blob: d11525ad81b40676cd99736cf729329993b580ab [file] [log] [blame]
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* 'Traps.c' handles hardware traps and faults after we have saved some
* state in 'entry.S'.
*/
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/nmi.h>
#include <linux/kprobes.h>
#include <linux/kexec.h>
#include <linux/unwind.h>
#include <linux/uaccess.h>
#include <linux/bug.h>
#include <linux/kdebug.h>
#include <linux/utsname.h>
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <asm/system.h>
#include <asm/io.h>
#include <asm/atomic.h>
#include <asm/debugreg.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/processor.h>
#include <asm/unwind.h>
#include <asm/smp.h>
#include <asm/pgalloc.h>
#include <asm/pda.h>
#include <asm/proto.h>
#include <asm/nmi.h>
#include <asm/stacktrace.h>
asmlinkage void divide_error(void);
asmlinkage void debug(void);
asmlinkage void nmi(void);
asmlinkage void int3(void);
asmlinkage void overflow(void);
asmlinkage void bounds(void);
asmlinkage void invalid_op(void);
asmlinkage void device_not_available(void);
asmlinkage void double_fault(void);
asmlinkage void coprocessor_segment_overrun(void);
asmlinkage void invalid_TSS(void);
asmlinkage void segment_not_present(void);
asmlinkage void stack_segment(void);
asmlinkage void general_protection(void);
asmlinkage void page_fault(void);
asmlinkage void coprocessor_error(void);
asmlinkage void simd_coprocessor_error(void);
asmlinkage void reserved(void);
asmlinkage void alignment_check(void);
asmlinkage void machine_check(void);
asmlinkage void spurious_interrupt_bug(void);
static inline void conditional_sti(struct pt_regs *regs)
{
if (regs->eflags & X86_EFLAGS_IF)
local_irq_enable();
}
static inline void preempt_conditional_sti(struct pt_regs *regs)
{
preempt_disable();
if (regs->eflags & X86_EFLAGS_IF)
local_irq_enable();
}
static inline void preempt_conditional_cli(struct pt_regs *regs)
{
if (regs->eflags & X86_EFLAGS_IF)
local_irq_disable();
/* Make sure to not schedule here because we could be running
on an exception stack. */
preempt_enable_no_resched();
}
int kstack_depth_to_print = 12;
#ifdef CONFIG_KALLSYMS
void printk_address(unsigned long address)
{
unsigned long offset = 0, symsize;
const char *symname;
char *modname;
char *delim = ":";
char namebuf[128];
symname = kallsyms_lookup(address, &symsize, &offset,
&modname, namebuf);
if (!symname) {
printk(" [<%016lx>]\n", address);
return;
}
if (!modname)
modname = delim = "";
printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
address, delim, modname, delim, symname, offset, symsize);
}
#else
void printk_address(unsigned long address)
{
printk(" [<%016lx>]\n", address);
}
#endif
static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
unsigned *usedp, char **idp)
{
static char ids[][8] = {
[DEBUG_STACK - 1] = "#DB",
[NMI_STACK - 1] = "NMI",
[DOUBLEFAULT_STACK - 1] = "#DF",
[STACKFAULT_STACK - 1] = "#SS",
[MCE_STACK - 1] = "#MC",
#if DEBUG_STKSZ > EXCEPTION_STKSZ
[N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
#endif
};
unsigned k;
/*
* Iterate over all exception stacks, and figure out whether
* 'stack' is in one of them:
*/
for (k = 0; k < N_EXCEPTION_STACKS; k++) {
unsigned long end = per_cpu(orig_ist, cpu).ist[k];
/*
* Is 'stack' above this exception frame's end?
* If yes then skip to the next frame.
*/
if (stack >= end)
continue;
/*
* Is 'stack' above this exception frame's start address?
* If yes then we found the right frame.
*/
if (stack >= end - EXCEPTION_STKSZ) {
/*
* Make sure we only iterate through an exception
* stack once. If it comes up for the second time
* then there's something wrong going on - just
* break out and return NULL:
*/
if (*usedp & (1U << k))
break;
*usedp |= 1U << k;
*idp = ids[k];
return (unsigned long *)end;
}
/*
* If this is a debug stack, and if it has a larger size than
* the usual exception stacks, then 'stack' might still
* be within the lower portion of the debug stack:
*/
#if DEBUG_STKSZ > EXCEPTION_STKSZ
if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
unsigned j = N_EXCEPTION_STACKS - 1;
/*
* Black magic. A large debug stack is composed of
* multiple exception stack entries, which we
* iterate through now. Dont look:
*/
do {
++j;
end -= EXCEPTION_STKSZ;
ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
} while (stack < end - EXCEPTION_STKSZ);
if (*usedp & (1U << j))
break;
*usedp |= 1U << j;
*idp = ids[j];
return (unsigned long *)end;
}
#endif
}
return NULL;
}
#define MSG(txt) ops->warning(data, txt)
/*
* x86-64 can have up to three kernel stacks:
* process stack
* interrupt stack
* severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
*/
static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
{
void *t = (void *)tinfo;
return p > t && p < t + THREAD_SIZE - 3;
}
void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
unsigned long *stack,
const struct stacktrace_ops *ops, void *data)
{
const unsigned cpu = get_cpu();
unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
unsigned used = 0;
struct thread_info *tinfo;
if (!tsk)
tsk = current;
if (!stack) {
unsigned long dummy;
stack = &dummy;
if (tsk && tsk != current)
stack = (unsigned long *)tsk->thread.rsp;
}
/*
* Print function call entries within a stack. 'cond' is the
* "end of stackframe" condition, that the 'stack++'
* iteration will eventually trigger.
*/
#define HANDLE_STACK(cond) \
do while (cond) { \
unsigned long addr = *stack++; \
/* Use unlocked access here because except for NMIs \
we should be already protected against module unloads */ \
if (__kernel_text_address(addr)) { \
/* \
* If the address is either in the text segment of the \
* kernel, or in the region which contains vmalloc'ed \
* memory, it *may* be the address of a calling \
* routine; if so, print it so that someone tracing \
* down the cause of the crash will be able to figure \
* out the call path that was taken. \
*/ \
ops->address(data, addr); \
} \
} while (0)
/*
* Print function call entries in all stacks, starting at the
* current stack address. If the stacks consist of nested
* exceptions
*/
for (;;) {
char *id;
unsigned long *estack_end;
estack_end = in_exception_stack(cpu, (unsigned long)stack,
&used, &id);
if (estack_end) {
if (ops->stack(data, id) < 0)
break;
HANDLE_STACK (stack < estack_end);
ops->stack(data, "<EOE>");
/*
* We link to the next stack via the
* second-to-last pointer (index -2 to end) in the
* exception stack:
*/
stack = (unsigned long *) estack_end[-2];
continue;
}
if (irqstack_end) {
unsigned long *irqstack;
irqstack = irqstack_end -
(IRQSTACKSIZE - 64) / sizeof(*irqstack);
if (stack >= irqstack && stack < irqstack_end) {
if (ops->stack(data, "IRQ") < 0)
break;
HANDLE_STACK (stack < irqstack_end);
/*
* We link to the next stack (which would be
* the process stack normally) the last
* pointer (index -1 to end) in the IRQ stack:
*/
stack = (unsigned long *) (irqstack_end[-1]);
irqstack_end = NULL;
ops->stack(data, "EOI");
continue;
}
}
break;
}
/*
* This handles the process stack:
*/
tinfo = task_thread_info(tsk);
HANDLE_STACK (valid_stack_ptr(tinfo, stack));
#undef HANDLE_STACK
put_cpu();
}
EXPORT_SYMBOL(dump_trace);
static void
print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
print_symbol(msg, symbol);
printk("\n");
}
static void print_trace_warning(void *data, char *msg)
{
printk("%s\n", msg);
}
static int print_trace_stack(void *data, char *name)
{
printk(" <%s> ", name);
return 0;
}
static void print_trace_address(void *data, unsigned long addr)
{
touch_nmi_watchdog();
printk_address(addr);
}
static const struct stacktrace_ops print_trace_ops = {
.warning = print_trace_warning,
.warning_symbol = print_trace_warning_symbol,
.stack = print_trace_stack,
.address = print_trace_address,
};
void
show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
{
printk("\nCall Trace:\n");
dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
printk("\n");
}
static void
_show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
{
unsigned long *stack;
int i;
const int cpu = smp_processor_id();
unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
// debugging aid: "show_stack(NULL, NULL);" prints the
// back trace for this cpu.
if (rsp == NULL) {
if (tsk)
rsp = (unsigned long *)tsk->thread.rsp;
else
rsp = (unsigned long *)&rsp;
}
stack = rsp;
for(i=0; i < kstack_depth_to_print; i++) {
if (stack >= irqstack && stack <= irqstack_end) {
if (stack == irqstack_end) {
stack = (unsigned long *) (irqstack_end[-1]);
printk(" <EOI> ");
}
} else {
if (((long) stack & (THREAD_SIZE-1)) == 0)
break;
}
if (i && ((i % 4) == 0))
printk("\n");
printk(" %016lx", *stack++);
touch_nmi_watchdog();
}
show_trace(tsk, regs, rsp);
}
void show_stack(struct task_struct *tsk, unsigned long * rsp)
{
_show_stack(tsk, NULL, rsp);
}
/*
* The architecture-independent dump_stack generator
*/
void dump_stack(void)
{
unsigned long dummy;
printk("Pid: %d, comm: %.20s %s %s %.*s\n",
current->pid, current->comm, print_tainted(),
init_utsname()->release,
(int)strcspn(init_utsname()->version, " "),
init_utsname()->version);
show_trace(NULL, NULL, &dummy);
}
EXPORT_SYMBOL(dump_stack);
void show_registers(struct pt_regs *regs)
{
int i;
int in_kernel = !user_mode(regs);
unsigned long rsp;
const int cpu = smp_processor_id();
struct task_struct *cur = cpu_pda(cpu)->pcurrent;
rsp = regs->rsp;
printk("CPU %d ", cpu);
__show_regs(regs);
printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
cur->comm, cur->pid, task_thread_info(cur), cur);
/*
* When in-kernel, we also print out the stack and code at the
* time of the fault..
*/
if (in_kernel) {
printk("Stack: ");
_show_stack(NULL, regs, (unsigned long*)rsp);
printk("\nCode: ");
if (regs->rip < PAGE_OFFSET)
goto bad;
for (i=0; i<20; i++) {
unsigned char c;
if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
bad:
printk(" Bad RIP value.");
break;
}
printk("%02x ", c);
}
}
printk("\n");
}
int is_valid_bugaddr(unsigned long rip)
{
unsigned short ud2;
if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2)))
return 0;
return ud2 == 0x0b0f;
}
#ifdef CONFIG_BUG
void out_of_line_bug(void)
{
BUG();
}
EXPORT_SYMBOL(out_of_line_bug);
#endif
static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
static int die_owner = -1;
static unsigned int die_nest_count;
unsigned __kprobes long oops_begin(void)
{
int cpu;
unsigned long flags;
oops_enter();
/* racy, but better than risking deadlock. */
raw_local_irq_save(flags);
cpu = smp_processor_id();
if (!__raw_spin_trylock(&die_lock)) {
if (cpu == die_owner)
/* nested oops. should stop eventually */;
else
__raw_spin_lock(&die_lock);
}
die_nest_count++;
die_owner = cpu;
console_verbose();
bust_spinlocks(1);
return flags;
}
void __kprobes oops_end(unsigned long flags)
{
die_owner = -1;
bust_spinlocks(0);
die_nest_count--;
if (!die_nest_count)
/* Nest count reaches zero, release the lock. */
__raw_spin_unlock(&die_lock);
raw_local_irq_restore(flags);
if (panic_on_oops)
panic("Fatal exception");
oops_exit();
}
void __kprobes __die(const char * str, struct pt_regs * regs, long err)
{
static int die_counter;
printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
#ifdef CONFIG_PREEMPT
printk("PREEMPT ");
#endif
#ifdef CONFIG_SMP
printk("SMP ");
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("DEBUG_PAGEALLOC");
#endif
printk("\n");
notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
show_registers(regs);
add_taint(TAINT_DIE);
/* Executive summary in case the oops scrolled away */
printk(KERN_ALERT "RIP ");
printk_address(regs->rip);
printk(" RSP <%016lx>\n", regs->rsp);
if (kexec_should_crash(current))
crash_kexec(regs);
}
void die(const char * str, struct pt_regs * regs, long err)
{
unsigned long flags = oops_begin();
if (!user_mode(regs))
report_bug(regs->rip, regs);
__die(str, regs, err);
oops_end(flags);
do_exit(SIGSEGV);
}
void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
{
unsigned long flags = oops_begin();
/*
* We are in trouble anyway, lets at least try
* to get a message out.
*/
printk(str, smp_processor_id());
show_registers(regs);
if (kexec_should_crash(current))
crash_kexec(regs);
if (do_panic || panic_on_oops)
panic("Non maskable interrupt");
oops_end(flags);
nmi_exit();
local_irq_enable();
do_exit(SIGSEGV);
}
static void __kprobes do_trap(int trapnr, int signr, char *str,
struct pt_regs * regs, long error_code,
siginfo_t *info)
{
struct task_struct *tsk = current;
if (user_mode(regs)) {
/*
* We want error_code and trap_no set for userspace
* faults and kernelspace faults which result in
* die(), but not kernelspace faults which are fixed
* up. die() gives the process no chance to handle
* the signal and notice the kernel fault information,
* so that won't result in polluting the information
* about previously queued, but not yet delivered,
* faults. See also do_general_protection below.
*/
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
printk_ratelimit())
printk(KERN_INFO
"%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
tsk->comm, tsk->pid, str,
regs->rip, regs->rsp, error_code);
if (info)
force_sig_info(signr, info, tsk);
else
force_sig(signr, tsk);
return;
}
/* kernel trap */
{
const struct exception_table_entry *fixup;
fixup = search_exception_tables(regs->rip);
if (fixup)
regs->rip = fixup->fixup;
else {
tsk->thread.error_code = error_code;
tsk->thread.trap_no = trapnr;
die(str, regs, error_code);
}
return;
}
}
#define DO_ERROR(trapnr, signr, str, name) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
conditional_sti(regs); \
do_trap(trapnr, signr, str, regs, error_code, NULL); \
}
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
{ \
siginfo_t info; \
info.si_signo = signr; \
info.si_errno = 0; \
info.si_code = sicode; \
info.si_addr = (void __user *)siaddr; \
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
== NOTIFY_STOP) \
return; \
conditional_sti(regs); \
do_trap(trapnr, signr, str, regs, error_code, &info); \
}
DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
DO_ERROR( 4, SIGSEGV, "overflow", overflow)
DO_ERROR( 5, SIGSEGV, "bounds", bounds)
DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
DO_ERROR(18, SIGSEGV, "reserved", reserved)
/* Runs on IST stack */
asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
{
if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
12, SIGBUS) == NOTIFY_STOP)
return;
preempt_conditional_sti(regs);
do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
preempt_conditional_cli(regs);
}
asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
{
static const char str[] = "double fault";
struct task_struct *tsk = current;
/* Return not checked because double check cannot be ignored */
notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 8;
/* This is always a kernel trap and never fixable (and thus must
never return). */
for (;;)
die(str, regs, error_code);
}
asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
long error_code)
{
struct task_struct *tsk = current;
conditional_sti(regs);
if (user_mode(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 13;
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
printk_ratelimit())
printk(KERN_INFO
"%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
tsk->comm, tsk->pid,
regs->rip, regs->rsp, error_code);
force_sig(SIGSEGV, tsk);
return;
}
/* kernel gp */
{
const struct exception_table_entry *fixup;
fixup = search_exception_tables(regs->rip);
if (fixup) {
regs->rip = fixup->fixup;
return;
}
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 13;
if (notify_die(DIE_GPF, "general protection fault", regs,
error_code, 13, SIGSEGV) == NOTIFY_STOP)
return;
die("general protection fault", regs, error_code);
}
}
static __kprobes void
mem_parity_error(unsigned char reason, struct pt_regs * regs)
{
printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
reason);
printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
#if defined(CONFIG_EDAC)
if(edac_handler_set()) {
edac_atomic_assert_error();
return;
}
#endif
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
/* Clear and disable the memory parity error line. */
reason = (reason & 0xf) | 4;
outb(reason, 0x61);
}
static __kprobes void
io_check_error(unsigned char reason, struct pt_regs * regs)
{
printk("NMI: IOCK error (debug interrupt?)\n");
show_registers(regs);
/* Re-enable the IOCK line, wait for a few seconds */
reason = (reason & 0xf) | 8;
outb(reason, 0x61);
mdelay(2000);
reason &= ~8;
outb(reason, 0x61);
}
static __kprobes void
unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
{
printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
reason);
printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
if (panic_on_unrecovered_nmi)
panic("NMI: Not continuing");
printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
}
/* Runs on IST stack. This code must keep interrupts off all the time.
Nested NMIs are prevented by the CPU. */
asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
{
unsigned char reason = 0;
int cpu;
cpu = smp_processor_id();
/* Only the BSP gets external NMIs from the system. */
if (!cpu)
reason = get_nmi_reason();
if (!(reason & 0xc0)) {
if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
== NOTIFY_STOP)
return;
/*
* Ok, so this is none of the documented NMI sources,
* so it must be the NMI watchdog.
*/
if (nmi_watchdog_tick(regs,reason))
return;
if (!do_nmi_callback(regs,cpu))
unknown_nmi_error(reason, regs);
return;
}
if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
return;
/* AK: following checks seem to be broken on modern chipsets. FIXME */
if (reason & 0x80)
mem_parity_error(reason, regs);
if (reason & 0x40)
io_check_error(reason, regs);
}
/* runs on IST stack. */
asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
{
trace_hardirqs_fixup();
if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
return;
}
preempt_conditional_sti(regs);
do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
preempt_conditional_cli(regs);
}
/* Help handler running on IST stack to switch back to user stack
for scheduling or signal handling. The actual stack switch is done in
entry.S */
asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
{
struct pt_regs *regs = eregs;
/* Did already sync */
if (eregs == (struct pt_regs *)eregs->rsp)
;
/* Exception from user space */
else if (user_mode(eregs))
regs = task_pt_regs(current);
/* Exception from kernel and interrupts are enabled. Move to
kernel process stack. */
else if (eregs->eflags & X86_EFLAGS_IF)
regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
if (eregs != regs)
*regs = *eregs;
return regs;
}
/* runs on IST stack. */
asmlinkage void __kprobes do_debug(struct pt_regs * regs,
unsigned long error_code)
{
unsigned long condition;
struct task_struct *tsk = current;
siginfo_t info;
trace_hardirqs_fixup();
get_debugreg(condition, 6);
if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
SIGTRAP) == NOTIFY_STOP)
return;
preempt_conditional_sti(regs);
/* Mask out spurious debug traps due to lazy DR7 setting */
if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
if (!tsk->thread.debugreg7) {
goto clear_dr7;
}
}
tsk->thread.debugreg6 = condition;
/* Mask out spurious TF errors due to lazy TF clearing */
if (condition & DR_STEP) {
/*
* The TF error should be masked out only if the current
* process is not traced and if the TRAP flag has been set
* previously by a tracing process (condition detected by
* the PT_DTRACE flag); remember that the i386 TRAP flag
* can be modified by the process itself in user mode,
* allowing programs to debug themselves without the ptrace()
* interface.
*/
if (!user_mode(regs))
goto clear_TF_reenable;
/*
* Was the TF flag set by a debugger? If so, clear it now,
* so that register information is correct.
*/
if (tsk->ptrace & PT_DTRACE) {
regs->eflags &= ~TF_MASK;
tsk->ptrace &= ~PT_DTRACE;
}
}
/* Ok, finally something we can handle */
tsk->thread.trap_no = 1;
tsk->thread.error_code = error_code;
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_BRKPT;
info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
force_sig_info(SIGTRAP, &info, tsk);
clear_dr7:
set_debugreg(0UL, 7);
preempt_conditional_cli(regs);
return;
clear_TF_reenable:
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->eflags &= ~TF_MASK;
preempt_conditional_cli(regs);
}
static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
{
const struct exception_table_entry *fixup;
fixup = search_exception_tables(regs->rip);
if (fixup) {
regs->rip = fixup->fixup;
return 1;
}
notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
/* Illegal floating point operation in the kernel */
current->thread.trap_no = trapnr;
die(str, regs, 0);
return 0;
}
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
asmlinkage void do_coprocessor_error(struct pt_regs *regs)
{
void __user *rip = (void __user *)(regs->rip);
struct task_struct * task;
siginfo_t info;
unsigned short cwd, swd;
conditional_sti(regs);
if (!user_mode(regs) &&
kernel_math_error(regs, "kernel x87 math error", 16))
return;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 16;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = rip;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't synchronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception
*/
cwd = get_fpu_cwd(task);
swd = get_fpu_swd(task);
switch (swd & ~cwd & 0x3f) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
asmlinkage void bad_intr(void)
{
printk("bad interrupt");
}
asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
{
void __user *rip = (void __user *)(regs->rip);
struct task_struct * task;
siginfo_t info;
unsigned short mxcsr;
conditional_sti(regs);
if (!user_mode(regs) &&
kernel_math_error(regs, "kernel simd math error", 19))
return;
/*
* Save the info for the exception handler and clear the error.
*/
task = current;
save_init_fpu(task);
task->thread.trap_no = 19;
task->thread.error_code = 0;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = __SI_FAULT;
info.si_addr = rip;
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
mxcsr = get_fpu_mxcsr(task);
switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
case 0x000:
default:
break;
case 0x001: /* Invalid Op */
info.si_code = FPE_FLTINV;
break;
case 0x002: /* Denormalize */
case 0x010: /* Underflow */
info.si_code = FPE_FLTUND;
break;
case 0x004: /* Zero Divide */
info.si_code = FPE_FLTDIV;
break;
case 0x008: /* Overflow */
info.si_code = FPE_FLTOVF;
break;
case 0x020: /* Precision */
info.si_code = FPE_FLTRES;
break;
}
force_sig_info(SIGFPE, &info, task);
}
asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
{
}
asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
{
}
asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
{
}
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*/
asmlinkage void math_state_restore(void)
{
struct task_struct *me = current;
clts(); /* Allow maths ops (or we recurse) */
if (!used_math())
init_fpu(me);
restore_fpu_checking(&me->thread.i387.fxsave);
task_thread_info(me)->status |= TS_USEDFPU;
me->fpu_counter++;
}
void __init trap_init(void)
{
set_intr_gate(0,&divide_error);
set_intr_gate_ist(1,&debug,DEBUG_STACK);
set_intr_gate_ist(2,&nmi,NMI_STACK);
set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
set_system_gate(4,&overflow); /* int4 can be called from all */
set_intr_gate(5,&bounds);
set_intr_gate(6,&invalid_op);
set_intr_gate(7,&device_not_available);
set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
set_intr_gate(9,&coprocessor_segment_overrun);
set_intr_gate(10,&invalid_TSS);
set_intr_gate(11,&segment_not_present);
set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
set_intr_gate(13,&general_protection);
set_intr_gate(14,&page_fault);
set_intr_gate(15,&spurious_interrupt_bug);
set_intr_gate(16,&coprocessor_error);
set_intr_gate(17,&alignment_check);
#ifdef CONFIG_X86_MCE
set_intr_gate_ist(18,&machine_check, MCE_STACK);
#endif
set_intr_gate(19,&simd_coprocessor_error);
#ifdef CONFIG_IA32_EMULATION
set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
#endif
/*
* Should be a barrier for any external CPU state.
*/
cpu_init();
}
static int __init oops_setup(char *s)
{
if (!s)
return -EINVAL;
if (!strcmp(s, "panic"))
panic_on_oops = 1;
return 0;
}
early_param("oops", oops_setup);
static int __init kstack_setup(char *s)
{
if (!s)
return -EINVAL;
kstack_depth_to_print = simple_strtoul(s,NULL,0);
return 0;
}
early_param("kstack", kstack_setup);