blob: cabe3fbb4f390c44cde5c33e61b926404a0aaad4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
#ifndef KVM_X86_MMU_SPTE_H
#define KVM_X86_MMU_SPTE_H
#include "mmu_internal.h"
extern bool __read_mostly enable_mmio_caching;
/*
* A MMU present SPTE is backed by actual memory and may or may not be present
* in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it
* is ignored by all flavors of SPTEs and checking a low bit often generates
* better code than for a high bit, e.g. 56+. MMU present checks are pervasive
* enough that the improved code generation is noticeable in KVM's footprint.
*/
#define SPTE_MMU_PRESENT_MASK BIT_ULL(11)
/*
* TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
* be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
* PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that
* is must be employed for a given TDP SPTE.
*
* Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
* paging, including NPT PAE. This scheme works because legacy shadow paging
* is guaranteed to have A/D bits and write-protection is forced only for
* TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it
* must be restricted to 64-bit KVM.
*/
#define SPTE_TDP_AD_SHIFT 52
#define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT)
#define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT)
#define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT)
#define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT)
static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
#define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
#define ACC_EXEC_MASK 1
#define ACC_WRITE_MASK PT_WRITABLE_MASK
#define ACC_USER_MASK PT_USER_MASK
#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
/* The mask for the R/X bits in EPT PTEs */
#define SPTE_EPT_READABLE_MASK 0x1ull
#define SPTE_EPT_EXECUTABLE_MASK 0x4ull
#define SPTE_LEVEL_BITS 9
#define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS)
#define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS)
#define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS)
/*
* The mask/shift to use for saving the original R/X bits when marking the PTE
* as not-present for access tracking purposes. We do not save the W bit as the
* PTEs being access tracked also need to be dirty tracked, so the W bit will be
* restored only when a write is attempted to the page. This mask obviously
* must not overlap the A/D type mask.
*/
#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \
SPTE_EPT_EXECUTABLE_MASK)
#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
#define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
/*
* {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
* SPTE is write-protected. See is_writable_pte() for details.
*/
/* Bits 9 and 10 are ignored by all non-EPT PTEs. */
#define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9)
#define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10)
/*
* Low ignored bits are at a premium for EPT, use high ignored bits, taking care
* to not overlap the A/D type mask or the saved access bits of access-tracked
* SPTEs when A/D bits are disabled.
*/
#define EPT_SPTE_HOST_WRITABLE BIT_ULL(57)
#define EPT_SPTE_MMU_WRITABLE BIT_ULL(58)
static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
/* Defined only to keep the above static asserts readable. */
#undef SHADOW_ACC_TRACK_SAVED_MASK
/*
* Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
* the memslots generation and is derived as follows:
*
* Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
* Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
*
* The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
* the MMIO generation number, as doing so would require stealing a bit from
* the "real" generation number and thus effectively halve the maximum number
* of MMIO generations that can be handled before encountering a wrap (which
* requires a full MMU zap). The flag is instead explicitly queried when
* checking for MMIO spte cache hits.
*/
#define MMIO_SPTE_GEN_LOW_START 3
#define MMIO_SPTE_GEN_LOW_END 10
#define MMIO_SPTE_GEN_HIGH_START 52
#define MMIO_SPTE_GEN_HIGH_END 62
#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
MMIO_SPTE_GEN_LOW_START)
#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
MMIO_SPTE_GEN_HIGH_START)
static_assert(!(SPTE_MMU_PRESENT_MASK &
(MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
#define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
#define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
/* remember to adjust the comment above as well if you change these */
static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
#define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
#define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
#define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
extern u64 __read_mostly shadow_host_writable_mask;
extern u64 __read_mostly shadow_mmu_writable_mask;
extern u64 __read_mostly shadow_nx_mask;
extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
extern u64 __read_mostly shadow_user_mask;
extern u64 __read_mostly shadow_accessed_mask;
extern u64 __read_mostly shadow_dirty_mask;
extern u64 __read_mostly shadow_mmio_value;
extern u64 __read_mostly shadow_mmio_mask;
extern u64 __read_mostly shadow_mmio_access_mask;
extern u64 __read_mostly shadow_present_mask;
extern u64 __read_mostly shadow_memtype_mask;
extern u64 __read_mostly shadow_me_value;
extern u64 __read_mostly shadow_me_mask;
/*
* SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK;
* shadow_acc_track_mask is the set of bits to be cleared in non-accessed
* pages.
*/
extern u64 __read_mostly shadow_acc_track_mask;
/*
* This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
* to guard against L1TF attacks.
*/
extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
/*
* The number of high-order 1 bits to use in the mask above.
*/
#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
/*
* If a thread running without exclusive control of the MMU lock must perform a
* multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a
* non-present intermediate value. Other threads which encounter this value
* should not modify the SPTE.
*
* Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
* bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
* vulnerability. Use only low bits to avoid 64-bit immediates.
*
* Only used by the TDP MMU.
*/
#define REMOVED_SPTE 0x5a0ULL
/* Removed SPTEs must not be misconstrued as shadow present PTEs. */
static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK));
static inline bool is_removed_spte(u64 spte)
{
return spte == REMOVED_SPTE;
}
/* Get an SPTE's index into its parent's page table (and the spt array). */
static inline int spte_index(u64 *sptep)
{
return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1);
}
/*
* In some cases, we need to preserve the GFN of a non-present or reserved
* SPTE when we usurp the upper five bits of the physical address space to
* defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
* shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
* left into the reserved bits, i.e. the GFN in the SPTE will be split into
* high and low parts. This mask covers the lower bits of the GFN.
*/
extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
static inline bool is_mmio_spte(u64 spte)
{
return (spte & shadow_mmio_mask) == shadow_mmio_value &&
likely(enable_mmio_caching);
}
static inline bool is_shadow_present_pte(u64 pte)
{
return !!(pte & SPTE_MMU_PRESENT_MASK);
}
/*
* Returns true if A/D bits are supported in hardware and are enabled by KVM.
* When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can
* disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
* scenario where KVM is using A/D bits for L1, but not L2.
*/
static inline bool kvm_ad_enabled(void)
{
return !!shadow_accessed_mask;
}
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
return sp->role.ad_disabled;
}
static inline bool spte_ad_enabled(u64 spte)
{
MMU_WARN_ON(!is_shadow_present_pte(spte));
return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK;
}
static inline bool spte_ad_need_write_protect(u64 spte)
{
MMU_WARN_ON(!is_shadow_present_pte(spte));
/*
* This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0',
* and non-TDP SPTEs will never set these bits. Optimize for 64-bit
* TDP and do the A/D type check unconditionally.
*/
return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK;
}
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
MMU_WARN_ON(!is_shadow_present_pte(spte));
return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}
static inline u64 spte_shadow_dirty_mask(u64 spte)
{
MMU_WARN_ON(!is_shadow_present_pte(spte));
return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}
static inline bool is_access_track_spte(u64 spte)
{
return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
}
static inline bool is_large_pte(u64 pte)
{
return pte & PT_PAGE_SIZE_MASK;
}
static inline bool is_last_spte(u64 pte, int level)
{
return (level == PG_LEVEL_4K) || is_large_pte(pte);
}
static inline bool is_executable_pte(u64 spte)
{
return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}
static inline kvm_pfn_t spte_to_pfn(u64 pte)
{
return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT;
}
static inline bool is_accessed_spte(u64 spte)
{
u64 accessed_mask = spte_shadow_accessed_mask(spte);
return accessed_mask ? spte & accessed_mask
: !is_access_track_spte(spte);
}
static inline bool is_dirty_spte(u64 spte)
{
u64 dirty_mask = spte_shadow_dirty_mask(spte);
return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
}
static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
int level)
{
int bit7 = (pte >> 7) & 1;
return rsvd_check->rsvd_bits_mask[bit7][level-1];
}
static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
u64 pte, int level)
{
return pte & get_rsvd_bits(rsvd_check, pte, level);
}
static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
u64 pte)
{
return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
}
static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
u64 spte, int level)
{
return __is_bad_mt_xwr(rsvd_check, spte) ||
__is_rsvd_bits_set(rsvd_check, spte, level);
}
/*
* An shadow-present leaf SPTE may be non-writable for 3 possible reasons:
*
* 1. To intercept writes for dirty logging. KVM write-protects huge pages
* so that they can be split be split down into the dirty logging
* granularity (4KiB) whenever the guest writes to them. KVM also
* write-protects 4KiB pages so that writes can be recorded in the dirty log
* (e.g. if not using PML). SPTEs are write-protected for dirty logging
* during the VM-iotcls that enable dirty logging.
*
* 2. To intercept writes to guest page tables that KVM is shadowing. When a
* guest writes to its page table the corresponding shadow page table will
* be marked "unsync". That way KVM knows which shadow page tables need to
* be updated on the next TLB flush, INVLPG, etc. and which do not.
*
* 3. To prevent guest writes to read-only memory, such as for memory in a
* read-only memslot or guest memory backed by a read-only VMA. Writes to
* such pages are disallowed entirely.
*
* To keep track of why a given SPTE is write-protected, KVM uses 2
* software-only bits in the SPTE:
*
* shadow_mmu_writable_mask, aka MMU-writable -
* Cleared on SPTEs that KVM is currently write-protecting for shadow paging
* purposes (case 2 above).
*
* shadow_host_writable_mask, aka Host-writable -
* Cleared on SPTEs that are not host-writable (case 3 above)
*
* Note, not all possible combinations of PT_WRITABLE_MASK,
* shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
* SPTE can be in only one of the following states, which map to the
* aforementioned 3 cases:
*
* shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
* ------------------------- | ------------------------ | ----------------
* 1 | 1 | 1 (writable)
* 1 | 1 | 0 (case 1)
* 1 | 0 | 0 (case 2)
* 0 | 0 | 0 (case 3)
*
* The valid combinations of these bits are checked by
* check_spte_writable_invariants() whenever an SPTE is modified.
*
* Clearing the MMU-writable bit is always done under the MMU lock and always
* accompanied by a TLB flush before dropping the lock to avoid corrupting the
* shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
* (which does not clear the MMU-writable bit), does not flush TLBs before
* dropping the lock, as it only needs to synchronize guest writes with the
* dirty bitmap.
*
* So, there is the problem: clearing the MMU-writable bit can encounter a
* write-protected SPTE while CPUs still have writable mappings for that SPTE
* cached in their TLB. To address this, KVM always flushes TLBs when
* write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
*
* The Host-writable bit is not modified on present SPTEs, it is only set or
* cleared when an SPTE is first faulted in from non-present and then remains
* immutable.
*/
static inline bool is_writable_pte(unsigned long pte)
{
return pte & PT_WRITABLE_MASK;
}
/* Note: spte must be a shadow-present leaf SPTE. */
static inline void check_spte_writable_invariants(u64 spte)
{
if (spte & shadow_mmu_writable_mask)
WARN_ONCE(!(spte & shadow_host_writable_mask),
"kvm: MMU-writable SPTE is not Host-writable: %llx",
spte);
else
WARN_ONCE(is_writable_pte(spte),
"kvm: Writable SPTE is not MMU-writable: %llx", spte);
}
static inline bool is_mmu_writable_spte(u64 spte)
{
return spte & shadow_mmu_writable_mask;
}
static inline u64 get_mmio_spte_generation(u64 spte)
{
u64 gen;
gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
return gen;
}
bool spte_has_volatile_bits(u64 spte);
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
u64 old_spte, bool prefetch, bool can_unsync,
bool host_writable, u64 *new_spte);
u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte,
union kvm_mmu_page_role role, int index);
u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
u64 mark_spte_for_access_track(u64 spte);
/* Restore an acc-track PTE back to a regular PTE */
static inline u64 restore_acc_track_spte(u64 spte)
{
u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
& SHADOW_ACC_TRACK_SAVED_BITS_MASK;
spte &= ~shadow_acc_track_mask;
spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
spte |= saved_bits;
return spte;
}
u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
void kvm_mmu_reset_all_pte_masks(void);
#endif