blob: f0065d40eb2410933a47492fd5c0defe91672947 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* CAN driver for Geschwister Schneider USB/CAN devices
* and bytewerk.org candleLight USB CAN interfaces.
*
* Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
* Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
* Copyright (C) 2016 Hubert Denkmair
*
* Many thanks to all socketcan devs!
*/
#include <linux/bitfield.h>
#include <linux/clocksource.h>
#include <linux/ethtool.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/signal.h>
#include <linux/timecounter.h>
#include <linux/units.h>
#include <linux/usb.h>
#include <linux/workqueue.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
/* Device specific constants */
#define USB_GS_USB_1_VENDOR_ID 0x1d50
#define USB_GS_USB_1_PRODUCT_ID 0x606f
#define USB_CANDLELIGHT_VENDOR_ID 0x1209
#define USB_CANDLELIGHT_PRODUCT_ID 0x2323
#define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
#define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
#define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
#define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
#define GS_USB_ENDPOINT_IN 1
#define GS_USB_ENDPOINT_OUT 2
/* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
* for timer overflow (will be after ~71 minutes)
*/
#define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
#define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
/* Device specific constants */
enum gs_usb_breq {
GS_USB_BREQ_HOST_FORMAT = 0,
GS_USB_BREQ_BITTIMING,
GS_USB_BREQ_MODE,
GS_USB_BREQ_BERR,
GS_USB_BREQ_BT_CONST,
GS_USB_BREQ_DEVICE_CONFIG,
GS_USB_BREQ_TIMESTAMP,
GS_USB_BREQ_IDENTIFY,
GS_USB_BREQ_GET_USER_ID,
GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
GS_USB_BREQ_SET_USER_ID,
GS_USB_BREQ_DATA_BITTIMING,
GS_USB_BREQ_BT_CONST_EXT,
GS_USB_BREQ_SET_TERMINATION,
GS_USB_BREQ_GET_TERMINATION,
};
enum gs_can_mode {
/* reset a channel. turns it off */
GS_CAN_MODE_RESET = 0,
/* starts a channel */
GS_CAN_MODE_START
};
enum gs_can_state {
GS_CAN_STATE_ERROR_ACTIVE = 0,
GS_CAN_STATE_ERROR_WARNING,
GS_CAN_STATE_ERROR_PASSIVE,
GS_CAN_STATE_BUS_OFF,
GS_CAN_STATE_STOPPED,
GS_CAN_STATE_SLEEPING
};
enum gs_can_identify_mode {
GS_CAN_IDENTIFY_OFF = 0,
GS_CAN_IDENTIFY_ON
};
enum gs_can_termination_state {
GS_CAN_TERMINATION_STATE_OFF = 0,
GS_CAN_TERMINATION_STATE_ON
};
#define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
#define GS_USB_TERMINATION_ENABLED 120
/* data types passed between host and device */
/* The firmware on the original USB2CAN by Geschwister Schneider
* Technologie Entwicklungs- und Vertriebs UG exchanges all data
* between the host and the device in host byte order. This is done
* with the struct gs_host_config::byte_order member, which is sent
* first to indicate the desired byte order.
*
* The widely used open source firmware candleLight doesn't support
* this feature and exchanges the data in little endian byte order.
*/
struct gs_host_config {
__le32 byte_order;
} __packed;
struct gs_device_config {
u8 reserved1;
u8 reserved2;
u8 reserved3;
u8 icount;
__le32 sw_version;
__le32 hw_version;
} __packed;
#define GS_CAN_MODE_NORMAL 0
#define GS_CAN_MODE_LISTEN_ONLY BIT(0)
#define GS_CAN_MODE_LOOP_BACK BIT(1)
#define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
#define GS_CAN_MODE_ONE_SHOT BIT(3)
#define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
/* GS_CAN_FEATURE_IDENTIFY BIT(5) */
/* GS_CAN_FEATURE_USER_ID BIT(6) */
#define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
#define GS_CAN_MODE_FD BIT(8)
/* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
/* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
/* GS_CAN_FEATURE_TERMINATION BIT(11) */
struct gs_device_mode {
__le32 mode;
__le32 flags;
} __packed;
struct gs_device_state {
__le32 state;
__le32 rxerr;
__le32 txerr;
} __packed;
struct gs_device_bittiming {
__le32 prop_seg;
__le32 phase_seg1;
__le32 phase_seg2;
__le32 sjw;
__le32 brp;
} __packed;
struct gs_identify_mode {
__le32 mode;
} __packed;
struct gs_device_termination_state {
__le32 state;
} __packed;
#define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
#define GS_CAN_FEATURE_LOOP_BACK BIT(1)
#define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
#define GS_CAN_FEATURE_ONE_SHOT BIT(3)
#define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
#define GS_CAN_FEATURE_IDENTIFY BIT(5)
#define GS_CAN_FEATURE_USER_ID BIT(6)
#define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
#define GS_CAN_FEATURE_FD BIT(8)
#define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
#define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
#define GS_CAN_FEATURE_TERMINATION BIT(11)
#define GS_CAN_FEATURE_MASK GENMASK(11, 0)
/* internal quirks - keep in GS_CAN_FEATURE space for now */
/* CANtact Pro original firmware:
* BREQ DATA_BITTIMING overlaps with GET_USER_ID
*/
#define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
struct gs_device_bt_const {
__le32 feature;
__le32 fclk_can;
__le32 tseg1_min;
__le32 tseg1_max;
__le32 tseg2_min;
__le32 tseg2_max;
__le32 sjw_max;
__le32 brp_min;
__le32 brp_max;
__le32 brp_inc;
} __packed;
struct gs_device_bt_const_extended {
__le32 feature;
__le32 fclk_can;
__le32 tseg1_min;
__le32 tseg1_max;
__le32 tseg2_min;
__le32 tseg2_max;
__le32 sjw_max;
__le32 brp_min;
__le32 brp_max;
__le32 brp_inc;
__le32 dtseg1_min;
__le32 dtseg1_max;
__le32 dtseg2_min;
__le32 dtseg2_max;
__le32 dsjw_max;
__le32 dbrp_min;
__le32 dbrp_max;
__le32 dbrp_inc;
} __packed;
#define GS_CAN_FLAG_OVERFLOW BIT(0)
#define GS_CAN_FLAG_FD BIT(1)
#define GS_CAN_FLAG_BRS BIT(2)
#define GS_CAN_FLAG_ESI BIT(3)
struct classic_can {
u8 data[8];
} __packed;
struct classic_can_ts {
u8 data[8];
__le32 timestamp_us;
} __packed;
struct classic_can_quirk {
u8 data[8];
u8 quirk;
} __packed;
struct canfd {
u8 data[64];
} __packed;
struct canfd_ts {
u8 data[64];
__le32 timestamp_us;
} __packed;
struct canfd_quirk {
u8 data[64];
u8 quirk;
} __packed;
struct gs_host_frame {
u32 echo_id;
__le32 can_id;
u8 can_dlc;
u8 channel;
u8 flags;
u8 reserved;
union {
DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
DECLARE_FLEX_ARRAY(struct canfd, canfd);
DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
};
} __packed;
/* The GS USB devices make use of the same flags and masks as in
* linux/can.h and linux/can/error.h, and no additional mapping is necessary.
*/
/* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
#define GS_MAX_TX_URBS 10
/* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
#define GS_MAX_RX_URBS 30
/* Maximum number of interfaces the driver supports per device.
* Current hardware only supports 3 interfaces. The future may vary.
*/
#define GS_MAX_INTF 3
struct gs_tx_context {
struct gs_can *dev;
unsigned int echo_id;
};
struct gs_can {
struct can_priv can; /* must be the first member */
struct gs_usb *parent;
struct net_device *netdev;
struct usb_device *udev;
struct usb_interface *iface;
struct can_bittiming_const bt_const, data_bt_const;
unsigned int channel; /* channel number */
/* time counter for hardware timestamps */
struct cyclecounter cc;
struct timecounter tc;
spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
struct delayed_work timestamp;
u32 feature;
unsigned int hf_size_tx;
/* This lock prevents a race condition between xmit and receive. */
spinlock_t tx_ctx_lock;
struct gs_tx_context tx_context[GS_MAX_TX_URBS];
struct usb_anchor tx_submitted;
atomic_t active_tx_urbs;
};
/* usb interface struct */
struct gs_usb {
struct gs_can *canch[GS_MAX_INTF];
struct usb_anchor rx_submitted;
struct usb_device *udev;
unsigned int hf_size_rx;
u8 active_channels;
};
/* 'allocate' a tx context.
* returns a valid tx context or NULL if there is no space.
*/
static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
{
int i = 0;
unsigned long flags;
spin_lock_irqsave(&dev->tx_ctx_lock, flags);
for (; i < GS_MAX_TX_URBS; i++) {
if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
dev->tx_context[i].echo_id = i;
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
return &dev->tx_context[i];
}
}
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
return NULL;
}
/* releases a tx context
*/
static void gs_free_tx_context(struct gs_tx_context *txc)
{
txc->echo_id = GS_MAX_TX_URBS;
}
/* Get a tx context by id.
*/
static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
unsigned int id)
{
unsigned long flags;
if (id < GS_MAX_TX_URBS) {
spin_lock_irqsave(&dev->tx_ctx_lock, flags);
if (dev->tx_context[id].echo_id == id) {
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
return &dev->tx_context[id];
}
spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
}
return NULL;
}
static int gs_cmd_reset(struct gs_can *dev)
{
struct gs_device_mode dm = {
.mode = GS_CAN_MODE_RESET,
};
return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_MODE,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0, &dm, sizeof(dm), 1000,
GFP_KERNEL);
}
static inline int gs_usb_get_timestamp(const struct gs_can *dev,
u32 *timestamp_p)
{
__le32 timestamp;
int rc;
rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_TIMESTAMP,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0,
&timestamp, sizeof(timestamp),
USB_CTRL_GET_TIMEOUT,
GFP_KERNEL);
if (rc)
return rc;
*timestamp_p = le32_to_cpu(timestamp);
return 0;
}
static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock)
{
struct gs_can *dev = container_of(cc, struct gs_can, cc);
u32 timestamp = 0;
int err;
lockdep_assert_held(&dev->tc_lock);
/* drop lock for synchronous USB transfer */
spin_unlock_bh(&dev->tc_lock);
err = gs_usb_get_timestamp(dev, &timestamp);
spin_lock_bh(&dev->tc_lock);
if (err)
netdev_err(dev->netdev,
"Error %d while reading timestamp. HW timestamps may be inaccurate.",
err);
return timestamp;
}
static void gs_usb_timestamp_work(struct work_struct *work)
{
struct delayed_work *delayed_work = to_delayed_work(work);
struct gs_can *dev;
dev = container_of(delayed_work, struct gs_can, timestamp);
spin_lock_bh(&dev->tc_lock);
timecounter_read(&dev->tc);
spin_unlock_bh(&dev->tc_lock);
schedule_delayed_work(&dev->timestamp,
GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
}
static void gs_usb_skb_set_timestamp(struct gs_can *dev,
struct sk_buff *skb, u32 timestamp)
{
struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
u64 ns;
spin_lock_bh(&dev->tc_lock);
ns = timecounter_cyc2time(&dev->tc, timestamp);
spin_unlock_bh(&dev->tc_lock);
hwtstamps->hwtstamp = ns_to_ktime(ns);
}
static void gs_usb_timestamp_init(struct gs_can *dev)
{
struct cyclecounter *cc = &dev->cc;
cc->read = gs_usb_timestamp_read;
cc->mask = CYCLECOUNTER_MASK(32);
cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
spin_lock_init(&dev->tc_lock);
spin_lock_bh(&dev->tc_lock);
timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns());
spin_unlock_bh(&dev->tc_lock);
INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work);
schedule_delayed_work(&dev->timestamp,
GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
}
static void gs_usb_timestamp_stop(struct gs_can *dev)
{
cancel_delayed_work_sync(&dev->timestamp);
}
static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
{
struct can_device_stats *can_stats = &dev->can.can_stats;
if (cf->can_id & CAN_ERR_RESTARTED) {
dev->can.state = CAN_STATE_ERROR_ACTIVE;
can_stats->restarts++;
} else if (cf->can_id & CAN_ERR_BUSOFF) {
dev->can.state = CAN_STATE_BUS_OFF;
can_stats->bus_off++;
} else if (cf->can_id & CAN_ERR_CRTL) {
if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
(cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
dev->can.state = CAN_STATE_ERROR_WARNING;
can_stats->error_warning++;
} else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
(cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
dev->can.state = CAN_STATE_ERROR_PASSIVE;
can_stats->error_passive++;
} else {
dev->can.state = CAN_STATE_ERROR_ACTIVE;
}
}
}
static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
const struct gs_host_frame *hf)
{
u32 timestamp;
if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP))
return;
if (hf->flags & GS_CAN_FLAG_FD)
timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
else
timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
gs_usb_skb_set_timestamp(dev, skb, timestamp);
return;
}
static void gs_usb_receive_bulk_callback(struct urb *urb)
{
struct gs_usb *usbcan = urb->context;
struct gs_can *dev;
struct net_device *netdev;
int rc;
struct net_device_stats *stats;
struct gs_host_frame *hf = urb->transfer_buffer;
struct gs_tx_context *txc;
struct can_frame *cf;
struct canfd_frame *cfd;
struct sk_buff *skb;
BUG_ON(!usbcan);
switch (urb->status) {
case 0: /* success */
break;
case -ENOENT:
case -ESHUTDOWN:
return;
default:
/* do not resubmit aborted urbs. eg: when device goes down */
return;
}
/* device reports out of range channel id */
if (hf->channel >= GS_MAX_INTF)
goto device_detach;
dev = usbcan->canch[hf->channel];
netdev = dev->netdev;
stats = &netdev->stats;
if (!netif_device_present(netdev))
return;
if (hf->echo_id == -1) { /* normal rx */
if (hf->flags & GS_CAN_FLAG_FD) {
skb = alloc_canfd_skb(dev->netdev, &cfd);
if (!skb)
return;
cfd->can_id = le32_to_cpu(hf->can_id);
cfd->len = can_fd_dlc2len(hf->can_dlc);
if (hf->flags & GS_CAN_FLAG_BRS)
cfd->flags |= CANFD_BRS;
if (hf->flags & GS_CAN_FLAG_ESI)
cfd->flags |= CANFD_ESI;
memcpy(cfd->data, hf->canfd->data, cfd->len);
} else {
skb = alloc_can_skb(dev->netdev, &cf);
if (!skb)
return;
cf->can_id = le32_to_cpu(hf->can_id);
can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
memcpy(cf->data, hf->classic_can->data, 8);
/* ERROR frames tell us information about the controller */
if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
gs_update_state(dev, cf);
}
gs_usb_set_timestamp(dev, skb, hf);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += hf->can_dlc;
netif_rx(skb);
} else { /* echo_id == hf->echo_id */
if (hf->echo_id >= GS_MAX_TX_URBS) {
netdev_err(netdev,
"Unexpected out of range echo id %u\n",
hf->echo_id);
goto resubmit_urb;
}
txc = gs_get_tx_context(dev, hf->echo_id);
/* bad devices send bad echo_ids. */
if (!txc) {
netdev_err(netdev,
"Unexpected unused echo id %u\n",
hf->echo_id);
goto resubmit_urb;
}
skb = dev->can.echo_skb[hf->echo_id];
gs_usb_set_timestamp(dev, skb, hf);
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id,
NULL);
gs_free_tx_context(txc);
atomic_dec(&dev->active_tx_urbs);
netif_wake_queue(netdev);
}
if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
skb = alloc_can_err_skb(netdev, &cf);
if (!skb)
goto resubmit_urb;
cf->can_id |= CAN_ERR_CRTL;
cf->len = CAN_ERR_DLC;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
stats->rx_over_errors++;
stats->rx_errors++;
netif_rx(skb);
}
resubmit_urb:
usb_fill_bulk_urb(urb, usbcan->udev,
usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN),
hf, dev->parent->hf_size_rx,
gs_usb_receive_bulk_callback, usbcan);
rc = usb_submit_urb(urb, GFP_ATOMIC);
/* USB failure take down all interfaces */
if (rc == -ENODEV) {
device_detach:
for (rc = 0; rc < GS_MAX_INTF; rc++) {
if (usbcan->canch[rc])
netif_device_detach(usbcan->canch[rc]->netdev);
}
}
}
static int gs_usb_set_bittiming(struct net_device *netdev)
{
struct gs_can *dev = netdev_priv(netdev);
struct can_bittiming *bt = &dev->can.bittiming;
struct gs_device_bittiming dbt = {
.prop_seg = cpu_to_le32(bt->prop_seg),
.phase_seg1 = cpu_to_le32(bt->phase_seg1),
.phase_seg2 = cpu_to_le32(bt->phase_seg2),
.sjw = cpu_to_le32(bt->sjw),
.brp = cpu_to_le32(bt->brp),
};
/* request bit timings */
return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_BITTIMING,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0, &dbt, sizeof(dbt), 1000,
GFP_KERNEL);
}
static int gs_usb_set_data_bittiming(struct net_device *netdev)
{
struct gs_can *dev = netdev_priv(netdev);
struct can_bittiming *bt = &dev->can.data_bittiming;
struct gs_device_bittiming dbt = {
.prop_seg = cpu_to_le32(bt->prop_seg),
.phase_seg1 = cpu_to_le32(bt->phase_seg1),
.phase_seg2 = cpu_to_le32(bt->phase_seg2),
.sjw = cpu_to_le32(bt->sjw),
.brp = cpu_to_le32(bt->brp),
};
u8 request = GS_USB_BREQ_DATA_BITTIMING;
if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
/* request data bit timings */
return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
request,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0, &dbt, sizeof(dbt), 1000,
GFP_KERNEL);
}
static void gs_usb_xmit_callback(struct urb *urb)
{
struct gs_tx_context *txc = urb->context;
struct gs_can *dev = txc->dev;
struct net_device *netdev = dev->netdev;
if (urb->status)
netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id);
}
static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct gs_can *dev = netdev_priv(netdev);
struct net_device_stats *stats = &dev->netdev->stats;
struct urb *urb;
struct gs_host_frame *hf;
struct can_frame *cf;
struct canfd_frame *cfd;
int rc;
unsigned int idx;
struct gs_tx_context *txc;
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
/* find an empty context to keep track of transmission */
txc = gs_alloc_tx_context(dev);
if (!txc)
return NETDEV_TX_BUSY;
/* create a URB, and a buffer for it */
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb)
goto nomem_urb;
hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
if (!hf) {
netdev_err(netdev, "No memory left for USB buffer\n");
goto nomem_hf;
}
idx = txc->echo_id;
if (idx >= GS_MAX_TX_URBS) {
netdev_err(netdev, "Invalid tx context %u\n", idx);
goto badidx;
}
hf->echo_id = idx;
hf->channel = dev->channel;
hf->flags = 0;
hf->reserved = 0;
if (can_is_canfd_skb(skb)) {
cfd = (struct canfd_frame *)skb->data;
hf->can_id = cpu_to_le32(cfd->can_id);
hf->can_dlc = can_fd_len2dlc(cfd->len);
hf->flags |= GS_CAN_FLAG_FD;
if (cfd->flags & CANFD_BRS)
hf->flags |= GS_CAN_FLAG_BRS;
if (cfd->flags & CANFD_ESI)
hf->flags |= GS_CAN_FLAG_ESI;
memcpy(hf->canfd->data, cfd->data, cfd->len);
} else {
cf = (struct can_frame *)skb->data;
hf->can_id = cpu_to_le32(cf->can_id);
hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
memcpy(hf->classic_can->data, cf->data, cf->len);
}
usb_fill_bulk_urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT),
hf, dev->hf_size_tx,
gs_usb_xmit_callback, txc);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_anchor_urb(urb, &dev->tx_submitted);
can_put_echo_skb(skb, netdev, idx, 0);
atomic_inc(&dev->active_tx_urbs);
rc = usb_submit_urb(urb, GFP_ATOMIC);
if (unlikely(rc)) { /* usb send failed */
atomic_dec(&dev->active_tx_urbs);
can_free_echo_skb(netdev, idx, NULL);
gs_free_tx_context(txc);
usb_unanchor_urb(urb);
if (rc == -ENODEV) {
netif_device_detach(netdev);
} else {
netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
stats->tx_dropped++;
}
} else {
/* Slow down tx path */
if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
netif_stop_queue(netdev);
}
/* let usb core take care of this urb */
usb_free_urb(urb);
return NETDEV_TX_OK;
badidx:
kfree(hf);
nomem_hf:
usb_free_urb(urb);
nomem_urb:
gs_free_tx_context(txc);
dev_kfree_skb(skb);
stats->tx_dropped++;
return NETDEV_TX_OK;
}
static int gs_can_open(struct net_device *netdev)
{
struct gs_can *dev = netdev_priv(netdev);
struct gs_usb *parent = dev->parent;
struct gs_device_mode dm = {
.mode = cpu_to_le32(GS_CAN_MODE_START),
};
struct gs_host_frame *hf;
u32 ctrlmode;
u32 flags = 0;
int rc, i;
rc = open_candev(netdev);
if (rc)
return rc;
ctrlmode = dev->can.ctrlmode;
if (ctrlmode & CAN_CTRLMODE_FD) {
flags |= GS_CAN_MODE_FD;
if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
else
dev->hf_size_tx = struct_size(hf, canfd, 1);
} else {
if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
else
dev->hf_size_tx = struct_size(hf, classic_can, 1);
}
if (!parent->active_channels) {
for (i = 0; i < GS_MAX_RX_URBS; i++) {
struct urb *urb;
u8 *buf;
/* alloc rx urb */
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return -ENOMEM;
/* alloc rx buffer */
buf = kmalloc(dev->parent->hf_size_rx,
GFP_KERNEL);
if (!buf) {
netdev_err(netdev,
"No memory left for USB buffer\n");
usb_free_urb(urb);
return -ENOMEM;
}
/* fill, anchor, and submit rx urb */
usb_fill_bulk_urb(urb,
dev->udev,
usb_rcvbulkpipe(dev->udev,
GS_USB_ENDPOINT_IN),
buf,
dev->parent->hf_size_rx,
gs_usb_receive_bulk_callback, parent);
urb->transfer_flags |= URB_FREE_BUFFER;
usb_anchor_urb(urb, &parent->rx_submitted);
rc = usb_submit_urb(urb, GFP_KERNEL);
if (rc) {
if (rc == -ENODEV)
netif_device_detach(dev->netdev);
netdev_err(netdev,
"usb_submit failed (err=%d)\n", rc);
usb_unanchor_urb(urb);
usb_free_urb(urb);
break;
}
/* Drop reference,
* USB core will take care of freeing it
*/
usb_free_urb(urb);
}
}
/* flags */
if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
flags |= GS_CAN_MODE_LOOP_BACK;
else if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
flags |= GS_CAN_MODE_LISTEN_ONLY;
/* Controller is not allowed to retry TX
* this mode is unavailable on atmels uc3c hardware
*/
if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
flags |= GS_CAN_MODE_ONE_SHOT;
if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
/* if hardware supports timestamps, enable it */
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
flags |= GS_CAN_MODE_HW_TIMESTAMP;
/* start polling timestamp */
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
gs_usb_timestamp_init(dev);
/* finally start device */
dev->can.state = CAN_STATE_ERROR_ACTIVE;
dm.flags = cpu_to_le32(flags);
rc = usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_MODE,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0, &dm, sizeof(dm), 1000,
GFP_KERNEL);
if (rc) {
netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
gs_usb_timestamp_stop(dev);
dev->can.state = CAN_STATE_STOPPED;
return rc;
}
parent->active_channels++;
if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
netif_start_queue(netdev);
return 0;
}
static int gs_can_close(struct net_device *netdev)
{
int rc;
struct gs_can *dev = netdev_priv(netdev);
struct gs_usb *parent = dev->parent;
netif_stop_queue(netdev);
/* stop polling timestamp */
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
gs_usb_timestamp_stop(dev);
/* Stop polling */
parent->active_channels--;
if (!parent->active_channels) {
usb_kill_anchored_urbs(&parent->rx_submitted);
}
/* Stop sending URBs */
usb_kill_anchored_urbs(&dev->tx_submitted);
atomic_set(&dev->active_tx_urbs, 0);
/* reset the device */
rc = gs_cmd_reset(dev);
if (rc < 0)
netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
/* reset tx contexts */
for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
dev->tx_context[rc].dev = dev;
dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
}
/* close the netdev */
close_candev(netdev);
return 0;
}
static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
const struct gs_can *dev = netdev_priv(netdev);
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
return can_eth_ioctl_hwts(netdev, ifr, cmd);
return -EOPNOTSUPP;
}
static const struct net_device_ops gs_usb_netdev_ops = {
.ndo_open = gs_can_open,
.ndo_stop = gs_can_close,
.ndo_start_xmit = gs_can_start_xmit,
.ndo_change_mtu = can_change_mtu,
.ndo_eth_ioctl = gs_can_eth_ioctl,
};
static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
{
struct gs_can *dev = netdev_priv(netdev);
struct gs_identify_mode imode;
if (do_identify)
imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
else
imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_IDENTIFY,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0, &imode, sizeof(imode), 100,
GFP_KERNEL);
}
/* blink LED's for finding the this interface */
static int gs_usb_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
const struct gs_can *dev = netdev_priv(netdev);
int rc = 0;
if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
return -EOPNOTSUPP;
switch (state) {
case ETHTOOL_ID_ACTIVE:
rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
break;
case ETHTOOL_ID_INACTIVE:
rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
break;
default:
break;
}
return rc;
}
static int gs_usb_get_ts_info(struct net_device *netdev,
struct ethtool_ts_info *info)
{
struct gs_can *dev = netdev_priv(netdev);
/* report if device supports HW timestamps */
if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
return can_ethtool_op_get_ts_info_hwts(netdev, info);
return ethtool_op_get_ts_info(netdev, info);
}
static const struct ethtool_ops gs_usb_ethtool_ops = {
.set_phys_id = gs_usb_set_phys_id,
.get_ts_info = gs_usb_get_ts_info,
};
static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
{
struct gs_can *dev = netdev_priv(netdev);
struct gs_device_termination_state term_state;
int rc;
rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_GET_TERMINATION,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0,
&term_state, sizeof(term_state), 1000,
GFP_KERNEL);
if (rc)
return rc;
if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
*term = GS_USB_TERMINATION_ENABLED;
else
*term = GS_USB_TERMINATION_DISABLED;
return 0;
}
static int gs_usb_set_termination(struct net_device *netdev, u16 term)
{
struct gs_can *dev = netdev_priv(netdev);
struct gs_device_termination_state term_state;
if (term == GS_USB_TERMINATION_ENABLED)
term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
else
term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
return usb_control_msg_send(interface_to_usbdev(dev->iface), 0,
GS_USB_BREQ_SET_TERMINATION,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
dev->channel, 0,
&term_state, sizeof(term_state), 1000,
GFP_KERNEL);
}
static const u16 gs_usb_termination_const[] = {
GS_USB_TERMINATION_DISABLED,
GS_USB_TERMINATION_ENABLED
};
static struct gs_can *gs_make_candev(unsigned int channel,
struct usb_interface *intf,
struct gs_device_config *dconf)
{
struct gs_can *dev;
struct net_device *netdev;
int rc;
struct gs_device_bt_const_extended bt_const_extended;
struct gs_device_bt_const bt_const;
u32 feature;
/* fetch bit timing constants */
rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
GS_USB_BREQ_BT_CONST,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
channel, 0, &bt_const, sizeof(bt_const), 1000,
GFP_KERNEL);
if (rc) {
dev_err(&intf->dev,
"Couldn't get bit timing const for channel %d (%pe)\n",
channel, ERR_PTR(rc));
return ERR_PTR(rc);
}
/* create netdev */
netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
if (!netdev) {
dev_err(&intf->dev, "Couldn't allocate candev\n");
return ERR_PTR(-ENOMEM);
}
dev = netdev_priv(netdev);
netdev->netdev_ops = &gs_usb_netdev_ops;
netdev->ethtool_ops = &gs_usb_ethtool_ops;
netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
/* dev setup */
strcpy(dev->bt_const.name, KBUILD_MODNAME);
dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
dev->udev = interface_to_usbdev(intf);
dev->iface = intf;
dev->netdev = netdev;
dev->channel = channel;
init_usb_anchor(&dev->tx_submitted);
atomic_set(&dev->active_tx_urbs, 0);
spin_lock_init(&dev->tx_ctx_lock);
for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
dev->tx_context[rc].dev = dev;
dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
}
/* can setup */
dev->can.state = CAN_STATE_STOPPED;
dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
dev->can.bittiming_const = &dev->bt_const;
dev->can.do_set_bittiming = gs_usb_set_bittiming;
dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
feature = le32_to_cpu(bt_const.feature);
dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
if (feature & GS_CAN_FEATURE_LOOP_BACK)
dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
if (feature & GS_CAN_FEATURE_ONE_SHOT)
dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
if (feature & GS_CAN_FEATURE_FD) {
dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
/* The data bit timing will be overwritten, if
* GS_CAN_FEATURE_BT_CONST_EXT is set.
*/
dev->can.data_bittiming_const = &dev->bt_const;
dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming;
}
if (feature & GS_CAN_FEATURE_TERMINATION) {
rc = gs_usb_get_termination(netdev, &dev->can.termination);
if (rc) {
dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
dev_info(&intf->dev,
"Disabling termination support for channel %d (%pe)\n",
channel, ERR_PTR(rc));
} else {
dev->can.termination_const = gs_usb_termination_const;
dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
dev->can.do_set_termination = gs_usb_set_termination;
}
}
/* The CANtact Pro from LinkLayer Labs is based on the
* LPC54616 µC, which is affected by the NXP LPC USB transfer
* erratum. However, the current firmware (version 2) doesn't
* set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
* feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
* this issue.
*
* For the GS_USB_BREQ_DATA_BITTIMING USB control message the
* CANtact Pro firmware uses a request value, which is already
* used by the candleLight firmware for a different purpose
* (GS_USB_BREQ_GET_USER_ID). Set the feature
* GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
* issue.
*/
if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
dev->udev->manufacturer && dev->udev->product &&
!strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
!strcmp(dev->udev->product, "CANtact Pro") &&
(le32_to_cpu(dconf->sw_version) <= 2))
dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
/* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
if (!(le32_to_cpu(dconf->sw_version) > 1 &&
feature & GS_CAN_FEATURE_IDENTIFY))
dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
/* fetch extended bit timing constants if device has feature
* GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
*/
if (feature & GS_CAN_FEATURE_FD &&
feature & GS_CAN_FEATURE_BT_CONST_EXT) {
rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
GS_USB_BREQ_BT_CONST_EXT,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
channel, 0, &bt_const_extended,
sizeof(bt_const_extended),
1000, GFP_KERNEL);
if (rc) {
dev_err(&intf->dev,
"Couldn't get extended bit timing const for channel %d (%pe)\n",
channel, ERR_PTR(rc));
goto out_free_candev;
}
strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
dev->can.data_bittiming_const = &dev->data_bt_const;
}
SET_NETDEV_DEV(netdev, &intf->dev);
rc = register_candev(dev->netdev);
if (rc) {
dev_err(&intf->dev,
"Couldn't register candev for channel %d (%pe)\n",
channel, ERR_PTR(rc));
goto out_free_candev;
}
return dev;
out_free_candev:
free_candev(dev->netdev);
return ERR_PTR(rc);
}
static void gs_destroy_candev(struct gs_can *dev)
{
unregister_candev(dev->netdev);
usb_kill_anchored_urbs(&dev->tx_submitted);
free_candev(dev->netdev);
}
static int gs_usb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct gs_host_frame *hf;
struct gs_usb *dev;
struct gs_host_config hconf = {
.byte_order = cpu_to_le32(0x0000beef),
};
struct gs_device_config dconf;
unsigned int icount, i;
int rc;
/* send host config */
rc = usb_control_msg_send(udev, 0,
GS_USB_BREQ_HOST_FORMAT,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1, intf->cur_altsetting->desc.bInterfaceNumber,
&hconf, sizeof(hconf), 1000,
GFP_KERNEL);
if (rc) {
dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
return rc;
}
/* read device config */
rc = usb_control_msg_recv(udev, 0,
GS_USB_BREQ_DEVICE_CONFIG,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1, intf->cur_altsetting->desc.bInterfaceNumber,
&dconf, sizeof(dconf), 1000,
GFP_KERNEL);
if (rc) {
dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
rc);
return rc;
}
icount = dconf.icount + 1;
dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
if (icount > GS_MAX_INTF) {
dev_err(&intf->dev,
"Driver cannot handle more that %u CAN interfaces\n",
GS_MAX_INTF);
return -EINVAL;
}
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
init_usb_anchor(&dev->rx_submitted);
usb_set_intfdata(intf, dev);
dev->udev = udev;
for (i = 0; i < icount; i++) {
unsigned int hf_size_rx = 0;
dev->canch[i] = gs_make_candev(i, intf, &dconf);
if (IS_ERR_OR_NULL(dev->canch[i])) {
/* save error code to return later */
rc = PTR_ERR(dev->canch[i]);
/* on failure destroy previously created candevs */
icount = i;
for (i = 0; i < icount; i++)
gs_destroy_candev(dev->canch[i]);
usb_kill_anchored_urbs(&dev->rx_submitted);
kfree(dev);
return rc;
}
dev->canch[i]->parent = dev;
/* set RX packet size based on FD and if hardware
* timestamps are supported.
*/
if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
hf_size_rx = struct_size(hf, canfd_ts, 1);
else
hf_size_rx = struct_size(hf, canfd, 1);
} else {
if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
hf_size_rx = struct_size(hf, classic_can_ts, 1);
else
hf_size_rx = struct_size(hf, classic_can, 1);
}
dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx);
}
return 0;
}
static void gs_usb_disconnect(struct usb_interface *intf)
{
struct gs_usb *dev = usb_get_intfdata(intf);
unsigned int i;
usb_set_intfdata(intf, NULL);
if (!dev) {
dev_err(&intf->dev, "Disconnect (nodata)\n");
return;
}
for (i = 0; i < GS_MAX_INTF; i++)
if (dev->canch[i])
gs_destroy_candev(dev->canch[i]);
usb_kill_anchored_urbs(&dev->rx_submitted);
kfree(dev);
}
static const struct usb_device_id gs_usb_table[] = {
{ USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
USB_GS_USB_1_PRODUCT_ID, 0) },
{ USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
USB_CANDLELIGHT_PRODUCT_ID, 0) },
{ USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
{ USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, gs_usb_table);
static struct usb_driver gs_usb_driver = {
.name = KBUILD_MODNAME,
.probe = gs_usb_probe,
.disconnect = gs_usb_disconnect,
.id_table = gs_usb_table,
};
module_usb_driver(gs_usb_driver);
MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
MODULE_DESCRIPTION(
"Socket CAN device driver for Geschwister Schneider Technologie-, "
"Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
"and bytewerk.org candleLight USB CAN interfaces.");
MODULE_LICENSE("GPL v2");