blob: 483b3fd1094f3b17f9df87eeee0448f43f62cf5b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* trace_events_hist - trace event hist triggers
*
* Copyright (C) 2015 Tom Zanussi <tom.zanussi@linux.intel.com>
*/
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/security.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/rculist.h>
#include <linux/tracefs.h>
/* for gfp flag names */
#include <linux/trace_events.h>
#include <trace/events/mmflags.h>
#include "tracing_map.h"
#include "trace.h"
#include "trace_dynevent.h"
#define SYNTH_SYSTEM "synthetic"
#define SYNTH_FIELDS_MAX 32
#define STR_VAR_LEN_MAX 32 /* must be multiple of sizeof(u64) */
#define ERRORS \
C(NONE, "No error"), \
C(DUPLICATE_VAR, "Variable already defined"), \
C(VAR_NOT_UNIQUE, "Variable name not unique, need to use fully qualified name (subsys.event.var) for variable"), \
C(TOO_MANY_VARS, "Too many variables defined"), \
C(MALFORMED_ASSIGNMENT, "Malformed assignment"), \
C(NAMED_MISMATCH, "Named hist trigger doesn't match existing named trigger (includes variables)"), \
C(TRIGGER_EEXIST, "Hist trigger already exists"), \
C(TRIGGER_ENOENT_CLEAR, "Can't clear or continue a nonexistent hist trigger"), \
C(SET_CLOCK_FAIL, "Couldn't set trace_clock"), \
C(BAD_FIELD_MODIFIER, "Invalid field modifier"), \
C(TOO_MANY_SUBEXPR, "Too many subexpressions (3 max)"), \
C(TIMESTAMP_MISMATCH, "Timestamp units in expression don't match"), \
C(TOO_MANY_FIELD_VARS, "Too many field variables defined"), \
C(EVENT_FILE_NOT_FOUND, "Event file not found"), \
C(HIST_NOT_FOUND, "Matching event histogram not found"), \
C(HIST_CREATE_FAIL, "Couldn't create histogram for field"), \
C(SYNTH_VAR_NOT_FOUND, "Couldn't find synthetic variable"), \
C(SYNTH_EVENT_NOT_FOUND,"Couldn't find synthetic event"), \
C(SYNTH_TYPE_MISMATCH, "Param type doesn't match synthetic event field type"), \
C(SYNTH_COUNT_MISMATCH, "Param count doesn't match synthetic event field count"), \
C(FIELD_VAR_PARSE_FAIL, "Couldn't parse field variable"), \
C(VAR_CREATE_FIND_FAIL, "Couldn't create or find variable"), \
C(ONX_NOT_VAR, "For onmax(x) or onchange(x), x must be a variable"), \
C(ONX_VAR_NOT_FOUND, "Couldn't find onmax or onchange variable"), \
C(ONX_VAR_CREATE_FAIL, "Couldn't create onmax or onchange variable"), \
C(FIELD_VAR_CREATE_FAIL,"Couldn't create field variable"), \
C(TOO_MANY_PARAMS, "Too many action params"), \
C(PARAM_NOT_FOUND, "Couldn't find param"), \
C(INVALID_PARAM, "Invalid action param"), \
C(ACTION_NOT_FOUND, "No action found"), \
C(NO_SAVE_PARAMS, "No params found for save()"), \
C(TOO_MANY_SAVE_ACTIONS,"Can't have more than one save() action per hist"), \
C(ACTION_MISMATCH, "Handler doesn't support action"), \
C(NO_CLOSING_PAREN, "No closing paren found"), \
C(SUBSYS_NOT_FOUND, "Missing subsystem"), \
C(INVALID_SUBSYS_EVENT, "Invalid subsystem or event name"), \
C(INVALID_REF_KEY, "Using variable references in keys not supported"), \
C(VAR_NOT_FOUND, "Couldn't find variable"), \
C(FIELD_NOT_FOUND, "Couldn't find field"), \
C(EMPTY_ASSIGNMENT, "Empty assignment"), \
C(INVALID_SORT_MODIFIER,"Invalid sort modifier"), \
C(EMPTY_SORT_FIELD, "Empty sort field"), \
C(TOO_MANY_SORT_FIELDS, "Too many sort fields (Max = 2)"), \
C(INVALID_SORT_FIELD, "Sort field must be a key or a val"),
#undef C
#define C(a, b) HIST_ERR_##a
enum { ERRORS };
#undef C
#define C(a, b) b
static const char *err_text[] = { ERRORS };
struct hist_field;
typedef u64 (*hist_field_fn_t) (struct hist_field *field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event);
#define HIST_FIELD_OPERANDS_MAX 2
#define HIST_FIELDS_MAX (TRACING_MAP_FIELDS_MAX + TRACING_MAP_VARS_MAX)
#define HIST_ACTIONS_MAX 8
enum field_op_id {
FIELD_OP_NONE,
FIELD_OP_PLUS,
FIELD_OP_MINUS,
FIELD_OP_UNARY_MINUS,
};
/*
* A hist_var (histogram variable) contains variable information for
* hist_fields having the HIST_FIELD_FL_VAR or HIST_FIELD_FL_VAR_REF
* flag set. A hist_var has a variable name e.g. ts0, and is
* associated with a given histogram trigger, as specified by
* hist_data. The hist_var idx is the unique index assigned to the
* variable by the hist trigger's tracing_map. The idx is what is
* used to set a variable's value and, by a variable reference, to
* retrieve it.
*/
struct hist_var {
char *name;
struct hist_trigger_data *hist_data;
unsigned int idx;
};
struct hist_field {
struct ftrace_event_field *field;
unsigned long flags;
hist_field_fn_t fn;
unsigned int ref;
unsigned int size;
unsigned int offset;
unsigned int is_signed;
const char *type;
struct hist_field *operands[HIST_FIELD_OPERANDS_MAX];
struct hist_trigger_data *hist_data;
/*
* Variable fields contain variable-specific info in var.
*/
struct hist_var var;
enum field_op_id operator;
char *system;
char *event_name;
/*
* The name field is used for EXPR and VAR_REF fields. VAR
* fields contain the variable name in var.name.
*/
char *name;
/*
* When a histogram trigger is hit, if it has any references
* to variables, the values of those variables are collected
* into a var_ref_vals array by resolve_var_refs(). The
* current value of each variable is read from the tracing_map
* using the hist field's hist_var.idx and entered into the
* var_ref_idx entry i.e. var_ref_vals[var_ref_idx].
*/
unsigned int var_ref_idx;
bool read_once;
};
static u64 hist_field_none(struct hist_field *field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
return 0;
}
static u64 hist_field_counter(struct hist_field *field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
return 1;
}
static u64 hist_field_string(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
char *addr = (char *)(event + hist_field->field->offset);
return (u64)(unsigned long)addr;
}
static u64 hist_field_dynstring(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
u32 str_item = *(u32 *)(event + hist_field->field->offset);
int str_loc = str_item & 0xffff;
char *addr = (char *)(event + str_loc);
return (u64)(unsigned long)addr;
}
static u64 hist_field_pstring(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
char **addr = (char **)(event + hist_field->field->offset);
return (u64)(unsigned long)*addr;
}
static u64 hist_field_log2(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
struct hist_field *operand = hist_field->operands[0];
u64 val = operand->fn(operand, elt, rbe, event);
return (u64) ilog2(roundup_pow_of_two(val));
}
static u64 hist_field_plus(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
struct hist_field *operand1 = hist_field->operands[0];
struct hist_field *operand2 = hist_field->operands[1];
u64 val1 = operand1->fn(operand1, elt, rbe, event);
u64 val2 = operand2->fn(operand2, elt, rbe, event);
return val1 + val2;
}
static u64 hist_field_minus(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
struct hist_field *operand1 = hist_field->operands[0];
struct hist_field *operand2 = hist_field->operands[1];
u64 val1 = operand1->fn(operand1, elt, rbe, event);
u64 val2 = operand2->fn(operand2, elt, rbe, event);
return val1 - val2;
}
static u64 hist_field_unary_minus(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
struct hist_field *operand = hist_field->operands[0];
s64 sval = (s64)operand->fn(operand, elt, rbe, event);
u64 val = (u64)-sval;
return val;
}
#define DEFINE_HIST_FIELD_FN(type) \
static u64 hist_field_##type(struct hist_field *hist_field, \
struct tracing_map_elt *elt, \
struct ring_buffer_event *rbe, \
void *event) \
{ \
type *addr = (type *)(event + hist_field->field->offset); \
\
return (u64)(unsigned long)*addr; \
}
DEFINE_HIST_FIELD_FN(s64);
DEFINE_HIST_FIELD_FN(u64);
DEFINE_HIST_FIELD_FN(s32);
DEFINE_HIST_FIELD_FN(u32);
DEFINE_HIST_FIELD_FN(s16);
DEFINE_HIST_FIELD_FN(u16);
DEFINE_HIST_FIELD_FN(s8);
DEFINE_HIST_FIELD_FN(u8);
#define for_each_hist_field(i, hist_data) \
for ((i) = 0; (i) < (hist_data)->n_fields; (i)++)
#define for_each_hist_val_field(i, hist_data) \
for ((i) = 0; (i) < (hist_data)->n_vals; (i)++)
#define for_each_hist_key_field(i, hist_data) \
for ((i) = (hist_data)->n_vals; (i) < (hist_data)->n_fields; (i)++)
#define HIST_STACKTRACE_DEPTH 16
#define HIST_STACKTRACE_SIZE (HIST_STACKTRACE_DEPTH * sizeof(unsigned long))
#define HIST_STACKTRACE_SKIP 5
#define HITCOUNT_IDX 0
#define HIST_KEY_SIZE_MAX (MAX_FILTER_STR_VAL + HIST_STACKTRACE_SIZE)
enum hist_field_flags {
HIST_FIELD_FL_HITCOUNT = 1 << 0,
HIST_FIELD_FL_KEY = 1 << 1,
HIST_FIELD_FL_STRING = 1 << 2,
HIST_FIELD_FL_HEX = 1 << 3,
HIST_FIELD_FL_SYM = 1 << 4,
HIST_FIELD_FL_SYM_OFFSET = 1 << 5,
HIST_FIELD_FL_EXECNAME = 1 << 6,
HIST_FIELD_FL_SYSCALL = 1 << 7,
HIST_FIELD_FL_STACKTRACE = 1 << 8,
HIST_FIELD_FL_LOG2 = 1 << 9,
HIST_FIELD_FL_TIMESTAMP = 1 << 10,
HIST_FIELD_FL_TIMESTAMP_USECS = 1 << 11,
HIST_FIELD_FL_VAR = 1 << 12,
HIST_FIELD_FL_EXPR = 1 << 13,
HIST_FIELD_FL_VAR_REF = 1 << 14,
HIST_FIELD_FL_CPU = 1 << 15,
HIST_FIELD_FL_ALIAS = 1 << 16,
};
struct var_defs {
unsigned int n_vars;
char *name[TRACING_MAP_VARS_MAX];
char *expr[TRACING_MAP_VARS_MAX];
};
struct hist_trigger_attrs {
char *keys_str;
char *vals_str;
char *sort_key_str;
char *name;
char *clock;
bool pause;
bool cont;
bool clear;
bool ts_in_usecs;
unsigned int map_bits;
char *assignment_str[TRACING_MAP_VARS_MAX];
unsigned int n_assignments;
char *action_str[HIST_ACTIONS_MAX];
unsigned int n_actions;
struct var_defs var_defs;
};
struct field_var {
struct hist_field *var;
struct hist_field *val;
};
struct field_var_hist {
struct hist_trigger_data *hist_data;
char *cmd;
};
struct hist_trigger_data {
struct hist_field *fields[HIST_FIELDS_MAX];
unsigned int n_vals;
unsigned int n_keys;
unsigned int n_fields;
unsigned int n_vars;
unsigned int key_size;
struct tracing_map_sort_key sort_keys[TRACING_MAP_SORT_KEYS_MAX];
unsigned int n_sort_keys;
struct trace_event_file *event_file;
struct hist_trigger_attrs *attrs;
struct tracing_map *map;
bool enable_timestamps;
bool remove;
struct hist_field *var_refs[TRACING_MAP_VARS_MAX];
unsigned int n_var_refs;
struct action_data *actions[HIST_ACTIONS_MAX];
unsigned int n_actions;
struct field_var *field_vars[SYNTH_FIELDS_MAX];
unsigned int n_field_vars;
unsigned int n_field_var_str;
struct field_var_hist *field_var_hists[SYNTH_FIELDS_MAX];
unsigned int n_field_var_hists;
struct field_var *save_vars[SYNTH_FIELDS_MAX];
unsigned int n_save_vars;
unsigned int n_save_var_str;
};
static int create_synth_event(int argc, const char **argv);
static int synth_event_show(struct seq_file *m, struct dyn_event *ev);
static int synth_event_release(struct dyn_event *ev);
static bool synth_event_is_busy(struct dyn_event *ev);
static bool synth_event_match(const char *system, const char *event,
int argc, const char **argv, struct dyn_event *ev);
static struct dyn_event_operations synth_event_ops = {
.create = create_synth_event,
.show = synth_event_show,
.is_busy = synth_event_is_busy,
.free = synth_event_release,
.match = synth_event_match,
};
struct synth_field {
char *type;
char *name;
size_t size;
unsigned int offset;
bool is_signed;
bool is_string;
};
struct synth_event {
struct dyn_event devent;
int ref;
char *name;
struct synth_field **fields;
unsigned int n_fields;
unsigned int n_u64;
struct trace_event_class class;
struct trace_event_call call;
struct tracepoint *tp;
struct module *mod;
};
static bool is_synth_event(struct dyn_event *ev)
{
return ev->ops == &synth_event_ops;
}
static struct synth_event *to_synth_event(struct dyn_event *ev)
{
return container_of(ev, struct synth_event, devent);
}
static bool synth_event_is_busy(struct dyn_event *ev)
{
struct synth_event *event = to_synth_event(ev);
return event->ref != 0;
}
static bool synth_event_match(const char *system, const char *event,
int argc, const char **argv, struct dyn_event *ev)
{
struct synth_event *sev = to_synth_event(ev);
return strcmp(sev->name, event) == 0 &&
(!system || strcmp(system, SYNTH_SYSTEM) == 0);
}
struct action_data;
typedef void (*action_fn_t) (struct hist_trigger_data *hist_data,
struct tracing_map_elt *elt, void *rec,
struct ring_buffer_event *rbe, void *key,
struct action_data *data, u64 *var_ref_vals);
typedef bool (*check_track_val_fn_t) (u64 track_val, u64 var_val);
enum handler_id {
HANDLER_ONMATCH = 1,
HANDLER_ONMAX,
HANDLER_ONCHANGE,
};
enum action_id {
ACTION_SAVE = 1,
ACTION_TRACE,
ACTION_SNAPSHOT,
};
struct action_data {
enum handler_id handler;
enum action_id action;
char *action_name;
action_fn_t fn;
unsigned int n_params;
char *params[SYNTH_FIELDS_MAX];
/*
* When a histogram trigger is hit, the values of any
* references to variables, including variables being passed
* as parameters to synthetic events, are collected into a
* var_ref_vals array. This var_ref_idx array is an array of
* indices into the var_ref_vals array, one for each synthetic
* event param, and is passed to the synthetic event
* invocation.
*/
unsigned int var_ref_idx[TRACING_MAP_VARS_MAX];
struct synth_event *synth_event;
bool use_trace_keyword;
char *synth_event_name;
union {
struct {
char *event;
char *event_system;
} match_data;
struct {
/*
* var_str contains the $-unstripped variable
* name referenced by var_ref, and used when
* printing the action. Because var_ref
* creation is deferred to create_actions(),
* we need a per-action way to save it until
* then, thus var_str.
*/
char *var_str;
/*
* var_ref refers to the variable being
* tracked e.g onmax($var).
*/
struct hist_field *var_ref;
/*
* track_var contains the 'invisible' tracking
* variable created to keep the current
* e.g. max value.
*/
struct hist_field *track_var;
check_track_val_fn_t check_val;
action_fn_t save_data;
} track_data;
};
};
struct track_data {
u64 track_val;
bool updated;
unsigned int key_len;
void *key;
struct tracing_map_elt elt;
struct action_data *action_data;
struct hist_trigger_data *hist_data;
};
struct hist_elt_data {
char *comm;
u64 *var_ref_vals;
char *field_var_str[SYNTH_FIELDS_MAX];
};
struct snapshot_context {
struct tracing_map_elt *elt;
void *key;
};
static void track_data_free(struct track_data *track_data)
{
struct hist_elt_data *elt_data;
if (!track_data)
return;
kfree(track_data->key);
elt_data = track_data->elt.private_data;
if (elt_data) {
kfree(elt_data->comm);
kfree(elt_data);
}
kfree(track_data);
}
static struct track_data *track_data_alloc(unsigned int key_len,
struct action_data *action_data,
struct hist_trigger_data *hist_data)
{
struct track_data *data = kzalloc(sizeof(*data), GFP_KERNEL);
struct hist_elt_data *elt_data;
if (!data)
return ERR_PTR(-ENOMEM);
data->key = kzalloc(key_len, GFP_KERNEL);
if (!data->key) {
track_data_free(data);
return ERR_PTR(-ENOMEM);
}
data->key_len = key_len;
data->action_data = action_data;
data->hist_data = hist_data;
elt_data = kzalloc(sizeof(*elt_data), GFP_KERNEL);
if (!elt_data) {
track_data_free(data);
return ERR_PTR(-ENOMEM);
}
data->elt.private_data = elt_data;
elt_data->comm = kzalloc(TASK_COMM_LEN, GFP_KERNEL);
if (!elt_data->comm) {
track_data_free(data);
return ERR_PTR(-ENOMEM);
}
return data;
}
static char last_cmd[MAX_FILTER_STR_VAL];
static char last_cmd_loc[MAX_FILTER_STR_VAL];
static int errpos(char *str)
{
return err_pos(last_cmd, str);
}
static void last_cmd_set(struct trace_event_file *file, char *str)
{
const char *system = NULL, *name = NULL;
struct trace_event_call *call;
if (!str)
return;
strcpy(last_cmd, "hist:");
strncat(last_cmd, str, MAX_FILTER_STR_VAL - 1 - sizeof("hist:"));
if (file) {
call = file->event_call;
system = call->class->system;
if (system) {
name = trace_event_name(call);
if (!name)
system = NULL;
}
}
if (system)
snprintf(last_cmd_loc, MAX_FILTER_STR_VAL, "hist:%s:%s", system, name);
}
static void hist_err(struct trace_array *tr, u8 err_type, u8 err_pos)
{
tracing_log_err(tr, last_cmd_loc, last_cmd, err_text,
err_type, err_pos);
}
static void hist_err_clear(void)
{
last_cmd[0] = '\0';
last_cmd_loc[0] = '\0';
}
struct synth_trace_event {
struct trace_entry ent;
u64 fields[];
};
static int synth_event_define_fields(struct trace_event_call *call)
{
struct synth_trace_event trace;
int offset = offsetof(typeof(trace), fields);
struct synth_event *event = call->data;
unsigned int i, size, n_u64;
char *name, *type;
bool is_signed;
int ret = 0;
for (i = 0, n_u64 = 0; i < event->n_fields; i++) {
size = event->fields[i]->size;
is_signed = event->fields[i]->is_signed;
type = event->fields[i]->type;
name = event->fields[i]->name;
ret = trace_define_field(call, type, name, offset, size,
is_signed, FILTER_OTHER);
if (ret)
break;
event->fields[i]->offset = n_u64;
if (event->fields[i]->is_string) {
offset += STR_VAR_LEN_MAX;
n_u64 += STR_VAR_LEN_MAX / sizeof(u64);
} else {
offset += sizeof(u64);
n_u64++;
}
}
event->n_u64 = n_u64;
return ret;
}
static bool synth_field_signed(char *type)
{
if (str_has_prefix(type, "u"))
return false;
if (strcmp(type, "gfp_t") == 0)
return false;
return true;
}
static int synth_field_is_string(char *type)
{
if (strstr(type, "char[") != NULL)
return true;
return false;
}
static int synth_field_string_size(char *type)
{
char buf[4], *end, *start;
unsigned int len;
int size, err;
start = strstr(type, "char[");
if (start == NULL)
return -EINVAL;
start += sizeof("char[") - 1;
end = strchr(type, ']');
if (!end || end < start)
return -EINVAL;
len = end - start;
if (len > 3)
return -EINVAL;
strncpy(buf, start, len);
buf[len] = '\0';
err = kstrtouint(buf, 0, &size);
if (err)
return err;
if (size > STR_VAR_LEN_MAX)
return -EINVAL;
return size;
}
static int synth_field_size(char *type)
{
int size = 0;
if (strcmp(type, "s64") == 0)
size = sizeof(s64);
else if (strcmp(type, "u64") == 0)
size = sizeof(u64);
else if (strcmp(type, "s32") == 0)
size = sizeof(s32);
else if (strcmp(type, "u32") == 0)
size = sizeof(u32);
else if (strcmp(type, "s16") == 0)
size = sizeof(s16);
else if (strcmp(type, "u16") == 0)
size = sizeof(u16);
else if (strcmp(type, "s8") == 0)
size = sizeof(s8);
else if (strcmp(type, "u8") == 0)
size = sizeof(u8);
else if (strcmp(type, "char") == 0)
size = sizeof(char);
else if (strcmp(type, "unsigned char") == 0)
size = sizeof(unsigned char);
else if (strcmp(type, "int") == 0)
size = sizeof(int);
else if (strcmp(type, "unsigned int") == 0)
size = sizeof(unsigned int);
else if (strcmp(type, "long") == 0)
size = sizeof(long);
else if (strcmp(type, "unsigned long") == 0)
size = sizeof(unsigned long);
else if (strcmp(type, "pid_t") == 0)
size = sizeof(pid_t);
else if (strcmp(type, "gfp_t") == 0)
size = sizeof(gfp_t);
else if (synth_field_is_string(type))
size = synth_field_string_size(type);
return size;
}
static const char *synth_field_fmt(char *type)
{
const char *fmt = "%llu";
if (strcmp(type, "s64") == 0)
fmt = "%lld";
else if (strcmp(type, "u64") == 0)
fmt = "%llu";
else if (strcmp(type, "s32") == 0)
fmt = "%d";
else if (strcmp(type, "u32") == 0)
fmt = "%u";
else if (strcmp(type, "s16") == 0)
fmt = "%d";
else if (strcmp(type, "u16") == 0)
fmt = "%u";
else if (strcmp(type, "s8") == 0)
fmt = "%d";
else if (strcmp(type, "u8") == 0)
fmt = "%u";
else if (strcmp(type, "char") == 0)
fmt = "%d";
else if (strcmp(type, "unsigned char") == 0)
fmt = "%u";
else if (strcmp(type, "int") == 0)
fmt = "%d";
else if (strcmp(type, "unsigned int") == 0)
fmt = "%u";
else if (strcmp(type, "long") == 0)
fmt = "%ld";
else if (strcmp(type, "unsigned long") == 0)
fmt = "%lu";
else if (strcmp(type, "pid_t") == 0)
fmt = "%d";
else if (strcmp(type, "gfp_t") == 0)
fmt = "%x";
else if (synth_field_is_string(type))
fmt = "%s";
return fmt;
}
static enum print_line_t print_synth_event(struct trace_iterator *iter,
int flags,
struct trace_event *event)
{
struct trace_array *tr = iter->tr;
struct trace_seq *s = &iter->seq;
struct synth_trace_event *entry;
struct synth_event *se;
unsigned int i, n_u64;
char print_fmt[32];
const char *fmt;
entry = (struct synth_trace_event *)iter->ent;
se = container_of(event, struct synth_event, call.event);
trace_seq_printf(s, "%s: ", se->name);
for (i = 0, n_u64 = 0; i < se->n_fields; i++) {
if (trace_seq_has_overflowed(s))
goto end;
fmt = synth_field_fmt(se->fields[i]->type);
/* parameter types */
if (tr && tr->trace_flags & TRACE_ITER_VERBOSE)
trace_seq_printf(s, "%s ", fmt);
snprintf(print_fmt, sizeof(print_fmt), "%%s=%s%%s", fmt);
/* parameter values */
if (se->fields[i]->is_string) {
trace_seq_printf(s, print_fmt, se->fields[i]->name,
(char *)&entry->fields[n_u64],
i == se->n_fields - 1 ? "" : " ");
n_u64 += STR_VAR_LEN_MAX / sizeof(u64);
} else {
struct trace_print_flags __flags[] = {
__def_gfpflag_names, {-1, NULL} };
trace_seq_printf(s, print_fmt, se->fields[i]->name,
entry->fields[n_u64],
i == se->n_fields - 1 ? "" : " ");
if (strcmp(se->fields[i]->type, "gfp_t") == 0) {
trace_seq_puts(s, " (");
trace_print_flags_seq(s, "|",
entry->fields[n_u64],
__flags);
trace_seq_putc(s, ')');
}
n_u64++;
}
}
end:
trace_seq_putc(s, '\n');
return trace_handle_return(s);
}
static struct trace_event_functions synth_event_funcs = {
.trace = print_synth_event
};
static notrace void trace_event_raw_event_synth(void *__data,
u64 *var_ref_vals,
unsigned int *var_ref_idx)
{
struct trace_event_file *trace_file = __data;
struct synth_trace_event *entry;
struct trace_event_buffer fbuffer;
struct trace_buffer *buffer;
struct synth_event *event;
unsigned int i, n_u64, val_idx;
int fields_size = 0;
event = trace_file->event_call->data;
if (trace_trigger_soft_disabled(trace_file))
return;
fields_size = event->n_u64 * sizeof(u64);
/*
* Avoid ring buffer recursion detection, as this event
* is being performed within another event.
*/
buffer = trace_file->tr->array_buffer.buffer;
ring_buffer_nest_start(buffer);
entry = trace_event_buffer_reserve(&fbuffer, trace_file,
sizeof(*entry) + fields_size);
if (!entry)
goto out;
for (i = 0, n_u64 = 0; i < event->n_fields; i++) {
val_idx = var_ref_idx[i];
if (event->fields[i]->is_string) {
char *str_val = (char *)(long)var_ref_vals[val_idx];
char *str_field = (char *)&entry->fields[n_u64];
strscpy(str_field, str_val, STR_VAR_LEN_MAX);
n_u64 += STR_VAR_LEN_MAX / sizeof(u64);
} else {
struct synth_field *field = event->fields[i];
u64 val = var_ref_vals[val_idx];
switch (field->size) {
case 1:
*(u8 *)&entry->fields[n_u64] = (u8)val;
break;
case 2:
*(u16 *)&entry->fields[n_u64] = (u16)val;
break;
case 4:
*(u32 *)&entry->fields[n_u64] = (u32)val;
break;
default:
entry->fields[n_u64] = val;
break;
}
n_u64++;
}
}
trace_event_buffer_commit(&fbuffer);
out:
ring_buffer_nest_end(buffer);
}
static void free_synth_event_print_fmt(struct trace_event_call *call)
{
if (call) {
kfree(call->print_fmt);
call->print_fmt = NULL;
}
}
static int __set_synth_event_print_fmt(struct synth_event *event,
char *buf, int len)
{
const char *fmt;
int pos = 0;
int i;
/* When len=0, we just calculate the needed length */
#define LEN_OR_ZERO (len ? len - pos : 0)
pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
for (i = 0; i < event->n_fields; i++) {
fmt = synth_field_fmt(event->fields[i]->type);
pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s%s",
event->fields[i]->name, fmt,
i == event->n_fields - 1 ? "" : ", ");
}
pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
for (i = 0; i < event->n_fields; i++) {
pos += snprintf(buf + pos, LEN_OR_ZERO,
", REC->%s", event->fields[i]->name);
}
#undef LEN_OR_ZERO
/* return the length of print_fmt */
return pos;
}
static int set_synth_event_print_fmt(struct trace_event_call *call)
{
struct synth_event *event = call->data;
char *print_fmt;
int len;
/* First: called with 0 length to calculate the needed length */
len = __set_synth_event_print_fmt(event, NULL, 0);
print_fmt = kmalloc(len + 1, GFP_KERNEL);
if (!print_fmt)
return -ENOMEM;
/* Second: actually write the @print_fmt */
__set_synth_event_print_fmt(event, print_fmt, len + 1);
call->print_fmt = print_fmt;
return 0;
}
static void free_synth_field(struct synth_field *field)
{
kfree(field->type);
kfree(field->name);
kfree(field);
}
static struct synth_field *parse_synth_field(int argc, const char **argv,
int *consumed)
{
struct synth_field *field;
const char *prefix = NULL, *field_type = argv[0], *field_name, *array;
int len, ret = 0;
if (field_type[0] == ';')
field_type++;
if (!strcmp(field_type, "unsigned")) {
if (argc < 3)
return ERR_PTR(-EINVAL);
prefix = "unsigned ";
field_type = argv[1];
field_name = argv[2];
*consumed = 3;
} else {
field_name = argv[1];
*consumed = 2;
}
field = kzalloc(sizeof(*field), GFP_KERNEL);
if (!field)
return ERR_PTR(-ENOMEM);
len = strlen(field_name);
array = strchr(field_name, '[');
if (array)
len -= strlen(array);
else if (field_name[len - 1] == ';')
len--;
field->name = kmemdup_nul(field_name, len, GFP_KERNEL);
if (!field->name) {
ret = -ENOMEM;
goto free;
}
if (field_type[0] == ';')
field_type++;
len = strlen(field_type) + 1;
if (array)
len += strlen(array);
if (prefix)
len += strlen(prefix);
field->type = kzalloc(len, GFP_KERNEL);
if (!field->type) {
ret = -ENOMEM;
goto free;
}
if (prefix)
strcat(field->type, prefix);
strcat(field->type, field_type);
if (array) {
strcat(field->type, array);
if (field->type[len - 1] == ';')
field->type[len - 1] = '\0';
}
field->size = synth_field_size(field->type);
if (!field->size) {
ret = -EINVAL;
goto free;
}
if (synth_field_is_string(field->type))
field->is_string = true;
field->is_signed = synth_field_signed(field->type);
out:
return field;
free:
free_synth_field(field);
field = ERR_PTR(ret);
goto out;
}
static void free_synth_tracepoint(struct tracepoint *tp)
{
if (!tp)
return;
kfree(tp->name);
kfree(tp);
}
static struct tracepoint *alloc_synth_tracepoint(char *name)
{
struct tracepoint *tp;
tp = kzalloc(sizeof(*tp), GFP_KERNEL);
if (!tp)
return ERR_PTR(-ENOMEM);
tp->name = kstrdup(name, GFP_KERNEL);
if (!tp->name) {
kfree(tp);
return ERR_PTR(-ENOMEM);
}
return tp;
}
typedef void (*synth_probe_func_t) (void *__data, u64 *var_ref_vals,
unsigned int *var_ref_idx);
static inline void trace_synth(struct synth_event *event, u64 *var_ref_vals,
unsigned int *var_ref_idx)
{
struct tracepoint *tp = event->tp;
if (unlikely(atomic_read(&tp->key.enabled) > 0)) {
struct tracepoint_func *probe_func_ptr;
synth_probe_func_t probe_func;
void *__data;
if (!(cpu_online(raw_smp_processor_id())))
return;
probe_func_ptr = rcu_dereference_sched((tp)->funcs);
if (probe_func_ptr) {
do {
probe_func = probe_func_ptr->func;
__data = probe_func_ptr->data;
probe_func(__data, var_ref_vals, var_ref_idx);
} while ((++probe_func_ptr)->func);
}
}
}
static struct synth_event *find_synth_event(const char *name)
{
struct dyn_event *pos;
struct synth_event *event;
for_each_dyn_event(pos) {
if (!is_synth_event(pos))
continue;
event = to_synth_event(pos);
if (strcmp(event->name, name) == 0)
return event;
}
return NULL;
}
static struct trace_event_fields synth_event_fields_array[] = {
{ .type = TRACE_FUNCTION_TYPE,
.define_fields = synth_event_define_fields },
{}
};
static int register_synth_event(struct synth_event *event)
{
struct trace_event_call *call = &event->call;
int ret = 0;
event->call.class = &event->class;
event->class.system = kstrdup(SYNTH_SYSTEM, GFP_KERNEL);
if (!event->class.system) {
ret = -ENOMEM;
goto out;
}
event->tp = alloc_synth_tracepoint(event->name);
if (IS_ERR(event->tp)) {
ret = PTR_ERR(event->tp);
event->tp = NULL;
goto out;
}
INIT_LIST_HEAD(&call->class->fields);
call->event.funcs = &synth_event_funcs;
call->class->fields_array = synth_event_fields_array;
ret = register_trace_event(&call->event);
if (!ret) {
ret = -ENODEV;
goto out;
}
call->flags = TRACE_EVENT_FL_TRACEPOINT;
call->class->reg = trace_event_reg;
call->class->probe = trace_event_raw_event_synth;
call->data = event;
call->tp = event->tp;
ret = trace_add_event_call(call);
if (ret) {
pr_warn("Failed to register synthetic event: %s\n",
trace_event_name(call));
goto err;
}
ret = set_synth_event_print_fmt(call);
if (ret < 0) {
trace_remove_event_call(call);
goto err;
}
out:
return ret;
err:
unregister_trace_event(&call->event);
goto out;
}
static int unregister_synth_event(struct synth_event *event)
{
struct trace_event_call *call = &event->call;
int ret;
ret = trace_remove_event_call(call);
return ret;
}
static void free_synth_event(struct synth_event *event)
{
unsigned int i;
if (!event)
return;
for (i = 0; i < event->n_fields; i++)
free_synth_field(event->fields[i]);
kfree(event->fields);
kfree(event->name);
kfree(event->class.system);
free_synth_tracepoint(event->tp);
free_synth_event_print_fmt(&event->call);
kfree(event);
}
static struct synth_event *alloc_synth_event(const char *name, int n_fields,
struct synth_field **fields)
{
struct synth_event *event;
unsigned int i;
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (!event) {
event = ERR_PTR(-ENOMEM);
goto out;
}
event->name = kstrdup(name, GFP_KERNEL);
if (!event->name) {
kfree(event);
event = ERR_PTR(-ENOMEM);
goto out;
}
event->fields = kcalloc(n_fields, sizeof(*event->fields), GFP_KERNEL);
if (!event->fields) {
free_synth_event(event);
event = ERR_PTR(-ENOMEM);
goto out;
}
dyn_event_init(&event->devent, &synth_event_ops);
for (i = 0; i < n_fields; i++)
event->fields[i] = fields[i];
event->n_fields = n_fields;
out:
return event;
}
static void action_trace(struct hist_trigger_data *hist_data,
struct tracing_map_elt *elt, void *rec,
struct ring_buffer_event *rbe, void *key,
struct action_data *data, u64 *var_ref_vals)
{
struct synth_event *event = data->synth_event;
trace_synth(event, var_ref_vals, data->var_ref_idx);
}
struct hist_var_data {
struct list_head list;
struct hist_trigger_data *hist_data;
};
static int synth_event_check_arg_fn(void *data)
{
struct dynevent_arg_pair *arg_pair = data;
int size;
size = synth_field_size((char *)arg_pair->lhs);
return size ? 0 : -EINVAL;
}
/**
* synth_event_add_field - Add a new field to a synthetic event cmd
* @cmd: A pointer to the dynevent_cmd struct representing the new event
* @type: The type of the new field to add
* @name: The name of the new field to add
*
* Add a new field to a synthetic event cmd object. Field ordering is in
* the same order the fields are added.
*
* See synth_field_size() for available types. If field_name contains
* [n] the field is considered to be an array.
*
* Return: 0 if successful, error otherwise.
*/
int synth_event_add_field(struct dynevent_cmd *cmd, const char *type,
const char *name)
{
struct dynevent_arg_pair arg_pair;
int ret;
if (cmd->type != DYNEVENT_TYPE_SYNTH)
return -EINVAL;
if (!type || !name)
return -EINVAL;
dynevent_arg_pair_init(&arg_pair, 0, ';');
arg_pair.lhs = type;
arg_pair.rhs = name;
ret = dynevent_arg_pair_add(cmd, &arg_pair, synth_event_check_arg_fn);
if (ret)
return ret;
if (++cmd->n_fields > SYNTH_FIELDS_MAX)
ret = -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_add_field);
/**
* synth_event_add_field_str - Add a new field to a synthetic event cmd
* @cmd: A pointer to the dynevent_cmd struct representing the new event
* @type_name: The type and name of the new field to add, as a single string
*
* Add a new field to a synthetic event cmd object, as a single
* string. The @type_name string is expected to be of the form 'type
* name', which will be appended by ';'. No sanity checking is done -
* what's passed in is assumed to already be well-formed. Field
* ordering is in the same order the fields are added.
*
* See synth_field_size() for available types. If field_name contains
* [n] the field is considered to be an array.
*
* Return: 0 if successful, error otherwise.
*/
int synth_event_add_field_str(struct dynevent_cmd *cmd, const char *type_name)
{
struct dynevent_arg arg;
int ret;
if (cmd->type != DYNEVENT_TYPE_SYNTH)
return -EINVAL;
if (!type_name)
return -EINVAL;
dynevent_arg_init(&arg, ';');
arg.str = type_name;
ret = dynevent_arg_add(cmd, &arg, NULL);
if (ret)
return ret;
if (++cmd->n_fields > SYNTH_FIELDS_MAX)
ret = -EINVAL;
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_add_field_str);
/**
* synth_event_add_fields - Add multiple fields to a synthetic event cmd
* @cmd: A pointer to the dynevent_cmd struct representing the new event
* @fields: An array of type/name field descriptions
* @n_fields: The number of field descriptions contained in the fields array
*
* Add a new set of fields to a synthetic event cmd object. The event
* fields that will be defined for the event should be passed in as an
* array of struct synth_field_desc, and the number of elements in the
* array passed in as n_fields. Field ordering will retain the
* ordering given in the fields array.
*
* See synth_field_size() for available types. If field_name contains
* [n] the field is considered to be an array.
*
* Return: 0 if successful, error otherwise.
*/
int synth_event_add_fields(struct dynevent_cmd *cmd,
struct synth_field_desc *fields,
unsigned int n_fields)
{
unsigned int i;
int ret = 0;
for (i = 0; i < n_fields; i++) {
if (fields[i].type == NULL || fields[i].name == NULL) {
ret = -EINVAL;
break;
}
ret = synth_event_add_field(cmd, fields[i].type, fields[i].name);
if (ret)
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_add_fields);
/**
* __synth_event_gen_cmd_start - Start a synthetic event command from arg list
* @cmd: A pointer to the dynevent_cmd struct representing the new event
* @name: The name of the synthetic event
* @mod: The module creating the event, NULL if not created from a module
* @args: Variable number of arg (pairs), one pair for each field
*
* NOTE: Users normally won't want to call this function directly, but
* rather use the synth_event_gen_cmd_start() wrapper, which
* automatically adds a NULL to the end of the arg list. If this
* function is used directly, make sure the last arg in the variable
* arg list is NULL.
*
* Generate a synthetic event command to be executed by
* synth_event_gen_cmd_end(). This function can be used to generate
* the complete command or only the first part of it; in the latter
* case, synth_event_add_field(), synth_event_add_field_str(), or
* synth_event_add_fields() can be used to add more fields following
* this.
*
* There should be an even number variable args, each pair consisting
* of a type followed by a field name.
*
* See synth_field_size() for available types. If field_name contains
* [n] the field is considered to be an array.
*
* Return: 0 if successful, error otherwise.
*/
int __synth_event_gen_cmd_start(struct dynevent_cmd *cmd, const char *name,
struct module *mod, ...)
{
struct dynevent_arg arg;
va_list args;
int ret;
cmd->event_name = name;
cmd->private_data = mod;
if (cmd->type != DYNEVENT_TYPE_SYNTH)
return -EINVAL;
dynevent_arg_init(&arg, 0);
arg.str = name;
ret = dynevent_arg_add(cmd, &arg, NULL);
if (ret)
return ret;
va_start(args, mod);
for (;;) {
const char *type, *name;
type = va_arg(args, const char *);
if (!type)
break;
name = va_arg(args, const char *);
if (!name)
break;
if (++cmd->n_fields > SYNTH_FIELDS_MAX) {
ret = -EINVAL;
break;
}
ret = synth_event_add_field(cmd, type, name);
if (ret)
break;
}
va_end(args);
return ret;
}
EXPORT_SYMBOL_GPL(__synth_event_gen_cmd_start);
/**
* synth_event_gen_cmd_array_start - Start synthetic event command from an array
* @cmd: A pointer to the dynevent_cmd struct representing the new event
* @name: The name of the synthetic event
* @fields: An array of type/name field descriptions
* @n_fields: The number of field descriptions contained in the fields array
*
* Generate a synthetic event command to be executed by
* synth_event_gen_cmd_end(). This function can be used to generate
* the complete command or only the first part of it; in the latter
* case, synth_event_add_field(), synth_event_add_field_str(), or
* synth_event_add_fields() can be used to add more fields following
* this.
*
* The event fields that will be defined for the event should be
* passed in as an array of struct synth_field_desc, and the number of
* elements in the array passed in as n_fields. Field ordering will
* retain the ordering given in the fields array.
*
* See synth_field_size() for available types. If field_name contains
* [n] the field is considered to be an array.
*
* Return: 0 if successful, error otherwise.
*/
int synth_event_gen_cmd_array_start(struct dynevent_cmd *cmd, const char *name,
struct module *mod,
struct synth_field_desc *fields,
unsigned int n_fields)
{
struct dynevent_arg arg;
unsigned int i;
int ret = 0;
cmd->event_name = name;
cmd->private_data = mod;
if (cmd->type != DYNEVENT_TYPE_SYNTH)
return -EINVAL;
if (n_fields > SYNTH_FIELDS_MAX)
return -EINVAL;
dynevent_arg_init(&arg, 0);
arg.str = name;
ret = dynevent_arg_add(cmd, &arg, NULL);
if (ret)
return ret;
for (i = 0; i < n_fields; i++) {
if (fields[i].type == NULL || fields[i].name == NULL)
return -EINVAL;
ret = synth_event_add_field(cmd, fields[i].type, fields[i].name);
if (ret)
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_gen_cmd_array_start);
static int __create_synth_event(int argc, const char *name, const char **argv)
{
struct synth_field *field, *fields[SYNTH_FIELDS_MAX];
struct synth_event *event = NULL;
int i, consumed = 0, n_fields = 0, ret = 0;
/*
* Argument syntax:
* - Add synthetic event: <event_name> field[;field] ...
* - Remove synthetic event: !<event_name> field[;field] ...
* where 'field' = type field_name
*/
if (name[0] == '\0' || argc < 1)
return -EINVAL;
mutex_lock(&event_mutex);
event = find_synth_event(name);
if (event) {
ret = -EEXIST;
goto out;
}
for (i = 0; i < argc - 1; i++) {
if (strcmp(argv[i], ";") == 0)
continue;
if (n_fields == SYNTH_FIELDS_MAX) {
ret = -EINVAL;
goto err;
}
field = parse_synth_field(argc - i, &argv[i], &consumed);
if (IS_ERR(field)) {
ret = PTR_ERR(field);
goto err;
}
fields[n_fields++] = field;
i += consumed - 1;
}
if (i < argc && strcmp(argv[i], ";") != 0) {
ret = -EINVAL;
goto err;
}
event = alloc_synth_event(name, n_fields, fields);
if (IS_ERR(event)) {
ret = PTR_ERR(event);
event = NULL;
goto err;
}
ret = register_synth_event(event);
if (!ret)
dyn_event_add(&event->devent);
else
free_synth_event(event);
out:
mutex_unlock(&event_mutex);
return ret;
err:
for (i = 0; i < n_fields; i++)
free_synth_field(fields[i]);
goto out;
}
/**
* synth_event_create - Create a new synthetic event
* @name: The name of the new sythetic event
* @fields: An array of type/name field descriptions
* @n_fields: The number of field descriptions contained in the fields array
* @mod: The module creating the event, NULL if not created from a module
*
* Create a new synthetic event with the given name under the
* trace/events/synthetic/ directory. The event fields that will be
* defined for the event should be passed in as an array of struct
* synth_field_desc, and the number elements in the array passed in as
* n_fields. Field ordering will retain the ordering given in the
* fields array.
*
* If the new synthetic event is being created from a module, the mod
* param must be non-NULL. This will ensure that the trace buffer
* won't contain unreadable events.
*
* The new synth event should be deleted using synth_event_delete()
* function. The new synthetic event can be generated from modules or
* other kernel code using trace_synth_event() and related functions.
*
* Return: 0 if successful, error otherwise.
*/
int synth_event_create(const char *name, struct synth_field_desc *fields,
unsigned int n_fields, struct module *mod)
{
struct dynevent_cmd cmd;
char *buf;
int ret;
buf = kzalloc(MAX_DYNEVENT_CMD_LEN, GFP_KERNEL);
if (!buf)
return -ENOMEM;
synth_event_cmd_init(&cmd, buf, MAX_DYNEVENT_CMD_LEN);
ret = synth_event_gen_cmd_array_start(&cmd, name, mod,
fields, n_fields);
if (ret)
goto out;
ret = synth_event_gen_cmd_end(&cmd);
out:
kfree(buf);
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_create);
static int destroy_synth_event(struct synth_event *se)
{
int ret;
if (se->ref)
ret = -EBUSY;
else {
ret = unregister_synth_event(se);
if (!ret) {
dyn_event_remove(&se->devent);
free_synth_event(se);
}
}
return ret;
}
/**
* synth_event_delete - Delete a synthetic event
* @event_name: The name of the new sythetic event
*
* Delete a synthetic event that was created with synth_event_create().
*
* Return: 0 if successful, error otherwise.
*/
int synth_event_delete(const char *event_name)
{
struct synth_event *se = NULL;
struct module *mod = NULL;
int ret = -ENOENT;
mutex_lock(&event_mutex);
se = find_synth_event(event_name);
if (se) {
mod = se->mod;
ret = destroy_synth_event(se);
}
mutex_unlock(&event_mutex);
if (mod) {
mutex_lock(&trace_types_lock);
/*
* It is safest to reset the ring buffer if the module
* being unloaded registered any events that were
* used. The only worry is if a new module gets
* loaded, and takes on the same id as the events of
* this module. When printing out the buffer, traced
* events left over from this module may be passed to
* the new module events and unexpected results may
* occur.
*/
tracing_reset_all_online_cpus();
mutex_unlock(&trace_types_lock);
}
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_delete);
static int create_or_delete_synth_event(int argc, char **argv)
{
const char *name = argv[0];
int ret;
/* trace_run_command() ensures argc != 0 */
if (name[0] == '!') {
ret = synth_event_delete(name + 1);
return ret;
}
ret = __create_synth_event(argc - 1, name, (const char **)argv + 1);
return ret == -ECANCELED ? -EINVAL : ret;
}
static int synth_event_run_command(struct dynevent_cmd *cmd)
{
struct synth_event *se;
int ret;
ret = trace_run_command(cmd->seq.buffer, create_or_delete_synth_event);
if (ret)
return ret;
se = find_synth_event(cmd->event_name);
if (WARN_ON(!se))
return -ENOENT;
se->mod = cmd->private_data;
return ret;
}
/**
* synth_event_cmd_init - Initialize a synthetic event command object
* @cmd: A pointer to the dynevent_cmd struct representing the new event
* @buf: A pointer to the buffer used to build the command
* @maxlen: The length of the buffer passed in @buf
*
* Initialize a synthetic event command object. Use this before
* calling any of the other dyenvent_cmd functions.
*/
void synth_event_cmd_init(struct dynevent_cmd *cmd, char *buf, int maxlen)
{
dynevent_cmd_init(cmd, buf, maxlen, DYNEVENT_TYPE_SYNTH,
synth_event_run_command);
}
EXPORT_SYMBOL_GPL(synth_event_cmd_init);
static inline int
__synth_event_trace_start(struct trace_event_file *file,
struct synth_event_trace_state *trace_state)
{
int entry_size, fields_size = 0;
int ret = 0;
/*
* Normal event tracing doesn't get called at all unless the
* ENABLED bit is set (which attaches the probe thus allowing
* this code to be called, etc). Because this is called
* directly by the user, we don't have that but we still need
* to honor not logging when disabled. For the the iterated
* trace case, we save the enabed state upon start and just
* ignore the following data calls.
*/
if (!(file->flags & EVENT_FILE_FL_ENABLED) ||
trace_trigger_soft_disabled(file)) {
trace_state->disabled = true;
ret = -ENOENT;
goto out;
}
trace_state->event = file->event_call->data;
fields_size = trace_state->event->n_u64 * sizeof(u64);
/*
* Avoid ring buffer recursion detection, as this event
* is being performed within another event.
*/
trace_state->buffer = file->tr->array_buffer.buffer;
ring_buffer_nest_start(trace_state->buffer);
entry_size = sizeof(*trace_state->entry) + fields_size;
trace_state->entry = trace_event_buffer_reserve(&trace_state->fbuffer,
file,
entry_size);
if (!trace_state->entry) {
ring_buffer_nest_end(trace_state->buffer);
ret = -EINVAL;
}
out:
return ret;
}
static inline void
__synth_event_trace_end(struct synth_event_trace_state *trace_state)
{
trace_event_buffer_commit(&trace_state->fbuffer);
ring_buffer_nest_end(trace_state->buffer);
}
/**
* synth_event_trace - Trace a synthetic event
* @file: The trace_event_file representing the synthetic event
* @n_vals: The number of values in vals
* @args: Variable number of args containing the event values
*
* Trace a synthetic event using the values passed in the variable
* argument list.
*
* The argument list should be a list 'n_vals' u64 values. The number
* of vals must match the number of field in the synthetic event, and
* must be in the same order as the synthetic event fields.
*
* All vals should be cast to u64, and string vals are just pointers
* to strings, cast to u64. Strings will be copied into space
* reserved in the event for the string, using these pointers.
*
* Return: 0 on success, err otherwise.
*/
int synth_event_trace(struct trace_event_file *file, unsigned int n_vals, ...)
{
struct synth_event_trace_state state;
unsigned int i, n_u64;
va_list args;
int ret;
ret = __synth_event_trace_start(file, &state);
if (ret) {
if (ret == -ENOENT)
ret = 0; /* just disabled, not really an error */
return ret;
}
va_start(args, n_vals);
for (i = 0, n_u64 = 0; i < state.event->n_fields; i++) {
u64 val;
val = va_arg(args, u64);
if (state.event->fields[i]->is_string) {
char *str_val = (char *)(long)val;
char *str_field = (char *)&state.entry->fields[n_u64];
strscpy(str_field, str_val, STR_VAR_LEN_MAX);
n_u64 += STR_VAR_LEN_MAX / sizeof(u64);
} else {
state.entry->fields[n_u64] = val;
n_u64++;
}
}
va_end(args);
__synth_event_trace_end(&state);
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_trace);
/**
* synth_event_trace_array - Trace a synthetic event from an array
* @file: The trace_event_file representing the synthetic event
* @vals: Array of values
* @n_vals: The number of values in vals
*
* Trace a synthetic event using the values passed in as 'vals'.
*
* The 'vals' array is just an array of 'n_vals' u64. The number of
* vals must match the number of field in the synthetic event, and
* must be in the same order as the synthetic event fields.
*
* All vals should be cast to u64, and string vals are just pointers
* to strings, cast to u64. Strings will be copied into space
* reserved in the event for the string, using these pointers.
*
* Return: 0 on success, err otherwise.
*/
int synth_event_trace_array(struct trace_event_file *file, u64 *vals,
unsigned int n_vals)
{
struct synth_event_trace_state state;
unsigned int i, n_u64;
int ret;
ret = __synth_event_trace_start(file, &state);
if (ret) {
if (ret == -ENOENT)
ret = 0; /* just disabled, not really an error */
return ret;
}
for (i = 0, n_u64 = 0; i < state.event->n_fields; i++) {
if (state.event->fields[i]->is_string) {
char *str_val = (char *)(long)vals[i];
char *str_field = (char *)&state.entry->fields[n_u64];
strscpy(str_field, str_val, STR_VAR_LEN_MAX);
n_u64 += STR_VAR_LEN_MAX / sizeof(u64);
} else {
state.entry->fields[n_u64] = vals[i];
n_u64++;
}
}
__synth_event_trace_end(&state);
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_trace_array);
/**
* synth_event_trace_start - Start piecewise synthetic event trace
* @file: The trace_event_file representing the synthetic event
* @trace_state: A pointer to object tracking the piecewise trace state
*
* Start the trace of a synthetic event field-by-field rather than all
* at once.
*
* This function 'opens' an event trace, which means space is reserved
* for the event in the trace buffer, after which the event's
* individual field values can be set through either
* synth_event_add_next_val() or synth_event_add_val().
*
* A pointer to a trace_state object is passed in, which will keep
* track of the current event trace state until the event trace is
* closed (and the event finally traced) using
* synth_event_trace_end().
*
* Note that synth_event_trace_end() must be called after all values
* have been added for each event trace, regardless of whether adding
* all field values succeeded or not.
*
* Note also that for a given event trace, all fields must be added
* using either synth_event_add_next_val() or synth_event_add_val()
* but not both together or interleaved.
*
* Return: 0 on success, err otherwise.
*/
int synth_event_trace_start(struct trace_event_file *file,
struct synth_event_trace_state *trace_state)
{
int ret;
if (!trace_state)
return -EINVAL;
memset(trace_state, '\0', sizeof(*trace_state));
ret = __synth_event_trace_start(file, trace_state);
if (ret == -ENOENT)
ret = 0; /* just disabled, not really an error */
return ret;
}
EXPORT_SYMBOL_GPL(synth_event_trace_start);
static int __synth_event_add_val(const char *field_name, u64 val,
struct synth_event_trace_state *trace_state)
{
struct synth_field *field = NULL;
struct synth_trace_event *entry;
struct synth_event *event;
int i, ret = 0;
if (!trace_state) {
ret = -EINVAL;
goto out;
}
/* can't mix add_next_synth_val() with add_synth_val() */
if (field_name) {
if (trace_state->add_next) {
ret = -EINVAL;
goto out;
}
trace_state->add_name = true;
} else {
if (trace_state->add_name) {
ret = -EINVAL;
goto out;
}
trace_state->add_next = true;
}
if (trace_state->disabled)
goto out;
event = trace_state->event;
if (trace_state->add_name) {
for (i = 0; i < event->n_fields; i++) {
field = event->fields[i];
if (strcmp(field->name, field_name) == 0)
break;
}
if (!field) {
ret = -EINVAL;
goto out;
}
} else {
if (trace_state->cur_field >= event->n_fields) {
ret = -EINVAL;
goto out;
}
field = event->fields[trace_state->cur_field++];
}
entry = trace_state->entry;
if (field->is_string) {
char *str_val = (char *)(long)val;
char *str_field;
if (!str_val) {
ret = -EINVAL;
goto out;
}
str_field = (char *)&entry->fields[field->offset];
strscpy(str_field, str_val, STR_VAR_LEN_MAX);
} else
entry->fields[field->offset] = val;
out:
return ret;
}
/**
* synth_event_add_next_val - Add the next field's value to an open synth trace
* @val: The value to set the next field to
* @trace_state: A pointer to object tracking the piecewise trace state
*
* Set the value of the next field in an event that's been opened by
* synth_event_trace_start().
*
* The val param should be the value cast to u64. If the value points
* to a string, the val param should be a char * cast to u64.
*
* This function assumes all the fields in an event are to be set one
* after another - successive calls to this function are made, one for
* each field, in the order of the fields in the event, until all
* fields have been set. If you'd rather set each field individually
* without regard to ordering, synth_event_add_val() can be used
* instead.
*
* Note however that synth_event_add_next_val() and
* synth_event_add_val() can't be intermixed for a given event trace -
* one or the other but not both can be used at the same time.
*
* Note also that synth_event_trace_end() must be called after all
* values have been added for each event trace, regardless of whether
* adding all field values succeeded or not.
*
* Return: 0 on success, err otherwise.
*/
int synth_event_add_next_val(u64 val,
struct synth_event_trace_state *trace_state)
{
return __synth_event_add_val(NULL, val, trace_state);
}
EXPORT_SYMBOL_GPL(synth_event_add_next_val);
/**
* synth_event_add_val - Add a named field's value to an open synth trace
* @field_name: The name of the synthetic event field value to set
* @val: The value to set the next field to
* @trace_state: A pointer to object tracking the piecewise trace state
*
* Set the value of the named field in an event that's been opened by
* synth_event_trace_start().
*
* The val param should be the value cast to u64. If the value points
* to a string, the val param should be a char * cast to u64.
*
* This function looks up the field name, and if found, sets the field
* to the specified value. This lookup makes this function more
* expensive than synth_event_add_next_val(), so use that or the
* none-piecewise synth_event_trace() instead if efficiency is more
* important.
*
* Note however that synth_event_add_next_val() and
* synth_event_add_val() can't be intermixed for a given event trace -
* one or the other but not both can be used at the same time.
*
* Note also that synth_event_trace_end() must be called after all
* values have been added for each event trace, regardless of whether
* adding all field values succeeded or not.
*
* Return: 0 on success, err otherwise.
*/
int synth_event_add_val(const char *field_name, u64 val,
struct synth_event_trace_state *trace_state)
{
return __synth_event_add_val(field_name, val, trace_state);
}
EXPORT_SYMBOL_GPL(synth_event_add_val);
/**
* synth_event_trace_end - End piecewise synthetic event trace
* @trace_state: A pointer to object tracking the piecewise trace state
*
* End the trace of a synthetic event opened by
* synth_event_trace__start().
*
* This function 'closes' an event trace, which basically means that
* it commits the reserved event and cleans up other loose ends.
*
* A pointer to a trace_state object is passed in, which will keep
* track of the current event trace state opened with
* synth_event_trace_start().
*
* Note that this function must be called after all values have been
* added for each event trace, regardless of whether adding all field
* values succeeded or not.
*
* Return: 0 on success, err otherwise.
*/
int synth_event_trace_end(struct synth_event_trace_state *trace_state)
{
if (!trace_state)
return -EINVAL;
__synth_event_trace_end(trace_state);
return 0;
}
EXPORT_SYMBOL_GPL(synth_event_trace_end);
static int create_synth_event(int argc, const char **argv)
{
const char *name = argv[0];
int len;
if (name[0] != 's' || name[1] != ':')
return -ECANCELED;
name += 2;
/* This interface accepts group name prefix */
if (strchr(name, '/')) {
len = str_has_prefix(name, SYNTH_SYSTEM "/");
if (len == 0)
return -EINVAL;
name += len;
}
return __create_synth_event(argc - 1, name, argv + 1);
}
static int synth_event_release(struct dyn_event *ev)
{
struct synth_event *event = to_synth_event(ev);
int ret;
if (event->ref)
return -EBUSY;
ret = unregister_synth_event(event);
if (ret)
return ret;
dyn_event_remove(ev);
free_synth_event(event);
return 0;
}
static int __synth_event_show(struct seq_file *m, struct synth_event *event)
{
struct synth_field *field;
unsigned int i;
seq_printf(m, "%s\t", event->name);
for (i = 0; i < event->n_fields; i++) {
field = event->fields[i];
/* parameter values */
seq_printf(m, "%s %s%s", field->type, field->name,
i == event->n_fields - 1 ? "" : "; ");
}
seq_putc(m, '\n');
return 0;
}
static int synth_event_show(struct seq_file *m, struct dyn_event *ev)
{
struct synth_event *event = to_synth_event(ev);
seq_printf(m, "s:%s/", event->class.system);
return __synth_event_show(m, event);
}
static int synth_events_seq_show(struct seq_file *m, void *v)
{
struct dyn_event *ev = v;
if (!is_synth_event(ev))
return 0;
return __synth_event_show(m, to_synth_event(ev));
}
static const struct seq_operations synth_events_seq_op = {
.start = dyn_event_seq_start,
.next = dyn_event_seq_next,
.stop = dyn_event_seq_stop,
.show = synth_events_seq_show,
};
static int synth_events_open(struct inode *inode, struct file *file)
{
int ret;
ret = security_locked_down(LOCKDOWN_TRACEFS);
if (ret)
return ret;
if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) {
ret = dyn_events_release_all(&synth_event_ops);
if (ret < 0)
return ret;
}
return seq_open(file, &synth_events_seq_op);
}
static ssize_t synth_events_write(struct file *file,
const char __user *buffer,
size_t count, loff_t *ppos)
{
return trace_parse_run_command(file, buffer, count, ppos,
create_or_delete_synth_event);
}
static const struct file_operations synth_events_fops = {
.open = synth_events_open,
.write = synth_events_write,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
static u64 hist_field_timestamp(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
struct hist_trigger_data *hist_data = hist_field->hist_data;
struct trace_array *tr = hist_data->event_file->tr;
u64 ts = ring_buffer_event_time_stamp(rbe);
if (hist_data->attrs->ts_in_usecs && trace_clock_in_ns(tr))
ts = ns2usecs(ts);
return ts;
}
static u64 hist_field_cpu(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
int cpu = smp_processor_id();
return cpu;
}
/**
* check_field_for_var_ref - Check if a VAR_REF field references a variable
* @hist_field: The VAR_REF field to check
* @var_data: The hist trigger that owns the variable
* @var_idx: The trigger variable identifier
*
* Check the given VAR_REF field to see whether or not it references
* the given variable associated with the given trigger.
*
* Return: The VAR_REF field if it does reference the variable, NULL if not
*/
static struct hist_field *
check_field_for_var_ref(struct hist_field *hist_field,
struct hist_trigger_data *var_data,
unsigned int var_idx)
{
WARN_ON(!(hist_field && hist_field->flags & HIST_FIELD_FL_VAR_REF));
if (hist_field && hist_field->var.idx == var_idx &&
hist_field->var.hist_data == var_data)
return hist_field;
return NULL;
}
/**
* find_var_ref - Check if a trigger has a reference to a trigger variable
* @hist_data: The hist trigger that might have a reference to the variable
* @var_data: The hist trigger that owns the variable
* @var_idx: The trigger variable identifier
*
* Check the list of var_refs[] on the first hist trigger to see
* whether any of them are references to the variable on the second
* trigger.
*
* Return: The VAR_REF field referencing the variable if so, NULL if not
*/
static struct hist_field *find_var_ref(struct hist_trigger_data *hist_data,
struct hist_trigger_data *var_data,
unsigned int var_idx)
{
struct hist_field *hist_field;
unsigned int i;
for (i = 0; i < hist_data->n_var_refs; i++) {
hist_field = hist_data->var_refs[i];
if (check_field_for_var_ref(hist_field, var_data, var_idx))
return hist_field;
}
return NULL;
}
/**
* find_any_var_ref - Check if there is a reference to a given trigger variable
* @hist_data: The hist trigger
* @var_idx: The trigger variable identifier
*
* Check to see whether the given variable is currently referenced by
* any other trigger.
*
* The trigger the variable is defined on is explicitly excluded - the
* assumption being that a self-reference doesn't prevent a trigger
* from being removed.
*
* Return: The VAR_REF field referencing the variable if so, NULL if not
*/
static struct hist_field *find_any_var_ref(struct hist_trigger_data *hist_data,
unsigned int var_idx)
{
struct trace_array *tr = hist_data->event_file->tr;
struct hist_field *found = NULL;
struct hist_var_data *var_data;
list_for_each_entry(var_data, &tr->hist_vars, list) {
if (var_data->hist_data == hist_data)
continue;
found = find_var_ref(var_data->hist_data, hist_data, var_idx);
if (found)
break;
}
return found;
}
/**
* check_var_refs - Check if there is a reference to any of trigger's variables
* @hist_data: The hist trigger
*
* A trigger can define one or more variables. If any one of them is
* currently referenced by any other trigger, this function will
* determine that.
* Typically used to determine whether or not a trigger can be removed
* - if there are any references to a trigger's variables, it cannot.
*
* Return: True if there is a reference to any of trigger's variables
*/
static bool check_var_refs(struct hist_trigger_data *hist_data)
{
struct hist_field *field;
bool found = false;
int i;
for_each_hist_field(i, hist_data) {
field = hist_data->fields[i];
if (field && field->flags & HIST_FIELD_FL_VAR) {
if (find_any_var_ref(hist_data, field->var.idx)) {
found = true;
break;
}
}
}
return found;
}
static struct hist_var_data *find_hist_vars(struct hist_trigger_data *hist_data)
{
struct trace_array *tr = hist_data->event_file->tr;
struct hist_var_data *var_data, *found = NULL;
list_for_each_entry(var_data, &tr->hist_vars, list) {
if (var_data->hist_data == hist_data) {
found = var_data;
break;
}
}
return found;
}
static bool field_has_hist_vars(struct hist_field *hist_field,
unsigned int level)
{
int i;
if (level > 3)
return false;
if (!hist_field)
return false;
if (hist_field->flags & HIST_FIELD_FL_VAR ||
hist_field->flags & HIST_FIELD_FL_VAR_REF)
return true;
for (i = 0; i < HIST_FIELD_OPERANDS_MAX; i++) {
struct hist_field *operand;
operand = hist_field->operands[i];
if (field_has_hist_vars(operand, level + 1))
return true;
}
return false;
}
static bool has_hist_vars(struct hist_trigger_data *hist_data)
{
struct hist_field *hist_field;
int i;
for_each_hist_field(i, hist_data) {
hist_field = hist_data->fields[i];
if (field_has_hist_vars(hist_field, 0))
return true;
}
return false;
}
static int save_hist_vars(struct hist_trigger_data *hist_data)
{
struct trace_array *tr = hist_data->event_file->tr;
struct hist_var_data *var_data;
var_data = find_hist_vars(hist_data);
if (var_data)
return 0;
if (tracing_check_open_get_tr(tr))
return -ENODEV;
var_data = kzalloc(sizeof(*var_data), GFP_KERNEL);
if (!var_data) {
trace_array_put(tr);
return -ENOMEM;
}
var_data->hist_data = hist_data;
list_add(&var_data->list, &tr->hist_vars);
return 0;
}
static void remove_hist_vars(struct hist_trigger_data *hist_data)
{
struct trace_array *tr = hist_data->event_file->tr;
struct hist_var_data *var_data;
var_data = find_hist_vars(hist_data);
if (!var_data)
return;
if (WARN_ON(check_var_refs(hist_data)))
return;
list_del(&var_data->list);
kfree(var_data);
trace_array_put(tr);
}
static struct hist_field *find_var_field(struct hist_trigger_data *hist_data,
const char *var_name)
{
struct hist_field *hist_field, *found = NULL;
int i;
for_each_hist_field(i, hist_data) {
hist_field = hist_data->fields[i];
if (hist_field && hist_field->flags & HIST_FIELD_FL_VAR &&
strcmp(hist_field->var.name, var_name) == 0) {
found = hist_field;
break;
}
}
return found;
}
static struct hist_field *find_var(struct hist_trigger_data *hist_data,
struct trace_event_file *file,
const char *var_name)
{
struct hist_trigger_data *test_data;
struct event_trigger_data *test;
struct hist_field *hist_field;
lockdep_assert_held(&event_mutex);
hist_field = find_var_field(hist_data, var_name);
if (hist_field)
return hist_field;
list_for_each_entry(test, &file->triggers, list) {
if (test->cmd_ops->trigger_type == ETT_EVENT_HIST) {
test_data = test->private_data;
hist_field = find_var_field(test_data, var_name);
if (hist_field)
return hist_field;
}
}
return NULL;
}
static struct trace_event_file *find_var_file(struct trace_array *tr,
char *system,
char *event_name,
char *var_name)
{
struct hist_trigger_data *var_hist_data;
struct hist_var_data *var_data;
struct trace_event_file *file, *found = NULL;
if (system)
return find_event_file(tr, system, event_name);
list_for_each_entry(var_data, &tr->hist_vars, list) {
var_hist_data = var_data->hist_data;
file = var_hist_data->event_file;
if (file == found)
continue;
if (find_var_field(var_hist_data, var_name)) {
if (found) {
hist_err(tr, HIST_ERR_VAR_NOT_UNIQUE, errpos(var_name));
return NULL;
}
found = file;
}
}
return found;
}
static struct hist_field *find_file_var(struct trace_event_file *file,
const char *var_name)
{
struct hist_trigger_data *test_data;
struct event_trigger_data *test;
struct hist_field *hist_field;
lockdep_assert_held(&event_mutex);
list_for_each_entry(test, &file->triggers, list) {
if (test->cmd_ops->trigger_type == ETT_EVENT_HIST) {
test_data = test->private_data;
hist_field = find_var_field(test_data, var_name);
if (hist_field)
return hist_field;
}
}
return NULL;
}
static struct hist_field *
find_match_var(struct hist_trigger_data *hist_data, char *var_name)
{
struct trace_array *tr = hist_data->event_file->tr;
struct hist_field *hist_field, *found = NULL;
struct trace_event_file *file;
unsigned int i;
for (i = 0; i < hist_data->n_actions; i++) {
struct action_data *data = hist_data->actions[i];
if (data->handler == HANDLER_ONMATCH) {
char *system = data->match_data.event_system;
char *event_name = data->match_data.event;
file = find_var_file(tr, system, event_name, var_name);
if (!file)
continue;
hist_field = find_file_var(file, var_name);
if (hist_field) {
if (found) {
hist_err(tr, HIST_ERR_VAR_NOT_UNIQUE,
errpos(var_name));
return ERR_PTR(-EINVAL);
}
found = hist_field;
}
}
}
return found;
}
static struct hist_field *find_event_var(struct hist_trigger_data *hist_data,
char *system,
char *event_name,
char *var_name)
{
struct trace_array *tr = hist_data->event_file->tr;
struct hist_field *hist_field = NULL;
struct trace_event_file *file;
if (!system || !event_name) {
hist_field = find_match_var(hist_data, var_name);
if (IS_ERR(hist_field))
return NULL;
if (hist_field)
return hist_field;
}
file = find_var_file(tr, system, event_name, var_name);
if (!file)
return NULL;
hist_field = find_file_var(file, var_name);
return hist_field;
}
static u64 hist_field_var_ref(struct hist_field *hist_field,
struct tracing_map_elt *elt,
struct ring_buffer_event *rbe,
void *event)
{
struct hist_elt_data *elt_data;
u64 var_val = 0;
if (WARN_ON_ONCE(!elt))
return var_val;
elt_data = elt->private_data;
var_val = elt_data->var_ref_vals[hist_field->var_ref_idx];
return var_val;
}
static bool resolve_var_refs(struct hist_trigger_data *hist_data, void *key,
u64 *var_ref_vals, bool self)
{
struct hist_trigger_data *var_data;
struct tracing_map_elt *var_elt;
struct hist_field *hist_field;
unsigned int i, var_idx;
bool resolved = true;
u64 var_val = 0;
for (i = 0; i < hist_data->n_var_refs; i++) {
hist_field = hist_data->var_refs[i];
var_idx = hist_field->var.idx;
var_data = hist_field->var.hist_data;
if (var_data == NULL) {
resolved = false;
break;
}
if ((self && var_data != hist_data) ||
(!self && var_data == hist_data))
continue;
var_elt = tracing_map_lookup(var_data->map, key);
if (!var_elt) {
resolved = false;
break;
}
if (!tracing_map_var_set(var_elt, var_idx)) {
resolved = false;
break;
}
if (self || !hist_field->read_once)
var_val = tracing_map_read_var(var_elt, var_idx);
else
var_val = tracing_map_read_var_once(var_elt, var_idx);
var_ref_vals[i] = var_val;
}
return resolved;
}
static const char *hist_field_name(struct hist_field *field,
unsigned int level)
{
const char *field_name = "";
if (level > 1)
return field_name;
if (field->field)
field_name = field->field->name;
else if (field->flags & HIST_FIELD_FL_LOG2 ||
field->flags & HIST_FIELD_FL_ALIAS)
field_name = hist_field_name(field->operands[0], ++level);
else if (field->flags & HIST_FIELD_FL_CPU)
field_name = "cpu";
else if (field->flags & HIST_FIELD_FL_EXPR ||
field->flags & HIST_FIELD_FL_VAR_REF) {
if (field->system) {
static char full_name[MAX_FILTER_STR_VAL];
strcat(full_name, field->system);
strcat(full_name, ".");
strcat(full_name, field->event_name);
strcat(full_name, ".");
strcat(full_name, field->name);
field_name = full_name;
} else
field_name = field->name;
} else if (field->flags & HIST_FIELD_FL_TIMESTAMP)
field_name = "common_timestamp";
if (field_name == NULL)
field_name = "";
return field_name;
}
static hist_field_fn_t select_value_fn(int field_size, int field_is_signed)
{
hist_field_fn_t fn = NULL;
switch (field_size) {
case 8:
if (field_is_signed)
fn = hist_field_s64;
else
fn = hist_field_u64;
break;
case 4:
if (field_is_signed)
fn = hist_field_s32;
else
fn = hist_field_u32;
break;
case 2:
if (field_is_signed)
fn = hist_field_s16;
else