u8 bridge_start_qvga_yuyv_772x[][2] = {
{0x88, 0x00},
{0x1c, 0x00},
{0x1d, 0x40},
{0x1d, 0x02},
{0x1d, 0x00},
{0x1d, 0x01},
{0x1d, 0x4b},
{0x1d, 0x00},
{0x8d, 0x1c},
{0x8e, 0x80},
{0xc0, 0x28},
{0xc1, 0x1e},
{0xc2, 0x0c},
{0xc3, 0x69},
};
static const u8 sensor_start_qvga_yuyv_772x[][2] = {
{0x12, 0x40},
{0x17, 0x3f},
{0x18, 0x50},
{0x19, 0x03},
{0x1a, 0x78},
{0x29, 0x50},
{0x2c, 0x78},
{0x65, 0x2f},
{0x67, 0x00},
};
static const u8 bridge_start_vga_gbrg_772x[][2] = {
{0x88, 0x08},
{0x1c, 0x00},
{0x1d, 0x00},
{0x1d, 0x02},
{0x1d, 0x00},
{0x1d, 0x01},
{0x1d, 0x2c},
{0x1d, 0x00},
{0x8d, 0x00},
{0x8e, 0x00},
{0xc0, 0x50},
{0xc1, 0x3c},
{0xc2, 0x01},
{0xc3, 0x01},
};
static const u8 sensor_start_vga_gbrg_772x[][2] = {
{0x12, 0x01},
{0x17, 0x26},
{0x18, 0xa0},
{0x19, 0x07},
{0x1a, 0xf0},
{0x29, 0xa0},
{0x2c, 0xf0},
{0x65, 0x20},
{0x67, 0x02},
};
static const u8 bridge_start_qvga_gbrg_772x[][2] = {
{0x88, 0x08},
{0x1c, 0x00},
{0x1d, 0x00},
{0x1d, 0x02},
{0x1d, 0x00},
{0x1d, 0x00},
{0x1d, 0x4b},
{0x1d, 0x00},
{0x8d, 0x00},
{0x8e, 0x00},
{0xc0, 0x28},
{0xc1, 0x1e},
{0xc2, 0x01},
{0xc3, 0x01},
};
static const u8 sensor_start_qvga_gbrg_772x[][2] = {
{0x12, 0x41},
{0x17, 0x3f},
{0x18, 0x50},
{0x19, 0x03},
{0x1a, 0x78},
{0x29, 0x50},
{0x2c, 0x78},
{0x65, 0x2f},
{0x67, 0x02},
};
static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
{
struct usb_device *udev = gspca_dev->dev;
int ret;
if (gspca_dev->usb_err < 0)
return;
gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
gspca_dev->usb_buf[0] = val;
ret = usb_control_msg(udev,
usb_sndctrlpipe(udev, 0),
0x01,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
if (ret < 0) {
pr_err("write failed %d\n", ret);
gspca_dev->usb_err = ret;
}
}
static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
{
struct usb_device *udev = gspca_dev->dev;
int ret;
if (gspca_dev->usb_err < 0)
return 0;
ret = usb_control_msg(udev,
usb_rcvctrlpipe(udev, 0),
0x01,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
reg, gspca_dev->usb_buf[0]);
if (ret < 0) {
pr_err("read failed %d\n", ret);
gspca_dev->usb_err = ret;
/*
* Make sure the result is zeroed to avoid uninitialized
* values.
*/
gspca_dev->usb_buf[0] = 0;
}
return gspca_dev->usb_buf[0];
}
/* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
* (direction and output)? */
static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
{
u8 data;
gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
data = ov534_reg_read(gspca_dev, 0x21);
data |= 0x80;
ov534_reg_write(gspca_dev, 0x21, data);
data = ov534_reg_read(gspca_dev, 0x23);
if (status)
data |= 0x80;
else
data &= ~0x80;
ov534_reg_write(gspca_dev, 0x23, data);
if (!status) {
data = ov534_reg_read(gspca_dev, 0x21);
data &= ~0x80;
ov534_reg_write(gspca_dev, 0x21, data);
}
}
static int sccb_check_status(struct gspca_dev *gspca_dev)
{
u8 data;
int i;
for (i = 0; i < 5; i++) {
usleep_range(10000, 20000);
data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
switch (data) {
case 0x00:
return 1;
case 0x04:
return 0;
case 0x03:
break;
default:
gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
data, i + 1);
}
}
return 0;
}
static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
{
gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
if (!sccb_check_status(gspca_dev)) {
pr_err("sccb_reg_write failed\n");
gspca_dev->usb_err = -EIO;
}
}
static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
{
ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
if (!sccb_check_status(gspca_dev))
pr_err("sccb_reg_read failed 1\n");
ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
if (!sccb_check_status(gspca_dev))
pr_err("sccb_reg_read failed 2\n");
return ov534_reg_read(gspca_dev, OV534_REG_READ);
}
/* output a bridge sequence (reg - val) */
static void reg_w_array(struct gspca_dev *gspca_dev,
const u8 (*data)[2], int len)
{
while (--len >= 0) {
ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
data++;
}
}
/* output a sensor sequence (reg - val) */
static void sccb_w_array(struct gspca_dev *gspca_dev,
const u8 (*data)[2], int len)
{
while (--len >= 0) {
if ((*data)[0] != 0xff) {
sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
} else {
sccb_reg_read(gspca_dev, (*data)[1]);
sccb_reg_write(gspca_dev, 0xff, 0x00);
}
data++;
}
}
/* ov772x specific controls */
static void set_frame_rate(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int i;
struct rate_s {
u8 fps;
u8 r11;
u8 r0d;
u8 re5;
};
const struct rate_s *r;
static const struct rate_s rate_0[] = { /* 640x480 */
{60, 0x01, 0xc1, 0x04},
{50, 0x01, 0x41, 0x02},
{40, 0x02, 0xc1, 0x04},
{30, 0x04, 0x81, 0x02},
{15, 0x03, 0x41, 0x04},
};
static const struct rate_s rate_1[] = { /* 320x240 */
/* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */
{187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
{150, 0x01, 0xc1, 0x04},
{137, 0x02, 0xc1, 0x02},
{125, 0x02, 0x81, 0x02},
{100, 0x02, 0xc1, 0x04},
{75, 0x03, 0xc1, 0x04},
{60, 0x04, 0xc1, 0x04},
{50, 0x02, 0x41, 0x04},
{37, 0x03, 0x41, 0x04},
{30, 0x04, 0x41, 0x04},
};
if (sd->sensor != SENSOR_OV772x)
return;
if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
r = rate_0;
i = ARRAY_SIZE(rate_0);
} else {
r = rate_1;
i = ARRAY_SIZE(rate_1);
}
while (--i > 0) {
if (sd->frame_rate >= r->fps)
break;
r++;
}
sccb_reg_write(gspca_dev, 0x11, r->r11);
sccb_reg_write(gspca_dev, 0x0d, r->r0d);
ov534_reg_write(gspca_dev, 0xe5, r->re5);
gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
}
static void sethue(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
if (sd->sensor == SENSOR_OV767x) {
/* TBD */
} else {
s16 huesin;
s16 huecos;
/* According to the datasheet the registers expect HUESIN and
* HUECOS to be the result of the trigonometric functions,
* scaled by 0x80.
*
* The 0x7fff here represents the maximum absolute value
* returned byt fixp_sin and fixp_cos, so the scaling will
* consider the result like in the interval [-1.0, 1.0].
*/
huesin = fixp_sin16(val) * 0x80 / 0x7fff;
huecos = fixp_cos16(val) * 0x80 / 0x7fff;
if (huesin < 0) {
sccb_reg_write(gspca_dev, 0xab,
sccb_reg_read(gspca_dev, 0xab) | 0x2);
huesin = -huesin;
} else {
sccb_reg_write(gspca_dev, 0xab,
sccb_reg_read(gspca_dev, 0xab) & ~0x2);
}
sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
}
}
static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
if (sd->sensor == SENSOR_OV767x) {
int i;
static u8 color_tb[][6] = {
{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
};
for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
} else {
sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
}
}
static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
if (sd->sensor == SENSOR_OV767x) {
if (val < 0)
val = 0x80 - val;
sccb_reg_write(gspca_dev, 0x55, val); /* bright */
} else {
sccb_reg_write(gspca_dev, 0x9b, val);
}
}
static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
if (sd->sensor == SENSOR_OV767x)
sccb_reg_write(gspca_dev, 0x56, val); /* contras */
else
sccb_reg_write(gspca_dev, 0x9c, val);
}
static void setgain(struct gspca_dev *gspca_dev, s32 val)
{
switch (val & 0x30) {
case 0x00:
val &= 0x0f;
break;
case 0x10:
val &= 0x0f;
val |= 0x30;
break;
case 0x20:
val &= 0x0f;
val |= 0x70;
break;
default:
/* case 0x30: */
val &= 0x0f;
val |= 0xf0;
break;
}
sccb_reg_write(gspca_dev, 0x00, val);
}
static s32 getgain(struct gspca_dev *gspca_dev)
{
return sccb_reg_read(gspca_dev, 0x00);
}
static void setexposure(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
if (sd->sensor == SENSOR_OV767x) {
/* set only aec[9:2] */
sccb_reg_write(gspca_dev, 0x10, val); /* aech */
} else {
/* 'val' is one byte and represents half of the exposure value
* we are going to set into registers, a two bytes value:
*
* MSB: ((u16) val << 1) >> 8 == val >> 7
* LSB: ((u16) val << 1) & 0xff == val << 1
*/
sccb_reg_write(gspca_dev, 0x08, val >> 7);
sccb_reg_write(gspca_dev, 0x10, val << 1);
}
}
static s32 getexposure(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
if (sd->sensor == SENSOR_OV767x) {
/* get only aec[9:2] */
return sccb_reg_read(gspca_dev, 0x10); /* aech */
} else {
u8 hi = sccb_reg_read(gspca_dev, 0x08);
u8 lo = sccb_reg_read(gspca_dev, 0x10);
return (hi << 8 | lo) >> 1;
}
}
static void setagc(struct gspca_dev *gspca_dev, s32 val)
{
if (val) {
sccb_reg_write(gspca_dev, 0x13,
sccb_reg_read(gspca_dev, 0x13) | 0x04);
sccb_reg_write(gspca_dev, 0x64,
sccb_reg_read(gspca_dev, 0x64) | 0x03);
} else {
sccb_reg_write(gspca_dev, 0x13,
sccb_reg_read(gspca_dev, 0x13) & ~0x04);
sccb_reg_write(gspca_dev, 0x64,
sccb_reg_read(gspca_dev, 0x64) & ~0x03);
}
}
static void setawb(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
if (val) {
sccb_reg_write(gspca_dev, 0x13,
sccb_reg_read(gspca_dev, 0x13) | 0x02);
if (sd->sensor == SENSOR_OV772x)
sccb_reg_write(gspca_dev, 0x63,
sccb_reg_read(gspca_dev, 0x63) | 0xc0);
} else {
sccb_reg_write(gspca_dev, 0x13,
sccb_reg_read(gspca_dev, 0x13) & ~0x02);
if (sd->sensor == SENSOR_OV772x)
sccb_reg_write(gspca_dev, 0x63,
sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
}
}
static void setaec(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
u8 data;
data = sd->sensor == SENSOR_OV767x ?
0x05 : /* agc + aec */
0x01; /* agc */
switch (val) {
case V4L2_EXPOSURE_AUTO:
sccb_reg_write(gspca_dev, 0x13,
sccb_reg_read(gspca_dev, 0x13) | data);
break;
case V4L2_EXPOSURE_MANUAL:
sccb_reg_write(gspca_dev, 0x13,
sccb_reg_read(gspca_dev, 0x13) & ~data);
break;
}
}
static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
{
sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */
sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */
}
static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
{
struct sd *sd = (struct sd *) gspca_dev;
u8 val;
if (sd->sensor == SENSOR_OV767x) {
val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */
val &= ~0x30;
if (hflip)
val |= 0x20;
if (vflip)
val |= 0x10;
sccb_reg_write(gspca_dev, 0x1e, val);
} else {
val = sccb_reg_read(gspca_dev, 0x0c);
val &= ~0xc0;
if (hflip == 0)
val |= 0x40;
if (vflip == 0)
val |= 0x80;
sccb_reg_write(gspca_dev, 0x0c, val);
}
}
static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
{
struct sd *sd = (struct sd *) gspca_dev;
val = val ? 0x9e : 0x00;
if (sd->sensor == SENSOR_OV767x) {
sccb_reg_write(gspca_dev, 0x2a, 0x00);
if (val)
val = 0x9d; /* insert dummy to 25fps for 50Hz */
}
sccb_reg_write(gspca_dev, 0x2b, val);
}
/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
const struct usb_device_id *id)
{
struct sd *sd = (struct sd *) gspca_dev;
struct cam *cam;
cam = &gspca_dev->cam;
cam->cam_mode = ov772x_mode;
cam->nmodes = ARRAY_SIZE(ov772x_mode);
sd->frame_rate = DEFAULT_FRAME_RATE;
return 0;
}
static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
struct gspca_dev *gspca_dev = &sd->gspca_dev;
switch (ctrl->id) {
case V4L2_CID_AUTOGAIN:
gspca_dev->usb_err = 0;
if (ctrl->val && sd->gain && gspca_dev->streaming)
sd->gain->val = getgain(gspca_dev);
return gspca_dev->usb_err;
case V4L2_CID_EXPOSURE_AUTO:
gspca_dev->usb_err = 0;
if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
gspca_dev->streaming)
sd->exposure->val = getexposure(gspca_dev);
return gspca_dev->usb_err;
}
return -EINVAL;
}
static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
struct gspca_dev *gspca_dev = &sd->gspca_dev;
gspca_dev->usb_err = 0;
if (!gspca_dev->streaming)
return 0;
switch (ctrl->id) {
case V4L2_CID_HUE:
sethue(gspca_dev, ctrl->val);
break;
case V4L2_CID_SATURATION:
setsaturation(gspca_dev, ctrl->val);
break;
case V4L2_CID_BRIGHTNESS:
setbrightness(gspca_dev, ctrl->val);
break;
case V4L2_CID_CONTRAST:
setcontrast(gspca_dev, ctrl->val);
break;
case V4L2_CID_AUTOGAIN:
/* case V4L2_CID_GAIN: */
setagc(gspca_dev, ctrl->val);
if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
setgain(gspca_dev, sd->gain->val);
break;
case V4L2_CID_AUTO_WHITE_BALANCE:
setawb(gspca_dev, ctrl->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
/* case V4L2_CID_EXPOSURE: */
setaec(gspca_dev, ctrl->val);
if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
sd->exposure)
setexposure(gspca_dev, sd->exposure->val);
break;
case V4L2_CID_SHARPNESS:
setsharpness(gspca_dev, ctrl->val);
break;
case V4L2_CID_HFLIP:
sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
break;
case V4L2_CID_VFLIP:
sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
break;
case V4L2_CID_POWER_LINE_FREQUENCY:
setlightfreq(gspca_dev, ctrl->val);
break;
}
return gspca_dev->usb_err;
}
static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
.g_volatile_ctrl = ov534_g_volatile_ctrl,
.s_ctrl = ov534_s_ctrl,
};
static int sd_init_controls(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
/* parameters with different values between the supported sensors */
int saturation_min;
int saturation_max;
int saturation_def;
int brightness_min;
int brightness_max;
int brightness_def;
int contrast_max;
int contrast_def;
int exposure_min;
int exposure_max;
int exposure_def;
int hflip_def;
if (sd->sensor == SENSOR_OV767x) {
saturation_min = 0,
saturation_max = 6,
saturation_def = 3,
brightness_min = -127;
brightness_max = 127;
brightness_def = 0;
contrast_max = 0x80;
contrast_def = 0x40;
exposure_min = 0x08;
exposure_max = 0x60;
exposure_def = 0x13;
hflip_def = 1;
} else {
saturation_min = 0,
saturation_max = 255,
saturation_def = 64,
brightness_min = 0;
brightness_max = 255;
brightness_def = 0;
contrast_max = 255;
contrast_def = 32;
exposure_min = 0;
exposure_max = 255;
exposure_def = 120;
hflip_def = 0;
}
gspca_dev->vdev.ctrl_handler = hdl;
v4l2_ctrl_handler_init(hdl, 13);
if (sd->sensor == SENSOR_OV772x)
sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_HUE, -90, 90, 1, 0);
sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
saturation_def);
sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
brightness_def);
sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
if (sd->sensor == SENSOR_OV772x) {
sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_GAIN, 0, 63, 1, 20);
}
sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0,
V4L2_EXPOSURE_AUTO);
sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
exposure_def);
sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
if (sd->sensor == SENSOR_OV772x)
sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_SHARPNESS, 0, 63, 1, 0);
sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
if (hdl->error) {
pr_err("Could not initialize controls\n");
return hdl->error;
}
if (sd->sensor == SENSOR_OV772x)
v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
true);
return 0;
}
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
u16 sensor_id;
static const struct reg_array bridge_init[NSENSORS] = {
[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
};
static const struct reg_array sensor_init[NSENSORS] = {
[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
};
/* reset bridge */
ov534_reg_write(gspca_dev, 0xe7, 0x3a);
ov534_reg_write(gspca_dev, 0xe0, 0x08);
msleep(100);
/* initialize the sensor address */
ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
/* reset sensor */
sccb_reg_write(gspca_dev, 0x12, 0x80);
usleep_range(10000, 20000);
/* probe the sensor */
sccb_reg_read(gspca_dev, 0x0a);
sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
sccb_reg_read(gspca_dev, 0x0b);
sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
if ((sensor_id & 0xfff0) == 0x7670) {
sd->sensor = SENSOR_OV767x;
gspca_dev->cam.cam_mode = ov767x_mode;
gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
} else {
sd->sensor = SENSOR_OV772x;
gspca_dev->cam.bulk = 1;
gspca_dev->cam.bulk_size = 16384;
gspca_dev->cam.bulk_nurbs = 2;
gspca_dev->cam.mode_framerates = ov772x_framerates;
}
/* initialize */
reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
bridge_init[sd->sensor].len);
ov534_set_led(gspca_dev, 1);
sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
sensor_init[sd->sensor].len);
sd_stopN(gspca_dev);
/* set_frame_rate(gspca_dev); */
return gspca_dev->usb_err;
}
static int sd_start(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *) gspca_dev;
int mode;
static const struct reg_array bridge_start[NSENSORS][4] = {
[SENSOR_OV767x] = {{bridge_start_qvga_767x,
ARRAY_SIZE(bridge_start_qvga_767x)},
{bridge_start_vga_767x,
ARRAY_SIZE(bridge_start_vga_767x)}},
[SENSOR_OV772x] = {{bridge_start_qvga_yuyv_772x,
ARRAY_SIZE(bridge_start_qvga_yuyv_772x)},
{bridge_start_vga_yuyv_772x,
ARRAY_SIZE(bridge_start_vga_yuyv_772x)},
{bridge_start_qvga_gbrg_772x,
ARRAY_SIZE(bridge_start_qvga_gbrg_772x)},
{bridge_start_vga_gbrg_772x,
ARRAY_SIZE(bridge_start_vga_gbrg_772x)} },
};
static const struct reg_array sensor_start[NSENSORS][4] = {
[SENSOR_OV767x] = {{sensor_start_qvga_767x,
ARRAY_SIZE(sensor_start_qvga_767x)},
{sensor_start_vga_767x,
ARRAY_SIZE(sensor_start_vga_767x)}},
[SENSOR_OV772x] = {{sensor_start_qvga_yuyv_772x,
ARRAY_SIZE(sensor_start_qvga_yuyv_772x)},
{sensor_start_vga_yuyv_772x,
ARRAY_SIZE(sensor_start_vga_yuyv_772x)},
{sensor_start_qvga_gbrg_772x,
ARRAY_SIZE(sensor_start_qvga_gbrg_772x)},
{sensor_start_vga_gbrg_772x,
ARRAY_SIZE(sensor_start_vga_gbrg_772x)} },
};
/* (from ms-win trace) */
if (sd->sensor == SENSOR_OV767x)
sccb_reg_write(gspca_dev, 0x1e, 0x04);
/* black sun enable ? */
mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */
reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
bridge_start[sd->sensor][mode].len);
sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
sensor_start[sd->sensor][mode].len);
set_frame_rate(gspca_dev);
if (sd->hue)
sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
if (sd->autogain)
setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
if (sd->gain)
setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
if (sd->sharpness)
setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
v4l2_ctrl_g_ctrl(sd->vflip));
setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
ov534_set_led(gspca_dev, 1);
ov534_reg_write(gspca_dev, 0xe0, 0x00);
return gspca_dev->usb_err;
}
static void sd_stopN(struct gspca_dev *gspca_dev)
{
ov534_reg_write(gspca_dev, 0xe0, 0x09);
ov534_set_led(gspca_dev, 0);
}
/* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
#define UVC_STREAM_EOH (1 << 7)
#define UVC_STREAM_ERR (1 << 6)
#define UVC_STREAM_STI (1 << 5)
#define UVC_STREAM_RES (1 << 4)
#define UVC_STREAM_SCR (1 << 3)
#define UVC_STREAM_PTS (1 << 2)
#define UVC_STREAM_EOF (1 << 1)
#define UVC_STREAM_FID (1 << 0)
static void sd_pkt_scan(struct gspca_dev *gspca_dev,
u8 *data, int len)
{
struct sd *sd = (struct sd *) gspca_dev;
__u32 this_pts;
u16 this_fid;
int remaining_len = len;
int payload_len;
payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
do {
len = min(remaining_len, payload_len);
/* Payloads are prefixed with a UVC-style header. We
consider a frame to start when the FID toggles, or the PTS
changes. A frame ends when EOF is set, and we've received
the correct number of bytes. */
/* Verify UVC header. Header length is always 12 */
if (data[0] != 12 || len < 12) {
gspca_dbg(gspca_dev, D_PACK, "bad header\n");
goto discard;
}
/* Check errors */
if (data[1] & UVC_STREAM_ERR) {
gspca_dbg(gspca_dev, D_PACK, "payload error\n");
goto discard;
}
/* Extract PTS and FID */
if (!(data[1] & UVC_STREAM_PTS)) {
gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
goto discard;
}
this_pts = (data[5] << 24) | (data[4] << 16)
| (data[3] << 8) | data[2];
this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
/* If PTS or FID has changed, start a new frame. */
if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
if (gspca_dev->last_packet_type == INTER_PACKET)
gspca_frame_add(gspca_dev, LAST_PACKET,
NULL, 0);
sd->last_pts = this_pts;
sd->last_fid = this_fid;
gspca_frame_add(gspca_dev, FIRST_PACKET,
data + 12, len - 12);
/* If this packet is marked as EOF, end the frame */
} else if (data[1] & UVC_STREAM_EOF) {
sd->last_pts = 0;
if (gspca_dev->pixfmt.pixelformat != V4L2_PIX_FMT_JPEG
&& gspca_dev->image_len + len - 12 !=
gspca_dev->pixfmt.sizeimage) {
gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
goto discard;
}
gspca_frame_add(gspca_dev, LAST_PACKET,
data + 12, len - 12);
} else {
/* Add the data from this payload */
gspca_frame_add(gspca_dev, INTER_PACKET,
data + 12, len - 12);
}
/* Done this payload */
goto scan_next;
discard:
/* Discard data until a new frame starts. */
gspca_dev->last_packet_type = DISCARD_PACKET;
scan_next:
remaining_len -= len;
data += len;
} while (remaining_len > 0);
}
/* get stream parameters (framerate) */
static void sd_get_streamparm(struct gspca_dev *gspca_dev,
struct v4l2_streamparm *parm)
{
struct v4l2_captureparm *cp = &parm->parm.capture;
struct v4l2_fract *tpf = &cp->timeperframe;
struct sd *sd = (struct sd *) gspca_dev;
tpf->numerator = 1;
tpf->denominator = sd->frame_rate;
}
/* set stream parameters (framerate) */
static void sd_set_streamparm(struct gspca_dev *gspca_dev,
struct v4l2_streamparm *parm)
{
struct v4l2_captureparm *cp = &parm->parm.capture;
struct v4l2_fract *tpf = &cp->timeperframe;
struct sd *sd = (struct sd *) gspca_dev;
if (tpf->numerator == 0 || tpf->denominator == 0)
sd->frame_rate = DEFAULT_FRAME_RATE;
else
sd->frame_rate = tpf->denominator / tpf->numerator;
if (gspca_dev->streaming)
set_frame_rate(gspca_dev);
/* Return the actual framerate */
tpf->numerator = 1;
tpf->denominator = sd->frame_rate;
}
/* sub-driver description */
static const struct sd_desc sd_desc = {
.name = MODULE_NAME,
.config = sd_config,
.init = sd_init,
.init_controls = sd_init_controls,
.start = sd_start,
.stopN = sd_stopN,
.pkt_scan = sd_pkt_scan,
.get_streamparm = sd_get_streamparm,
.set_streamparm = sd_set_streamparm,
};
/* -- module initialisation -- */
static const struct usb_device_id device_table[] = {
{USB_DEVICE(0x1415, 0x2000)},
{USB_DEVICE(0x06f8, 0x3002)},
{}
};
MODULE_DEVICE_TABLE(usb, device_table);
/* -- device connect -- */
static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
THIS_MODULE);
}
static struct usb_driver sd_driver = {
.name = MODULE_NAME,
.id_table = device_table,
.probe = sd_probe,
.disconnect = gspca_disconnect,
#ifdef CONFIG_PM
.suspend = gspca_suspend,
.resume = gspca_resume,
.reset_resume = gspca_resume,
#endif
};
module_usb_driver(sd_driver);