blob: 2351f2708da234fa54d88978328ece6ed59343a3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* GPMC support functions
*
* Copyright (C) 2005-2006 Nokia Corporation
*
* Author: Juha Yrjola
*
* Copyright (C) 2009 Texas Instruments
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*/
#include <linux/cpu_pm.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/gpio/driver.h>
#include <linux/gpio/consumer.h> /* GPIO descriptor enum */
#include <linux/gpio/machine.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/omap-gpmc.h>
#include <linux/pm_runtime.h>
#include <linux/sizes.h>
#include <linux/platform_data/mtd-nand-omap2.h>
#define DEVICE_NAME "omap-gpmc"
/* GPMC register offsets */
#define GPMC_REVISION 0x00
#define GPMC_SYSCONFIG 0x10
#define GPMC_SYSSTATUS 0x14
#define GPMC_IRQSTATUS 0x18
#define GPMC_IRQENABLE 0x1c
#define GPMC_TIMEOUT_CONTROL 0x40
#define GPMC_ERR_ADDRESS 0x44
#define GPMC_ERR_TYPE 0x48
#define GPMC_CONFIG 0x50
#define GPMC_STATUS 0x54
#define GPMC_PREFETCH_CONFIG1 0x1e0
#define GPMC_PREFETCH_CONFIG2 0x1e4
#define GPMC_PREFETCH_CONTROL 0x1ec
#define GPMC_PREFETCH_STATUS 0x1f0
#define GPMC_ECC_CONFIG 0x1f4
#define GPMC_ECC_CONTROL 0x1f8
#define GPMC_ECC_SIZE_CONFIG 0x1fc
#define GPMC_ECC1_RESULT 0x200
#define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
#define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */
/* GPMC ECC control settings */
#define GPMC_ECC_CTRL_ECCCLEAR 0x100
#define GPMC_ECC_CTRL_ECCDISABLE 0x000
#define GPMC_ECC_CTRL_ECCREG1 0x001
#define GPMC_ECC_CTRL_ECCREG2 0x002
#define GPMC_ECC_CTRL_ECCREG3 0x003
#define GPMC_ECC_CTRL_ECCREG4 0x004
#define GPMC_ECC_CTRL_ECCREG5 0x005
#define GPMC_ECC_CTRL_ECCREG6 0x006
#define GPMC_ECC_CTRL_ECCREG7 0x007
#define GPMC_ECC_CTRL_ECCREG8 0x008
#define GPMC_ECC_CTRL_ECCREG9 0x009
#define GPMC_CONFIG_LIMITEDADDRESS BIT(1)
#define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0)
#define GPMC_CONFIG2_CSEXTRADELAY BIT(7)
#define GPMC_CONFIG3_ADVEXTRADELAY BIT(7)
#define GPMC_CONFIG4_OEEXTRADELAY BIT(7)
#define GPMC_CONFIG4_WEEXTRADELAY BIT(23)
#define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6)
#define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7)
#define GPMC_CS0_OFFSET 0x60
#define GPMC_CS_SIZE 0x30
#define GPMC_BCH_SIZE 0x10
/*
* The first 1MB of GPMC address space is typically mapped to
* the internal ROM. Never allocate the first page, to
* facilitate bug detection; even if we didn't boot from ROM.
* As GPMC minimum partition size is 16MB we can only start from
* there.
*/
#define GPMC_MEM_START 0x1000000
#define GPMC_MEM_END 0x3FFFFFFF
#define GPMC_CHUNK_SHIFT 24 /* 16 MB */
#define GPMC_SECTION_SHIFT 28 /* 128 MB */
#define CS_NUM_SHIFT 24
#define ENABLE_PREFETCH (0x1 << 7)
#define DMA_MPU_MODE 2
#define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf)
#define GPMC_REVISION_MINOR(l) ((l) & 0xf)
#define GPMC_HAS_WR_ACCESS 0x1
#define GPMC_HAS_WR_DATA_MUX_BUS 0x2
#define GPMC_HAS_MUX_AAD 0x4
#define GPMC_NR_WAITPINS 4
#define GPMC_CS_CONFIG1 0x00
#define GPMC_CS_CONFIG2 0x04
#define GPMC_CS_CONFIG3 0x08
#define GPMC_CS_CONFIG4 0x0c
#define GPMC_CS_CONFIG5 0x10
#define GPMC_CS_CONFIG6 0x14
#define GPMC_CS_CONFIG7 0x18
#define GPMC_CS_NAND_COMMAND 0x1c
#define GPMC_CS_NAND_ADDRESS 0x20
#define GPMC_CS_NAND_DATA 0x24
/* Control Commands */
#define GPMC_CONFIG_RDY_BSY 0x00000001
#define GPMC_CONFIG_DEV_SIZE 0x00000002
#define GPMC_CONFIG_DEV_TYPE 0x00000003
#define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31)
#define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30)
#define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29)
#define GPMC_CONFIG1_READTYPE_SYNC (1 << 29)
#define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
#define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27)
#define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27)
#define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
/** CLKACTIVATIONTIME Max Ticks */
#define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
#define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23)
/** ATTACHEDDEVICEPAGELENGTH Max Value */
#define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
#define GPMC_CONFIG1_WAIT_READ_MON (1 << 22)
#define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21)
#define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
/** WAITMONITORINGTIME Max Ticks */
#define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2
#define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16)
#define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12)
#define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1)
/** DEVICESIZE Max Value */
#define GPMC_CONFIG1_DEVICESIZE_MAX 1
#define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10)
#define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0)
#define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8)
#define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4)
#define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3)
#define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1))
#define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2))
#define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3))
#define GPMC_CONFIG7_CSVALID (1 << 6)
#define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f
#define GPMC_CONFIG7_CSVALID_MASK BIT(6)
#define GPMC_CONFIG7_MASKADDRESS_OFFSET 8
#define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
/* All CONFIG7 bits except reserved bits */
#define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \
GPMC_CONFIG7_CSVALID_MASK | \
GPMC_CONFIG7_MASKADDRESS_MASK)
#define GPMC_DEVICETYPE_NOR 0
#define GPMC_DEVICETYPE_NAND 2
#define GPMC_CONFIG_WRITEPROTECT 0x00000010
#define WR_RD_PIN_MONITORING 0x00600000
/* ECC commands */
#define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */
#define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */
#define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */
#define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */
enum gpmc_clk_domain {
GPMC_CD_FCLK,
GPMC_CD_CLK
};
struct gpmc_cs_data {
const char *name;
#define GPMC_CS_RESERVED (1 << 0)
u32 flags;
struct resource mem;
};
/* Structure to save gpmc cs context */
struct gpmc_cs_config {
u32 config1;
u32 config2;
u32 config3;
u32 config4;
u32 config5;
u32 config6;
u32 config7;
int is_valid;
};
/*
* Structure to save/restore gpmc context
* to support core off on OMAP3
*/
struct omap3_gpmc_regs {
u32 sysconfig;
u32 irqenable;
u32 timeout_ctrl;
u32 config;
u32 prefetch_config1;
u32 prefetch_config2;
u32 prefetch_control;
struct gpmc_cs_config cs_context[GPMC_CS_NUM];
};
struct gpmc_device {
struct device *dev;
int irq;
struct irq_chip irq_chip;
struct gpio_chip gpio_chip;
struct notifier_block nb;
struct omap3_gpmc_regs context;
int nirqs;
unsigned int is_suspended:1;
struct resource *data;
};
static struct irq_domain *gpmc_irq_domain;
static struct resource gpmc_mem_root;
static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
static DEFINE_SPINLOCK(gpmc_mem_lock);
/* Define chip-selects as reserved by default until probe completes */
static unsigned int gpmc_cs_num = GPMC_CS_NUM;
static unsigned int gpmc_nr_waitpins;
static unsigned int gpmc_capability;
static void __iomem *gpmc_base;
static struct clk *gpmc_l3_clk;
static irqreturn_t gpmc_handle_irq(int irq, void *dev);
static void gpmc_write_reg(int idx, u32 val)
{
writel_relaxed(val, gpmc_base + idx);
}
static u32 gpmc_read_reg(int idx)
{
return readl_relaxed(gpmc_base + idx);
}
void gpmc_cs_write_reg(int cs, int idx, u32 val)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
writel_relaxed(val, reg_addr);
}
static u32 gpmc_cs_read_reg(int cs, int idx)
{
void __iomem *reg_addr;
reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
return readl_relaxed(reg_addr);
}
/* TODO: Add support for gpmc_fck to clock framework and use it */
static unsigned long gpmc_get_fclk_period(void)
{
unsigned long rate = clk_get_rate(gpmc_l3_clk);
rate /= 1000;
rate = 1000000000 / rate; /* In picoseconds */
return rate;
}
/**
* gpmc_get_clk_period - get period of selected clock domain in ps
* @cs: Chip Select Region.
* @cd: Clock Domain.
*
* GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
* prior to calling this function with GPMC_CD_CLK.
*/
static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
{
unsigned long tick_ps = gpmc_get_fclk_period();
u32 l;
int div;
switch (cd) {
case GPMC_CD_CLK:
/* get current clk divider */
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
div = (l & 0x03) + 1;
/* get GPMC_CLK period */
tick_ps *= div;
break;
case GPMC_CD_FCLK:
default:
break;
}
return tick_ps;
}
static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
enum gpmc_clk_domain cd)
{
unsigned long tick_ps;
/* Calculate in picosecs to yield more exact results */
tick_ps = gpmc_get_clk_period(cs, cd);
return (time_ns * 1000 + tick_ps - 1) / tick_ps;
}
static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
{
return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
}
static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
{
unsigned long tick_ps;
/* Calculate in picosecs to yield more exact results */
tick_ps = gpmc_get_fclk_period();
return (time_ps + tick_ps - 1) / tick_ps;
}
static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
enum gpmc_clk_domain cd)
{
return ticks * gpmc_get_clk_period(cs, cd) / 1000;
}
unsigned int gpmc_ticks_to_ns(unsigned int ticks)
{
return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
}
static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
{
return ticks * gpmc_get_fclk_period();
}
static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
{
unsigned long ticks = gpmc_ps_to_ticks(time_ps);
return ticks * gpmc_get_fclk_period();
}
static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
{
u32 l;
l = gpmc_cs_read_reg(cs, reg);
if (value)
l |= mask;
else
l &= ~mask;
gpmc_cs_write_reg(cs, reg, l);
}
static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
{
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
GPMC_CONFIG1_TIME_PARA_GRAN,
p->time_para_granularity);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
p->cycle2cyclesamecsen);
gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
p->cycle2cyclediffcsen);
}
#ifdef CONFIG_OMAP_GPMC_DEBUG
/**
* get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
* @cs: Chip Select Region
* @reg: GPMC_CS_CONFIGn register offset.
* @st_bit: Start Bit
* @end_bit: End Bit. Must be >= @st_bit.
* @max: Maximum parameter value (before optional @shift).
* If 0, maximum is as high as @st_bit and @end_bit allow.
* @name: DTS node name, w/o "gpmc,"
* @cd: Clock Domain of timing parameter.
* @shift: Parameter value left shifts @shift, which is then printed instead of value.
* @raw: Raw Format Option.
* raw format: gpmc,name = <value>
* tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
* Where x ns -- y ns result in the same tick value.
* When @max is exceeded, "invalid" is printed inside comment.
* @noval: Parameter values equal to 0 are not printed.
* @return: Specified timing parameter (after optional @shift).
*
*/
static int get_gpmc_timing_reg(
/* timing specifiers */
int cs, int reg, int st_bit, int end_bit, int max,
const char *name, const enum gpmc_clk_domain cd,
/* value transform */
int shift,
/* format specifiers */
bool raw, bool noval)
{
u32 l;
int nr_bits;
int mask;
bool invalid;
l = gpmc_cs_read_reg(cs, reg);
nr_bits = end_bit - st_bit + 1;
mask = (1 << nr_bits) - 1;
l = (l >> st_bit) & mask;
if (!max)
max = mask;
invalid = l > max;
if (shift)
l = (shift << l);
if (noval && (l == 0))
return 0;
if (!raw) {
/* DTS tick format for timings in ns */
unsigned int time_ns;
unsigned int time_ns_min = 0;
if (l)
time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
name, time_ns, time_ns_min, time_ns, l,
invalid ? "; invalid " : " ");
} else {
/* raw format */
pr_info("gpmc,%s = <%u>;%s\n", name, l,
invalid ? " /* invalid */" : "");
}
return l;
}
#define GPMC_PRINT_CONFIG(cs, config) \
pr_info("cs%i %s: 0x%08x\n", cs, #config, \
gpmc_cs_read_reg(cs, config))
#define GPMC_GET_RAW(reg, st, end, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
#define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
#define GPMC_GET_RAW_BOOL(reg, st, end, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
#define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
#define GPMC_GET_TICKS(reg, st, end, field) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
#define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
#define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
static void gpmc_show_regs(int cs, const char *desc)
{
pr_info("gpmc cs%i %s:\n", cs, desc);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
}
/*
* Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
* see commit c9fb809.
*/
static void gpmc_cs_show_timings(int cs, const char *desc)
{
gpmc_show_regs(cs, desc);
pr_info("gpmc cs%i access configuration:\n", cs);
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity");
GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data");
GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
"burst-length");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen");
GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen");
pr_info("gpmc cs%i timings configuration:\n", cs);
GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
"adv-aad-mux-rd-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
"adv-aad-mux-wr-off-ns");
}
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns");
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
}
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
"wait-monitoring-ns", GPMC_CD_CLK);
GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
"clk-activation-ns", GPMC_CD_FCLK);
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
}
#else
static inline void gpmc_cs_show_timings(int cs, const char *desc)
{
}
#endif
/**
* set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
* Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
* prior to calling this function with @cd equal to GPMC_CD_CLK.
*
* @cs: Chip Select Region.
* @reg: GPMC_CS_CONFIGn register offset.
* @st_bit: Start Bit
* @end_bit: End Bit. Must be >= @st_bit.
* @max: Maximum parameter value.
* If 0, maximum is as high as @st_bit and @end_bit allow.
* @time: Timing parameter in ns.
* @cd: Timing parameter clock domain.
* @name: Timing parameter name.
* @return: 0 on success, -1 on error.
*/
static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
int time, enum gpmc_clk_domain cd, const char *name)
{
u32 l;
int ticks, mask, nr_bits;
if (time == 0)
ticks = 0;
else
ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
nr_bits = end_bit - st_bit + 1;
mask = (1 << nr_bits) - 1;
if (!max)
max = mask;
if (ticks > max) {
pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
__func__, cs, name, time, ticks, max);
return -1;
}
l = gpmc_cs_read_reg(cs, reg);
#ifdef CONFIG_OMAP_GPMC_DEBUG
pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
(l >> st_bit) & mask, time);
#endif
l &= ~(mask << st_bit);
l |= ticks << st_bit;
gpmc_cs_write_reg(cs, reg, l);
return 0;
}
/**
* gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
* WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
* read --> don't sample bus too early
* write --> data is longer on bus
*
* Formula:
* gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
* / waitmonitoring_ticks)
* WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
* div <= 0 check.
*
* @wait_monitoring: WAITMONITORINGTIME in ns.
* @return: -1 on failure to scale, else proper divider > 0.
*/
static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
{
int div = gpmc_ns_to_ticks(wait_monitoring);
div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
if (div > 4)
return -1;
if (div <= 0)
div = 1;
return div;
}
/**
* gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
* @sync_clk: GPMC_CLK period in ps.
* @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
* Else, returns -1.
*/
int gpmc_calc_divider(unsigned int sync_clk)
{
int div = gpmc_ps_to_ticks(sync_clk);
if (div > 4)
return -1;
if (div <= 0)
div = 1;
return div;
}
/**
* gpmc_cs_set_timings - program timing parameters for Chip Select Region.
* @cs: Chip Select Region.
* @t: GPMC timing parameters.
* @s: GPMC timing settings.
* @return: 0 on success, -1 on error.
*/
int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
const struct gpmc_settings *s)
{
int div, ret;
u32 l;
div = gpmc_calc_divider(t->sync_clk);
if (div < 0)
return -EINVAL;
/*
* See if we need to change the divider for waitmonitoringtime.
*
* Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
* pure asynchronous accesses, i.e. both read and write asynchronous.
* However, only do so if WAITMONITORINGTIME is actually used, i.e.
* either WAITREADMONITORING or WAITWRITEMONITORING is set.
*
* This statement must not change div to scale async WAITMONITORINGTIME
* to protect mixed synchronous and asynchronous accesses.
*
* We raise an error later if WAITMONITORINGTIME does not fit.
*/
if (!s->sync_read && !s->sync_write &&
(s->wait_on_read || s->wait_on_write)
) {
div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
if (div < 0) {
pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
__func__,
t->wait_monitoring
);
return -ENXIO;
}
}
ret = 0;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
GPMC_CD_FCLK, "cs_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
GPMC_CD_FCLK, "cs_rd_off");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
GPMC_CD_FCLK, "cs_wr_off");
if (ret)
return -ENXIO;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
GPMC_CD_FCLK, "adv_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
GPMC_CD_FCLK, "adv_rd_off");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
GPMC_CD_FCLK, "adv_wr_off");
if (ret)
return -ENXIO;
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
t->adv_aad_mux_on, GPMC_CD_FCLK,
"adv_aad_mux_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
"adv_aad_mux_rd_off");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
"adv_aad_mux_wr_off");
if (ret)
return -ENXIO;
}
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
GPMC_CD_FCLK, "oe_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
GPMC_CD_FCLK, "oe_off");
if (gpmc_capability & GPMC_HAS_MUX_AAD) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
t->oe_aad_mux_on, GPMC_CD_FCLK,
"oe_aad_mux_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
t->oe_aad_mux_off, GPMC_CD_FCLK,
"oe_aad_mux_off");
}
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
GPMC_CD_FCLK, "we_on");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
GPMC_CD_FCLK, "we_off");
if (ret)
return -ENXIO;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
GPMC_CD_FCLK, "rd_cycle");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
GPMC_CD_FCLK, "wr_cycle");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
GPMC_CD_FCLK, "access");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
t->page_burst_access, GPMC_CD_FCLK,
"page_burst_access");
if (ret)
return -ENXIO;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
t->bus_turnaround, GPMC_CD_FCLK,
"bus_turnaround");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
t->cycle2cycle_delay, GPMC_CD_FCLK,
"cycle2cycle_delay");
if (ret)
return -ENXIO;
if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
t->wr_data_mux_bus, GPMC_CD_FCLK,
"wr_data_mux_bus");
if (ret)
return -ENXIO;
}
if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
t->wr_access, GPMC_CD_FCLK,
"wr_access");
if (ret)
return -ENXIO;
}
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
l &= ~0x03;
l |= (div - 1);
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
ret = 0;
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
t->wait_monitoring, GPMC_CD_CLK,
"wait_monitoring");
ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
t->clk_activation, GPMC_CD_FCLK,
"clk_activation");
if (ret)
return -ENXIO;
#ifdef CONFIG_OMAP_GPMC_DEBUG
pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
cs, (div * gpmc_get_fclk_period()) / 1000, div);
#endif
gpmc_cs_bool_timings(cs, &t->bool_timings);
gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
return 0;
}
static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
{
u32 l;
u32 mask;
/*
* Ensure that base address is aligned on a
* boundary equal to or greater than size.
*/
if (base & (size - 1))
return -EINVAL;
base >>= GPMC_CHUNK_SHIFT;
mask = (1 << GPMC_SECTION_SHIFT) - size;
mask >>= GPMC_CHUNK_SHIFT;
mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l &= ~GPMC_CONFIG7_MASK;
l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
l |= GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
return 0;
}
static void gpmc_cs_enable_mem(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l |= GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}
static void gpmc_cs_disable_mem(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
l &= ~GPMC_CONFIG7_CSVALID;
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
}
static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
{
u32 l;
u32 mask;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
mask = (l >> 8) & 0x0f;
*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
}
static int gpmc_cs_mem_enabled(int cs)
{
u32 l;
l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
return l & GPMC_CONFIG7_CSVALID;
}
static void gpmc_cs_set_reserved(int cs, int reserved)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
gpmc->flags |= GPMC_CS_RESERVED;
}
static bool gpmc_cs_reserved(int cs)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
return gpmc->flags & GPMC_CS_RESERVED;
}
static unsigned long gpmc_mem_align(unsigned long size)
{
int order;
size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
order = GPMC_CHUNK_SHIFT - 1;
do {
size >>= 1;
order++;
} while (size);
size = 1 << order;
return size;
}
static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
struct resource *res = &gpmc->mem;
int r;
size = gpmc_mem_align(size);
spin_lock(&gpmc_mem_lock);
res->start = base;
res->end = base + size - 1;
r = request_resource(&gpmc_mem_root, res);
spin_unlock(&gpmc_mem_lock);
return r;
}
static int gpmc_cs_delete_mem(int cs)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
struct resource *res = &gpmc->mem;
int r;
spin_lock(&gpmc_mem_lock);
r = release_resource(res);
res->start = 0;
res->end = 0;
spin_unlock(&gpmc_mem_lock);
return r;
}
int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
struct resource *res = &gpmc->mem;
int r = -1;
if (cs >= gpmc_cs_num) {
pr_err("%s: requested chip-select is disabled\n", __func__);
return -ENODEV;
}
size = gpmc_mem_align(size);
if (size > (1 << GPMC_SECTION_SHIFT))
return -ENOMEM;
spin_lock(&gpmc_mem_lock);
if (gpmc_cs_reserved(cs)) {
r = -EBUSY;
goto out;
}
if (gpmc_cs_mem_enabled(cs))
r = adjust_resource(res, res->start & ~(size - 1), size);
if (r < 0)
r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
size, NULL, NULL);
if (r < 0)
goto out;
/* Disable CS while changing base address and size mask */
gpmc_cs_disable_mem(cs);
r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
if (r < 0) {
release_resource(res);
goto out;
}
/* Enable CS */
gpmc_cs_enable_mem(cs);
*base = res->start;
gpmc_cs_set_reserved(cs, 1);
out:
spin_unlock(&gpmc_mem_lock);
return r;
}
EXPORT_SYMBOL(gpmc_cs_request);
void gpmc_cs_free(int cs)
{
struct gpmc_cs_data *gpmc;
struct resource *res;
spin_lock(&gpmc_mem_lock);
if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
spin_unlock(&gpmc_mem_lock);
return;
}
gpmc = &gpmc_cs[cs];
res = &gpmc->mem;
gpmc_cs_disable_mem(cs);
if (res->flags)
release_resource(res);
gpmc_cs_set_reserved(cs, 0);
spin_unlock(&gpmc_mem_lock);
}
EXPORT_SYMBOL(gpmc_cs_free);
/**
* gpmc_configure - write request to configure gpmc
* @cmd: command type
* @wval: value to write
* @return status of the operation
*/
int gpmc_configure(int cmd, int wval)
{
u32 regval;
switch (cmd) {
case GPMC_CONFIG_WP:
regval = gpmc_read_reg(GPMC_CONFIG);
if (wval)
regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
else
regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
gpmc_write_reg(GPMC_CONFIG, regval);
break;
default:
pr_err("%s: command not supported\n", __func__);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(gpmc_configure);
static bool gpmc_nand_writebuffer_empty(void)
{
if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
return true;
return false;
}
static struct gpmc_nand_ops nand_ops = {
.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
};
/**
* gpmc_omap_get_nand_ops - Get the GPMC NAND interface
* @reg: the GPMC NAND register map exclusive for NAND use.
* @cs: GPMC chip select number on which the NAND sits. The
* register map returned will be specific to this chip select.
*
* Returns NULL on error e.g. invalid cs.
*/
struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
{
int i;
if (cs >= gpmc_cs_num)
return NULL;
reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
GPMC_BCH_SIZE * i;
reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
i * GPMC_BCH_SIZE;
reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
i * GPMC_BCH_SIZE;
reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
i * GPMC_BCH_SIZE;
}
return &nand_ops;
}
EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
struct gpmc_settings *s,
int freq, int latency)
{
struct gpmc_device_timings dev_t;
const int t_cer = 15;
const int t_avdp = 12;
const int t_cez = 20; /* max of t_cez, t_oez */
const int t_wpl = 40;
const int t_wph = 30;
int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
switch (freq) {
case 104:
min_gpmc_clk_period = 9600; /* 104 MHz */
t_ces = 3;
t_avds = 4;
t_avdh = 2;
t_ach = 3;
t_aavdh = 6;
t_rdyo = 6;
break;
case 83:
min_gpmc_clk_period = 12000; /* 83 MHz */
t_ces = 5;
t_avds = 4;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 9;
break;
case 66:
min_gpmc_clk_period = 15000; /* 66 MHz */
t_ces = 6;
t_avds = 5;
t_avdh = 2;
t_ach = 6;
t_aavdh = 6;
t_rdyo = 11;
break;
default:
min_gpmc_clk_period = 18500; /* 54 MHz */
t_ces = 7;
t_avds = 7;
t_avdh = 7;
t_ach = 9;
t_aavdh = 7;
t_rdyo = 15;
break;
}
/* Set synchronous read timings */
memset(&dev_t, 0, sizeof(dev_t));
if (!s->sync_write) {
dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
dev_t.t_wpl = t_wpl * 1000;
dev_t.t_wph = t_wph * 1000;
dev_t.t_aavdh = t_aavdh * 1000;
}
dev_t.ce_xdelay = true;
dev_t.avd_xdelay = true;
dev_t.oe_xdelay = true;
dev_t.we_xdelay = true;
dev_t.clk = min_gpmc_clk_period;
dev_t.t_bacc = dev_t.clk;
dev_t.t_ces = t_ces * 1000;
dev_t.t_avds = t_avds * 1000;
dev_t.t_avdh = t_avdh * 1000;
dev_t.t_ach = t_ach * 1000;
dev_t.cyc_iaa = (latency + 1);
dev_t.t_cez_r = t_cez * 1000;
dev_t.t_cez_w = dev_t.t_cez_r;
dev_t.cyc_aavdh_oe = 1;
dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
gpmc_calc_timings(t, s, &dev_t);
}
int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
int latency,
struct gpmc_onenand_info *info)
{
int ret;
struct gpmc_timings gpmc_t;
struct gpmc_settings gpmc_s;
gpmc_read_settings_dt(dev->of_node, &gpmc_s);
info->sync_read = gpmc_s.sync_read;
info->sync_write = gpmc_s.sync_write;
info->burst_len = gpmc_s.burst_len;
if (!gpmc_s.sync_read && !gpmc_s.sync_write)
return 0;
gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
ret = gpmc_cs_program_settings(cs, &gpmc_s);
if (ret < 0)
return ret;
return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
}
EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
int gpmc_get_client_irq(unsigned int irq_config)
{
if (!gpmc_irq_domain) {
pr_warn("%s called before GPMC IRQ domain available\n",
__func__);
return 0;
}
/* we restrict this to NAND IRQs only */
if (irq_config >= GPMC_NR_NAND_IRQS)
return 0;
return irq_create_mapping(gpmc_irq_domain, irq_config);
}
static int gpmc_irq_endis(unsigned long hwirq, bool endis)
{
u32 regval;
/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
if (hwirq >= GPMC_NR_NAND_IRQS)
hwirq += 8 - GPMC_NR_NAND_IRQS;
regval = gpmc_read_reg(GPMC_IRQENABLE);
if (endis)
regval |= BIT(hwirq);
else
regval &= ~BIT(hwirq);
gpmc_write_reg(GPMC_IRQENABLE, regval);
return 0;
}
static void gpmc_irq_disable(struct irq_data *p)
{
gpmc_irq_endis(p->hwirq, false);
}
static void gpmc_irq_enable(struct irq_data *p)
{
gpmc_irq_endis(p->hwirq, true);
}
static void gpmc_irq_mask(struct irq_data *d)
{
gpmc_irq_endis(d->hwirq, false);
}
static void gpmc_irq_unmask(struct irq_data *d)
{
gpmc_irq_endis(d->hwirq, true);
}
static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
{
u32 regval;
/* NAND IRQs polarity is not configurable */
if (hwirq < GPMC_NR_NAND_IRQS)
return;
/* WAITPIN starts at BIT 8 */
hwirq += 8 - GPMC_NR_NAND_IRQS;
regval = gpmc_read_reg(GPMC_CONFIG);
if (rising_edge)
regval &= ~BIT(hwirq);
else
regval |= BIT(hwirq);
gpmc_write_reg(GPMC_CONFIG, regval);
}
static void gpmc_irq_ack(struct irq_data *d)
{
unsigned int hwirq = d->hwirq;
/* skip reserved bits */
if (hwirq >= GPMC_NR_NAND_IRQS)
hwirq += 8 - GPMC_NR_NAND_IRQS;
/* Setting bit to 1 clears (or Acks) the interrupt */
gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
}
static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
{
/* can't set type for NAND IRQs */
if (d->hwirq < GPMC_NR_NAND_IRQS)
return -EINVAL;
/* We can support either rising or falling edge at a time */
if (trigger == IRQ_TYPE_EDGE_FALLING)
gpmc_irq_edge_config(d->hwirq, false);
else if (trigger == IRQ_TYPE_EDGE_RISING)
gpmc_irq_edge_config(d->hwirq, true);
else
return -EINVAL;
return 0;
}
static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
irq_hw_number_t hw)
{
struct gpmc_device *gpmc = d->host_data;
irq_set_chip_data(virq, gpmc);
if (hw < GPMC_NR_NAND_IRQS) {
irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
irq_set_chip_and_handler(virq, &gpmc->irq_chip,
handle_simple_irq);
} else {
irq_set_chip_and_handler(virq, &gpmc->irq_chip,
handle_edge_irq);
}
return 0;
}
static const struct irq_domain_ops gpmc_irq_domain_ops = {
.map = gpmc_irq_map,
.xlate = irq_domain_xlate_twocell,
};
static irqreturn_t gpmc_handle_irq(int irq, void *data)
{
int hwirq, virq;
u32 regval, regvalx;
struct gpmc_device *gpmc = data;
regval = gpmc_read_reg(GPMC_IRQSTATUS);
regvalx = regval;
if (!regval)
return IRQ_NONE;
for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
/* skip reserved status bits */
if (hwirq == GPMC_NR_NAND_IRQS)
regvalx >>= 8 - GPMC_NR_NAND_IRQS;
if (regvalx & BIT(hwirq)) {
virq = irq_find_mapping(gpmc_irq_domain, hwirq);
if (!virq) {
dev_warn(gpmc->dev,
"spurious irq detected hwirq %d, virq %d\n",
hwirq, virq);
}
generic_handle_irq(virq);
}
}
gpmc_write_reg(GPMC_IRQSTATUS, regval);
return IRQ_HANDLED;
}
static int gpmc_setup_irq(struct gpmc_device *gpmc)
{
u32 regval;
int rc;
/* Disable interrupts */
gpmc_write_reg(GPMC_IRQENABLE, 0);
/* clear interrupts */
regval = gpmc_read_reg(GPMC_IRQSTATUS);
gpmc_write_reg(GPMC_IRQSTATUS, regval);
gpmc->irq_chip.name = "gpmc";
gpmc->irq_chip.irq_enable = gpmc_irq_enable;
gpmc->irq_chip.irq_disable = gpmc_irq_disable;
gpmc->irq_chip.irq_ack = gpmc_irq_ack;
gpmc->irq_chip.irq_mask = gpmc_irq_mask;
gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
gpmc->nirqs,
&gpmc_irq_domain_ops,
gpmc);
if (!gpmc_irq_domain) {
dev_err(gpmc->dev, "IRQ domain add failed\n");
return -ENODEV;
}
rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
if (rc) {
dev_err(gpmc->dev, "failed to request irq %d: %d\n",
gpmc->irq, rc);
irq_domain_remove(gpmc_irq_domain);
gpmc_irq_domain = NULL;
}
return rc;
}
static int gpmc_free_irq(struct gpmc_device *gpmc)
{
int hwirq;
free_irq(gpmc->irq, gpmc);
for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
irq_domain_remove(gpmc_irq_domain);
gpmc_irq_domain = NULL;
return 0;
}
static void gpmc_mem_exit(void)
{
int cs;
for (cs = 0; cs < gpmc_cs_num; cs++) {
if (!gpmc_cs_mem_enabled(cs))
continue;
gpmc_cs_delete_mem(cs);
}
}
static void gpmc_mem_init(struct gpmc_device *gpmc)
{
int cs;
if (!gpmc->data) {
/* All legacy devices have same data IO window */
gpmc_mem_root.start = GPMC_MEM_START;
gpmc_mem_root.end = GPMC_MEM_END;
} else {
gpmc_mem_root.start = gpmc->data->start;
gpmc_mem_root.end = gpmc->data->end;
}
/* Reserve all regions that has been set up by bootloader */
for (cs = 0; cs < gpmc_cs_num; cs++) {
u32 base, size;
if (!gpmc_cs_mem_enabled(cs))
continue;
gpmc_cs_get_memconf(cs, &base, &size);
if (gpmc_cs_insert_mem(cs, base, size)) {
pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
__func__, cs, base, base + size);
gpmc_cs_disable_mem(cs);
}
}
}
static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
{
u32 temp;
int div;
div = gpmc_calc_divider(sync_clk);
temp = gpmc_ps_to_ticks(time_ps);
temp = (temp + div - 1) / div;
return gpmc_ticks_to_ps(temp * div);
}
/* XXX: can the cycles be avoided ? */
static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_rd_off */
temp = dev_t->t_avdp_r;
/* XXX: mux check required ? */
if (mux) {
/* XXX: t_avdp not to be required for sync, only added for tusb
* this indirectly necessitates requirement of t_avdp_r and
* t_avdp_w instead of having a single t_avdp
*/
temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
}
gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
/* oe_on */
temp = dev_t->t_oeasu; /* XXX: remove this ? */
if (mux) {
temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
temp = max_t(u32, temp, gpmc_t->adv_rd_off +
gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
}
gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
/* access */
/* XXX: any scope for improvement ?, by combining oe_on
* and clk_activation, need to check whether
* access = clk_activation + round to sync clk ?
*/
temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
temp += gpmc_t->clk_activation;
if (dev_t->cyc_oe)
temp = max_t(u32, temp, gpmc_t->oe_on +
gpmc_ticks_to_ps(dev_t->cyc_oe));
gpmc_t->access = gpmc_round_ps_to_ticks(temp);
gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
gpmc_t->cs_rd_off = gpmc_t->oe_off;
/* rd_cycle */
temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
gpmc_t->access;
/* XXX: barter t_ce_rdyz with t_cez_r ? */
if (dev_t->t_ce_rdyz)
temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_wr_off */
temp = dev_t->t_avdp_w;
if (mux) {
temp = max_t(u32, temp,
gpmc_t->clk_activation + dev_t->t_avdh);
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
}
gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
/* wr_data_mux_bus */
temp = max_t(u32, dev_t->t_weasu,
gpmc_t->clk_activation + dev_t->t_rdyo);
/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
* and in that case remember to handle we_on properly
*/
if (mux) {
temp = max_t(u32, temp,
gpmc_t->adv_wr_off + dev_t->t_aavdh);
temp = max_t(u32, temp, gpmc_t->adv_wr_off +
gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
}
gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
/* we_on */
if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
else
gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
/* wr_access */
/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
gpmc_t->wr_access = gpmc_t->access;
/* we_off */
temp = gpmc_t->we_on + dev_t->t_wpl;
temp = max_t(u32, temp,
gpmc_t->wr_access + gpmc_ticks_to_ps(1));
temp = max_t(u32, temp,
gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
dev_t->t_wph);
/* wr_cycle */
temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
temp += gpmc_t->wr_access;
/* XXX: barter t_ce_rdyz with t_cez_w ? */
if (dev_t->t_ce_rdyz)
temp = max_t(u32, temp,
gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_rd_off */
temp = dev_t->t_avdp_r;
if (mux)
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
/* oe_on */
temp = dev_t->t_oeasu;
if (mux)
temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
/* access */
temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
gpmc_t->oe_on + dev_t->t_oe);
temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
gpmc_t->access = gpmc_round_ps_to_ticks(temp);
gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
gpmc_t->cs_rd_off = gpmc_t->oe_off;
/* rd_cycle */
temp = max_t(u32, dev_t->t_rd_cycle,
gpmc_t->cs_rd_off + dev_t->t_cez_r);
temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool mux)
{
u32 temp;
/* adv_wr_off */
temp = dev_t->t_avdp_w;
if (mux)
temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
/* wr_data_mux_bus */
temp = dev_t->t_weasu;
if (mux) {
temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
temp = max_t(u32, temp, gpmc_t->adv_wr_off +
gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
}
gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
/* we_on */
if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
else
gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
/* we_off */
temp = gpmc_t->we_on + dev_t->t_wpl;
gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
dev_t->t_wph);
/* wr_cycle */
temp = max_t(u32, dev_t->t_wr_cycle,
gpmc_t->cs_wr_off + dev_t->t_cez_w);
gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
return 0;
}
static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t)
{
u32 temp;
gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
gpmc_get_fclk_period();
gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
dev_t->t_bacc,
gpmc_t->sync_clk);
temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
return 0;
if (dev_t->ce_xdelay)
gpmc_t->bool_timings.cs_extra_delay = true;
if (dev_t->avd_xdelay)
gpmc_t->bool_timings.adv_extra_delay = true;
if (dev_t->oe_xdelay)
gpmc_t->bool_timings.oe_extra_delay = true;
if (dev_t->we_xdelay)
gpmc_t->bool_timings.we_extra_delay = true;
return 0;
}
static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
struct gpmc_device_timings *dev_t,
bool sync)
{
u32 temp;
/* cs_on */
gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
/* adv_on */
temp = dev_t->t_avdasu;
if (dev_t->t_ce_avd)
temp = max_t(u32, temp,
gpmc_t->cs_on + dev_t->t_ce_avd);
gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
if (sync)
gpmc_calc_sync_common_timings(gpmc_t, dev_t);
return 0;
}
/*
* TODO: remove this function once all peripherals are confirmed to
* work with generic timing. Simultaneously gpmc_cs_set_timings()
* has to be modified to handle timings in ps instead of ns
*/
static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
{
t->cs_on /= 1000;
t->cs_rd_off /= 1000;
t->cs_wr_off /= 1000;
t->adv_on /= 1000;
t->adv_rd_off /= 1000;
t->adv_wr_off /= 1000;
t->we_on /= 1000;
t->we_off /= 1000;
t->oe_on /= 1000;
t->oe_off /= 1000;
t->page_burst_access /= 1000;
t->access /= 1000;
t->rd_cycle /= 1000;
t->wr_cycle /= 1000;
t->bus_turnaround /= 1000;
t->cycle2cycle_delay /= 1000;
t->wait_monitoring /= 1000;
t->clk_activation /= 1000;
t->wr_access /= 1000;
t->wr_data_mux_bus /= 1000;
}
int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
struct gpmc_settings *gpmc_s,
struct gpmc_device_timings *dev_t)
{
bool mux = false, sync = false;
if (gpmc_s) {
mux = gpmc_s->mux_add_data ? true : false;
sync = (gpmc_s->sync_read || gpmc_s->sync_write);
}
memset(gpmc_t, 0, sizeof(*gpmc_t));
gpmc_calc_common_timings(gpmc_t, dev_t, sync);
if (gpmc_s && gpmc_s->sync_read)
gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
else
gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
if (gpmc_s && gpmc_s->sync_write)
gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
else
gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
/* TODO: remove, see function definition */
gpmc_convert_ps_to_ns(gpmc_t);
return 0;
}
/**
* gpmc_cs_program_settings - programs non-timing related settings
* @cs: GPMC chip-select to program
* @p: pointer to GPMC settings structure
*
* Programs non-timing related settings for a GPMC chip-select, such as
* bus-width, burst configuration, etc. Function should be called once
* for each chip-select that is being used and must be called before
* calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
* register will be initialised to zero by this function. Returns 0 on
* success and appropriate negative error code on failure.
*/
int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
{
u32 config1;
if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
pr_err("%s: invalid width %d!", __func__, p->device_width);
return -EINVAL;
}
/* Address-data multiplexing not supported for NAND devices */
if (p->device_nand && p->mux_add_data) {
pr_err("%s: invalid configuration!\n", __func__);
return -EINVAL;
}
if ((p->mux_add_data > GPMC_MUX_AD) ||
((p->mux_add_data == GPMC_MUX_AAD) &&
!(gpmc_capability & GPMC_HAS_MUX_AAD))) {
pr_err("%s: invalid multiplex configuration!\n", __func__);
return -EINVAL;
}
/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
if (p->burst_read || p->burst_write) {
switch (p->burst_len) {
case GPMC_BURST_4:
case GPMC_BURST_8:
case GPMC_BURST_16:
break;
default:
pr_err("%s: invalid page/burst-length (%d)\n",
__func__, p->burst_len);
return -EINVAL;
}
}
if (p->wait_pin > gpmc_nr_waitpins) {
pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
return -EINVAL;
}
config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
if (p->sync_read)
config1 |= GPMC_CONFIG1_READTYPE_SYNC;
if (p->sync_write)
config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
if (p->wait_on_read)
config1 |= GPMC_CONFIG1_WAIT_READ_MON;
if (p->wait_on_write)
config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
if (p->wait_on_read || p->wait_on_write)
config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
if (p->device_nand)
config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
if (p->mux_add_data)
config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
if (p->burst_read)
config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
if (p->burst_write)
config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
if (p->burst_read || p->burst_write) {
config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
}
gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
return 0;
}
#ifdef CONFIG_OF
static void gpmc_cs_set_name(int cs, const char *name)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
gpmc->name = name;
}
static const char *gpmc_cs_get_name(int cs)
{
struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
return gpmc->name;
}
/**
* gpmc_cs_remap - remaps a chip-select physical base address
* @cs: chip-select to remap
* @base: physical base address to re-map chip-select to
*
* Re-maps a chip-select to a new physical base address specified by
* "base". Returns 0 on success and appropriate negative error code
* on failure.
*/
static int gpmc_cs_remap(int cs, u32 base)
{
int ret;
u32 old_base, size;
if (cs >= gpmc_cs_num) {
pr_err("%s: requested chip-select is disabled\n", __func__);
return -ENODEV;
}
/*
* Make sure we ignore any device offsets from the GPMC partition
* allocated for the chip select and that the new base confirms
* to the GPMC 16MB minimum granularity.
*/
base &= ~(SZ_16M - 1);
gpmc_cs_get_memconf(cs, &old_base, &size);
if (base == old_base)
return 0;
ret = gpmc_cs_delete_mem(cs);
if (ret < 0)
return ret;
ret = gpmc_cs_insert_mem(cs, base, size);
if (ret < 0)
return ret;
ret = gpmc_cs_set_memconf(cs, base, size);
return ret;
}
/**
* gpmc_read_settings_dt - read gpmc settings from device-tree
* @np: pointer to device-tree node for a gpmc child device
* @p: pointer to gpmc settings structure
*
* Reads the GPMC settings for a GPMC child device from device-tree and
* stores them in the GPMC settings structure passed. The GPMC settings
* structure is initialised to zero by this function and so any
* previously stored settings will be cleared.
*/
void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
{
memset(p, 0, sizeof(struct gpmc_settings));
p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
of_property_read_u32(np, "gpmc,device-width", &p->device_width);
of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
if (!p->burst_read && !p->burst_write)
pr_warn("%s: page/burst-length set but not used!\n",
__func__);
}
if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
p->wait_on_read = of_property_read_bool(np,
"gpmc,wait-on-read");
p->wait_on_write = of_property_read_bool(np,
"gpmc,wait-on-write");
if (!p->wait_on_read && !p->wait_on_write)
pr_debug("%s: rd/wr wait monitoring not enabled!\n",
__func__);
}
}
static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
struct gpmc_timings *gpmc_t)
{
struct gpmc_bool_timings *p;
if (!np || !gpmc_t)
return;
memset(gpmc_t, 0, sizeof(*gpmc_t));
/* minimum clock period for syncronous mode */
of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
/* chip select timtings */
of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
/* ADV signal timings */
of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
&gpmc_t->adv_aad_mux_on);
of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
&gpmc_t->adv_aad_mux_rd_off);
of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
&gpmc_t->adv_aad_mux_wr_off);
/* WE signal timings */
of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
/* OE signal timings */
of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
&gpmc_t->oe_aad_mux_on);
of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
&gpmc_t->oe_aad_mux_off);
/* access and cycle timings */
of_property_read_u32(np, "gpmc,page-burst-access-ns",
&gpmc_t->page_burst_access);
of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
of_property_read_u32(np, "gpmc,bus-turnaround-ns",
&gpmc_t->bus_turnaround);
of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
&gpmc_t->cycle2cycle_delay);
of_property_read_u32(np, "gpmc,wait-monitoring-ns",
&gpmc_t->wait_monitoring);
of_property_read_u32(np, "gpmc,clk-activation-ns",
&gpmc_t->clk_activation);
/* only applicable to OMAP3+ */
of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
&gpmc_t->wr_data_mux_bus);
/* bool timing parameters */
p = &gpmc_t->bool_timings;
p->cycle2cyclediffcsen =
of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
p->cycle2cyclesamecsen =
of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
p->time_para_granularity =
of_property_read_bool(np, "gpmc,time-para-granularity");
}
/**
* gpmc_probe_generic_child - configures the gpmc for a child device
* @pdev: pointer to gpmc platform device
* @child: pointer to device-tree node for child device
*
* Allocates and configures a GPMC chip-select for a child device.
* Returns 0 on success and appropriate negative error code on failure.
*/
static int gpmc_probe_generic_child(struct platform_device *pdev,
struct device_node *child)
{
struct gpmc_settings gpmc_s;
struct gpmc_timings gpmc_t;
struct resource res;
unsigned long base;
const char *name;
int ret, cs;
u32 val;
struct gpio_desc *waitpin_desc = NULL;
struct gpmc_device *gpmc = platform_get_drvdata(pdev);
if (of_property_read_u32(child, "reg", &cs) < 0) {
dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
child);
return -ENODEV;
}
if (of_address_to_resource(child, 0, &res) < 0) {
dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
child);
return -ENODEV;
}
/*
* Check if we have multiple instances of the same device
* on a single chip select. If so, use the already initialized
* timings.
*/
name = gpmc_cs_get_name(cs);
if (name && of_node_name_eq(child, name))
goto no_timings;
ret = gpmc_cs_request(cs, resource_size(&res), &base);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
return ret;
}
gpmc_cs_set_name(cs, child->full_name);
gpmc_read_settings_dt(child, &gpmc_s);
gpmc_read_timings_dt(child, &gpmc_t);
/*
* For some GPMC devices we still need to rely on the bootloader
* timings because the devices can be connected via FPGA.
* REVISIT: Add timing support from slls644g.pdf.
*/
if (!gpmc_t.cs_rd_off) {
WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
cs);
gpmc_cs_show_timings(cs,
"please add GPMC bootloader timings to .dts");
goto no_timings;
}
/* CS must be disabled while making changes to gpmc configuration */
gpmc_cs_disable_mem(cs);
/*
* FIXME: gpmc_cs_request() will map the CS to an arbitrary
* location in the gpmc address space. When booting with
* device-tree we want the NOR flash to be mapped to the
* location specified in the device-tree blob. So remap the
* CS to this location. Once DT migration is complete should
* just make gpmc_cs_request() map a specific address.
*/
ret = gpmc_cs_remap(cs, res.start);
if (ret < 0) {
dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
cs, &res.start);
if (res.start < GPMC_MEM_START) {
dev_info(&pdev->dev,
"GPMC CS %d start cannot be lesser than 0x%x\n",
cs, GPMC_MEM_START);
} else if (res.end > GPMC_MEM_END) {
dev_info(&pdev->dev,
"GPMC CS %d end cannot be greater than 0x%x\n",
cs, GPMC_MEM_END);
}
goto err;
}
if (of_node_name_eq(child, "nand")) {
/* Warn about older DT blobs with no compatible property */
if (!of_property_read_bool(child, "compatible")) {
dev_warn(&pdev->dev,
"Incompatible NAND node: missing compatible");
ret = -EINVAL;
goto err;
}
}
if (of_node_name_eq(child, "onenand")) {
/* Warn about older DT blobs with no compatible property */
if (!of_property_read_bool(child, "compatible")) {
dev_warn(&pdev->dev,
"Incompatible OneNAND node: missing compatible");
ret = -EINVAL;
goto err;
}
}
if (of_match_node(omap_nand_ids, child)) {
/* NAND specific setup */
val = 8;
of_property_read_u32(child, "nand-bus-width", &val);
switch (val) {
case 8:
gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
break;
case 16:
gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
break;
default:
dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
child);
ret = -EINVAL;
goto err;
}
/* disable write protect */
gpmc_configure(GPMC_CONFIG_WP, 0);
gpmc_s.device_nand = true;
} else {
ret = of_property_read_u32(child, "bank-width",
&gpmc_s.device_width);
if (ret < 0 && !gpmc_s.device_width) {
dev_err(&pdev->dev,
"%pOF has no 'gpmc,device-width' property\n",
child);
goto err;
}
}
/* Reserve wait pin if it is required and valid */
if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
unsigned int wait_pin = gpmc_s.wait_pin;
waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
wait_pin, "WAITPIN",
GPIO_ACTIVE_HIGH,
GPIOD_IN);
if (IS_ERR(waitpin_desc)) {
dev_err(&pdev->dev, "invalid wait-pin: %d\n", wait_pin);
ret = PTR_ERR(waitpin_desc);
goto err;
}
}
gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
ret = gpmc_cs_program_settings(cs, &gpmc_s);
if (ret < 0)
goto err_cs;
ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
if (ret) {
dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
child);
goto err_cs;
}
/* Clear limited address i.e. enable A26-A11 */
val = gpmc_read_reg(GPMC_CONFIG);
val &= ~GPMC_CONFIG_LIMITEDADDRESS;
gpmc_write_reg(GPMC_CONFIG, val);
/* Enable CS region */
gpmc_cs_enable_mem(cs);
no_timings:
/* create platform device, NULL on error or when disabled */
if (!of_platform_device_create(child, NULL, &pdev->dev))
goto err_child_fail;
/* create children and other common bus children */
if (of_platform_default_populate(child, NULL, &pdev->dev))
goto err_child_fail;
return 0;
err_child_fail:
dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
ret = -ENODEV;
err_cs:
gpiochip_free_own_desc(waitpin_desc);
err:
gpmc_cs_free(cs);
return ret;
}
static const struct of_device_id gpmc_dt_ids[];
static int gpmc_probe_dt(struct platform_device *pdev)
{
int ret;
const struct of_device_id *of_id =
of_match_device(gpmc_dt_ids, &pdev->dev);
if (!of_id)
return 0;
ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
&gpmc_cs_num);
if (ret < 0) {
pr_err("%s: number of chip-selects not defined\n", __func__);
return ret;
} else if (gpmc_cs_num < 1) {
pr_err("%s: all chip-selects are disabled\n", __func__);
return -EINVAL;
} else if (gpmc_cs_num > GPMC_CS_NUM) {
pr_err("%s: number of supported chip-selects cannot be > %d\n",
__func__, GPMC_CS_NUM);
return -EINVAL;
}
ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
&gpmc_nr_waitpins);
if (ret < 0) {
pr_err("%s: number of wait pins not found!\n", __func__);
return ret;
}
return 0;
}
static void gpmc_probe_dt_children(struct platform_device *pdev)
{
int ret;
struct device_node *child;
for_each_available_child_of_node(pdev->dev.of_node, child) {
ret = gpmc_probe_generic_child(pdev, child);
if (ret) {
dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
child, ret);
}
}
}
#else
void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
{
memset(p, 0, sizeof(*p));
}
static int gpmc_probe_dt(struct platform_device *pdev)
{
return 0;
}
static void gpmc_probe_dt_children(struct platform_device *pdev)
{
}
#endif /* CONFIG_OF */
static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
{
return 1; /* we're input only */
}
static int gpmc_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
return 0; /* we're input only */
}
static int gpmc_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int value)
{
return -EINVAL; /* we're input only */
}
static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
int value)
{
}
static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
u32 reg;
offset += 8;
reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
return !!reg;
}
static int gpmc_gpio_init(struct gpmc_device *gpmc)
{
int ret;
gpmc->gpio_chip.parent = gpmc->dev;
gpmc->gpio_chip.owner = THIS_MODULE;
gpmc->gpio_chip.label = DEVICE_NAME;
gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
gpmc->gpio_chip.set = gpmc_gpio_set;
gpmc->gpio_chip.get = gpmc_gpio_get;
gpmc->gpio_chip.base = -1;
ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
if (ret < 0) {
dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
return ret;
}
return 0;
}
static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
{
struct omap3_gpmc_regs *gpmc_context;
int i;
if (!gpmc || !gpmc_base)
return;
gpmc_context = &gpmc->context;
gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
for (i = 0; i < gpmc_cs_num; i++) {
gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
if (gpmc_context->cs_context[i].is_valid) {
gpmc_context->cs_context[i].config1 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
gpmc_context->cs_context[i].config2 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
gpmc_context->cs_context[i].config3 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
gpmc_context->cs_context[i].config4 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
gpmc_context->cs_context[i].config5 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
gpmc_context->cs_context[i].config6 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
gpmc_context->cs_context[i].config7 =
gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
}
}
}
static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
{
struct omap3_gpmc_regs *gpmc_context;
int i;
if (!gpmc || !gpmc_base)
return;
gpmc_context = &gpmc->context;
gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
for (i = 0; i < gpmc_cs_num; i++) {
if (gpmc_context->cs_context[i].is_valid) {
gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
gpmc_context->cs_context[i].config1);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
gpmc_context->cs_context[i].config2);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
gpmc_context->cs_context[i].config3);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
gpmc_context->cs_context[i].config4);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
gpmc_context->cs_context[i].config5);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
gpmc_context->cs_context[i].config6);
gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
gpmc_context->cs_context[i].config7);
} else {
gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
}
}
}
static int omap_gpmc_context_notifier(struct notifier_block *nb,
unsigned long cmd, void *v)
{
struct gpmc_device *gpmc;
gpmc = container_of(nb, struct gpmc_device, nb);
if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
return NOTIFY_OK;
switch (cmd) {
case CPU_CLUSTER_PM_ENTER:
omap3_gpmc_save_context(gpmc);
break;
case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */
break;
case CPU_CLUSTER_PM_EXIT:
omap3_gpmc_restore_context(gpmc);
break;
}
return NOTIFY_OK;
}
static int gpmc_probe(struct platform_device *pdev)
{
int rc;
u32 l;
struct resource *res;
struct gpmc_device *gpmc;
gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
if (!gpmc)
return -ENOMEM;
gpmc->dev = &pdev->dev;
platform_set_drvdata(pdev, gpmc);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
if (!res) {
/* legacy DT */
gpmc_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(gpmc_base))
return PTR_ERR(gpmc_base);
} else {
gpmc_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(gpmc_base))
return PTR_ERR(gpmc_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data");
if (!res) {
dev_err(&pdev->dev, "couldn't get data reg resource\n");
return -ENOENT;
}
gpmc->data = res;
}
gpmc->irq = platform_get_irq(pdev, 0);
if (gpmc->irq < 0)
return gpmc->irq;
gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(gpmc_l3_clk)) {
dev_err(&pdev->dev, "Failed to get GPMC fck\n");
return PTR_ERR(gpmc_l3_clk);
}
if (!clk_get_rate(gpmc_l3_clk)) {
dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
return -EINVAL;
}
if (pdev->dev.of_node) {
rc = gpmc_probe_dt(pdev);
if (rc)
return rc;
} else {
gpmc_cs_num = GPMC_CS_NUM;
gpmc_nr_waitpins = GPMC_NR_WAITPINS;
}
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
l = gpmc_read_reg(GPMC_REVISION);
/*
* FIXME: Once device-tree migration is complete the below flags
* should be populated based upon the device-tree compatible
* string. For now just use the IP revision. OMAP3+ devices have
* the wr_access and wr_data_mux_bus register fields. OMAP4+
* devices support the addr-addr-data multiplex protocol.
*
* GPMC IP revisions:
* - OMAP24xx = 2.0
* - OMAP3xxx = 5.0
* - OMAP44xx/54xx/AM335x = 6.0
*/
if (GPMC_REVISION_MAJOR(l) > 0x4)
gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
if (GPMC_REVISION_MAJOR(l) > 0x5)
gpmc_capability |= GPMC_HAS_MUX_AAD;
dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
GPMC_REVISION_MINOR(l));
gpmc_mem_init(gpmc);
rc = gpmc_gpio_init(gpmc);
if (rc)
goto gpio_init_failed;
gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
rc = gpmc_setup_irq(gpmc);
if (rc) {
dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
goto gpio_init_failed;
}
gpmc_probe_dt_children(pdev);
gpmc->nb.notifier_call = omap_gpmc_context_notifier;
cpu_pm_register_notifier(&gpmc->nb);
return 0;
gpio_init_failed:
gpmc_mem_exit();
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return rc;
}
static int gpmc_remove(struct platform_device *pdev)
{
struct gpmc_device *gpmc = platform_get_drvdata(pdev);
cpu_pm_unregister_notifier(&gpmc->nb);
gpmc_free_irq(gpmc);
gpmc_mem_exit();
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int gpmc_suspend(struct device *dev)
{
struct gpmc_device *gpmc = dev_get_drvdata(dev);
omap3_gpmc_save_context(gpmc);
pm_runtime_put_sync(dev);
gpmc->is_suspended = 1;
return 0;
}
static int gpmc_resume(struct device *dev)
{
struct gpmc_device *gpmc = dev_get_drvdata(dev);
pm_runtime_get_sync(dev);
omap3_gpmc_restore_context(gpmc);
gpmc->is_suspended = 0;
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
#ifdef CONFIG_OF
static const struct of_device_id gpmc_dt_ids[] = {
{ .compatible = "ti,omap2420-gpmc" },
{ .compatible = "ti,omap2430-gpmc" },
{ .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */
{ .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */
{ .compatible = "ti,am3352-gpmc" }, /* am335x devices */
{ .compatible = "ti,am64-gpmc" },
{ }
};
MODULE_DEVICE_TABLE(of, gpmc_dt_ids);
#endif
static struct platform_driver gpmc_driver = {
.probe = gpmc_probe,
.remove = gpmc_remove,
.driver = {
.name = DEVICE_NAME,
.of_match_table = of_match_ptr(gpmc_dt_ids),
.pm = &gpmc_pm_ops,
},
};
module_platform_driver(gpmc_driver);
MODULE_DESCRIPTION("Texas Instruments GPMC driver");
MODULE_LICENSE("GPL");