blob: 1467bbd59690a4fc49b51e4c55e9f39569d69083 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Broadcom STB SoCs Bus Unit Interface controls
*
* Copyright (C) 2015, Broadcom Corporation
*/
#define pr_fmt(fmt) "brcmstb: " KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/syscore_ops.h>
#include <linux/soc/brcmstb/brcmstb.h>
#define RACENPREF_MASK 0x3
#define RACPREFINST_SHIFT 0
#define RACENINST_SHIFT 2
#define RACPREFDATA_SHIFT 4
#define RACENDATA_SHIFT 6
#define RAC_CPU_SHIFT 8
#define RACCFG_MASK 0xff
#define DPREF_LINE_2_SHIFT 24
#define DPREF_LINE_2_MASK 0xff
/* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
#define RAC_DATA_INST_EN_MASK (1 << RACPREFINST_SHIFT | \
RACENPREF_MASK << RACENINST_SHIFT | \
1 << RACPREFDATA_SHIFT | \
RACENPREF_MASK << RACENDATA_SHIFT)
#define CPU_CREDIT_REG_MCPx_WR_PAIRING_EN_MASK 0x70000000
#define CPU_CREDIT_REG_MCPx_READ_CRED_MASK 0xf
#define CPU_CREDIT_REG_MCPx_WRITE_CRED_MASK 0xf
#define CPU_CREDIT_REG_MCPx_READ_CRED_SHIFT(x) ((x) * 8)
#define CPU_CREDIT_REG_MCPx_WRITE_CRED_SHIFT(x) (((x) * 8) + 4)
#define CPU_MCP_FLOW_REG_MCPx_RDBUFF_CRED_SHIFT(x) ((x) * 8)
#define CPU_MCP_FLOW_REG_MCPx_RDBUFF_CRED_MASK 0xff
#define CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_THRESHOLD_MASK 0xf
#define CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_TIMEOUT_MASK 0xf
#define CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_TIMEOUT_SHIFT 4
#define CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_ENABLE BIT(8)
static void __iomem *cpubiuctrl_base;
static bool mcp_wr_pairing_en;
static const int *cpubiuctrl_regs;
enum cpubiuctrl_regs {
CPU_CREDIT_REG = 0,
CPU_MCP_FLOW_REG,
CPU_WRITEBACK_CTRL_REG,
RAC_CONFIG0_REG,
RAC_CONFIG1_REG,
NUM_CPU_BIUCTRL_REGS,
};
static inline u32 cbc_readl(int reg)
{
int offset = cpubiuctrl_regs[reg];
if (offset == -1 ||
(IS_ENABLED(CONFIG_CACHE_B15_RAC) && reg >= RAC_CONFIG0_REG))
return (u32)-1;
return readl_relaxed(cpubiuctrl_base + offset);
}
static inline void cbc_writel(u32 val, int reg)
{
int offset = cpubiuctrl_regs[reg];
if (offset == -1 ||
(IS_ENABLED(CONFIG_CACHE_B15_RAC) && reg >= RAC_CONFIG0_REG))
return;
writel(val, cpubiuctrl_base + offset);
}
static const int b15_cpubiuctrl_regs[] = {
[CPU_CREDIT_REG] = 0x184,
[CPU_MCP_FLOW_REG] = -1,
[CPU_WRITEBACK_CTRL_REG] = -1,
[RAC_CONFIG0_REG] = -1,
[RAC_CONFIG1_REG] = -1,
};
/* Odd cases, e.g: 7260A0 */
static const int b53_cpubiuctrl_no_wb_regs[] = {
[CPU_CREDIT_REG] = 0x0b0,
[CPU_MCP_FLOW_REG] = 0x0b4,
[CPU_WRITEBACK_CTRL_REG] = -1,
[RAC_CONFIG0_REG] = 0x78,
[RAC_CONFIG1_REG] = 0x7c,
};
static const int b53_cpubiuctrl_regs[] = {
[CPU_CREDIT_REG] = 0x0b0,
[CPU_MCP_FLOW_REG] = 0x0b4,
[CPU_WRITEBACK_CTRL_REG] = 0x22c,
[RAC_CONFIG0_REG] = 0x78,
[RAC_CONFIG1_REG] = 0x7c,
};
static const int a72_cpubiuctrl_regs[] = {
[CPU_CREDIT_REG] = 0x18,
[CPU_MCP_FLOW_REG] = 0x1c,
[CPU_WRITEBACK_CTRL_REG] = 0x20,
[RAC_CONFIG0_REG] = 0x08,
[RAC_CONFIG1_REG] = 0x0c,
};
static int __init mcp_write_pairing_set(void)
{
u32 creds = 0;
if (!cpubiuctrl_base)
return -1;
creds = cbc_readl(CPU_CREDIT_REG);
if (mcp_wr_pairing_en) {
pr_info("MCP: Enabling write pairing\n");
cbc_writel(creds | CPU_CREDIT_REG_MCPx_WR_PAIRING_EN_MASK,
CPU_CREDIT_REG);
} else if (creds & CPU_CREDIT_REG_MCPx_WR_PAIRING_EN_MASK) {
pr_info("MCP: Disabling write pairing\n");
cbc_writel(creds & ~CPU_CREDIT_REG_MCPx_WR_PAIRING_EN_MASK,
CPU_CREDIT_REG);
} else {
pr_info("MCP: Write pairing already disabled\n");
}
return 0;
}
static const u32 a72_b53_mach_compat[] = {
0x7211,
0x72113,
0x72116,
0x7216,
0x72164,
0x72165,
0x7255,
0x7260,
0x7268,
0x7271,
0x7278,
};
/* The read-ahead cache present in the Brahma-B53 CPU is a special piece of
* hardware after the integrated L2 cache of the B53 CPU complex whose purpose
* is to prefetch instruction and/or data with a line size of either 64 bytes
* or 256 bytes. The rationale is that the data-bus of the CPU interface is
* optimized for 256-byte transactions, and enabling the read-ahead cache
* provides a significant performance boost (typically twice the performance
* for a memcpy benchmark application).
*
* The read-ahead cache is transparent for Virtual Address cache maintenance
* operations: IC IVAU, DC IVAC, DC CVAC, DC CVAU and DC CIVAC. So no special
* handling is needed for the DMA API above and beyond what is included in the
* arm64 implementation.
*
* In addition, since the Point of Unification is typically between L1 and L2
* for the Brahma-B53 processor no special read-ahead cache handling is needed
* for the IC IALLU and IC IALLUIS cache maintenance operations.
*
* However, it is not possible to specify the cache level (L3) for the cache
* maintenance instructions operating by set/way to operate on the read-ahead
* cache. The read-ahead cache will maintain coherency when inner cache lines
* are cleaned by set/way, but if it is necessary to invalidate inner cache
* lines by set/way to maintain coherency with system masters operating on
* shared memory that does not have hardware support for coherency, then it
* will also be necessary to explicitly invalidate the read-ahead cache.
*/
static void __init a72_b53_rac_enable_all(struct device_node *np)
{
unsigned int cpu;
u32 enable = 0, pref_dist, shift;
if (IS_ENABLED(CONFIG_CACHE_B15_RAC))
return;
if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
return;
pref_dist = cbc_readl(RAC_CONFIG1_REG);
for_each_possible_cpu(cpu) {
shift = cpu * RAC_CPU_SHIFT + RACPREFDATA_SHIFT;
enable |= RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT);
if (cpubiuctrl_regs == a72_cpubiuctrl_regs) {
enable &= ~(RACENPREF_MASK << shift);
enable |= 3 << shift;
pref_dist |= 1 << (cpu + DPREF_LINE_2_SHIFT);
}
}
cbc_writel(enable, RAC_CONFIG0_REG);
cbc_writel(pref_dist, RAC_CONFIG1_REG);
pr_info("%pOF: Broadcom %s read-ahead cache\n",
np, cpubiuctrl_regs == a72_cpubiuctrl_regs ?
"Cortex-A72" : "Brahma-B53");
}
static void __init mcp_a72_b53_set(void)
{
unsigned int i;
u32 reg;
reg = brcmstb_get_family_id();
for (i = 0; i < ARRAY_SIZE(a72_b53_mach_compat); i++) {
if (BRCM_ID(reg) == a72_b53_mach_compat[i])
break;
}
if (i == ARRAY_SIZE(a72_b53_mach_compat))
return;
/* Set all 3 MCP interfaces to 8 credits */
reg = cbc_readl(CPU_CREDIT_REG);
for (i = 0; i < 3; i++) {
reg &= ~(CPU_CREDIT_REG_MCPx_WRITE_CRED_MASK <<
CPU_CREDIT_REG_MCPx_WRITE_CRED_SHIFT(i));
reg &= ~(CPU_CREDIT_REG_MCPx_READ_CRED_MASK <<
CPU_CREDIT_REG_MCPx_READ_CRED_SHIFT(i));
reg |= 8 << CPU_CREDIT_REG_MCPx_WRITE_CRED_SHIFT(i);
reg |= 8 << CPU_CREDIT_REG_MCPx_READ_CRED_SHIFT(i);
}
cbc_writel(reg, CPU_CREDIT_REG);
/* Max out the number of in-flight Jwords reads on the MCP interface */
reg = cbc_readl(CPU_MCP_FLOW_REG);
for (i = 0; i < 3; i++)
reg |= CPU_MCP_FLOW_REG_MCPx_RDBUFF_CRED_MASK <<
CPU_MCP_FLOW_REG_MCPx_RDBUFF_CRED_SHIFT(i);
cbc_writel(reg, CPU_MCP_FLOW_REG);
/* Enable writeback throttling, set timeout to 128 cycles, 256 cycles
* threshold
*/
reg = cbc_readl(CPU_WRITEBACK_CTRL_REG);
reg |= CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_ENABLE;
reg &= ~CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_THRESHOLD_MASK;
reg &= ~(CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_TIMEOUT_MASK <<
CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_TIMEOUT_SHIFT);
reg |= 8;
reg |= 7 << CPU_WRITEBACK_CTRL_REG_WB_THROTTLE_TIMEOUT_SHIFT;
cbc_writel(reg, CPU_WRITEBACK_CTRL_REG);
}
static int __init setup_hifcpubiuctrl_regs(struct device_node *np)
{
struct device_node *cpu_dn;
u32 family_id;
int ret = 0;
cpubiuctrl_base = of_iomap(np, 0);
if (!cpubiuctrl_base) {
pr_err("failed to remap BIU control base\n");
ret = -ENOMEM;
goto out;
}
mcp_wr_pairing_en = of_property_read_bool(np, "brcm,write-pairing");
cpu_dn = of_get_cpu_node(0, NULL);
if (!cpu_dn) {
pr_err("failed to obtain CPU device node\n");
ret = -ENODEV;
goto out;
}
if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
cpubiuctrl_regs = b15_cpubiuctrl_regs;
else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
cpubiuctrl_regs = b53_cpubiuctrl_regs;
else if (of_device_is_compatible(cpu_dn, "arm,cortex-a72"))
cpubiuctrl_regs = a72_cpubiuctrl_regs;
else {
pr_err("unsupported CPU\n");
ret = -EINVAL;
}
of_node_put(cpu_dn);
family_id = brcmstb_get_family_id();
if (BRCM_ID(family_id) == 0x7260 && BRCM_REV(family_id) == 0)
cpubiuctrl_regs = b53_cpubiuctrl_no_wb_regs;
out:
of_node_put(np);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static u32 cpubiuctrl_reg_save[NUM_CPU_BIUCTRL_REGS];
static int brcmstb_cpu_credit_reg_suspend(void)
{
unsigned int i;
if (!cpubiuctrl_base)
return 0;
for (i = 0; i < NUM_CPU_BIUCTRL_REGS; i++)
cpubiuctrl_reg_save[i] = cbc_readl(i);
return 0;
}
static void brcmstb_cpu_credit_reg_resume(void)
{
unsigned int i;
if (!cpubiuctrl_base)
return;
for (i = 0; i < NUM_CPU_BIUCTRL_REGS; i++)
cbc_writel(cpubiuctrl_reg_save[i], i);
}
static struct syscore_ops brcmstb_cpu_credit_syscore_ops = {
.suspend = brcmstb_cpu_credit_reg_suspend,
.resume = brcmstb_cpu_credit_reg_resume,
};
#endif
static int __init brcmstb_biuctrl_init(void)
{
struct device_node *np;
int ret;
/* We might be running on a multi-platform kernel, don't make this a
* fatal error, just bail out early
*/
np = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
if (!np)
return 0;
ret = setup_hifcpubiuctrl_regs(np);
if (ret)
goto out_put;
ret = mcp_write_pairing_set();
if (ret) {
pr_err("MCP: Unable to disable write pairing!\n");
goto out_put;
}
a72_b53_rac_enable_all(np);
mcp_a72_b53_set();
#ifdef CONFIG_PM_SLEEP
register_syscore_ops(&brcmstb_cpu_credit_syscore_ops);
#endif
ret = 0;
out_put:
of_node_put(np);
return ret;
}
early_initcall(brcmstb_biuctrl_init);