| /************************************************************************ |
| * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC |
| * Copyright(c) 2002-2005 Neterion Inc. |
| |
| * This software may be used and distributed according to the terms of |
| * the GNU General Public License (GPL), incorporated herein by reference. |
| * Drivers based on or derived from this code fall under the GPL and must |
| * retain the authorship, copyright and license notice. This file is not |
| * a complete program and may only be used when the entire operating |
| * system is licensed under the GPL. |
| * See the file COPYING in this distribution for more information. |
| * |
| * Credits: |
| * Jeff Garzik : For pointing out the improper error condition |
| * check in the s2io_xmit routine and also some |
| * issues in the Tx watch dog function. Also for |
| * patiently answering all those innumerable |
| * questions regaring the 2.6 porting issues. |
| * Stephen Hemminger : Providing proper 2.6 porting mechanism for some |
| * macros available only in 2.6 Kernel. |
| * Francois Romieu : For pointing out all code part that were |
| * deprecated and also styling related comments. |
| * Grant Grundler : For helping me get rid of some Architecture |
| * dependent code. |
| * Christopher Hellwig : Some more 2.6 specific issues in the driver. |
| * |
| * The module loadable parameters that are supported by the driver and a brief |
| * explaination of all the variables. |
| * rx_ring_num : This can be used to program the number of receive rings used |
| * in the driver. |
| * rx_ring_len: This defines the number of descriptors each ring can have. This |
| * is also an array of size 8. |
| * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. |
| * tx_fifo_len: This too is an array of 8. Each element defines the number of |
| * Tx descriptors that can be associated with each corresponding FIFO. |
| * in PCI Configuration space. |
| ************************************************************************/ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/stddef.h> |
| #include <linux/ioctl.h> |
| #include <linux/timex.h> |
| #include <linux/sched.h> |
| #include <linux/ethtool.h> |
| #include <linux/version.h> |
| #include <linux/workqueue.h> |
| |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| |
| /* local include */ |
| #include "s2io.h" |
| #include "s2io-regs.h" |
| |
| /* S2io Driver name & version. */ |
| static char s2io_driver_name[] = "s2io"; |
| static char s2io_driver_version[] = "Version 1.7.7.1"; |
| |
| /* |
| * Cards with following subsystem_id have a link state indication |
| * problem, 600B, 600C, 600D, 640B, 640C and 640D. |
| * macro below identifies these cards given the subsystem_id. |
| */ |
| #define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \ |
| (((subid >= 0x600B) && (subid <= 0x600D)) || \ |
| ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0 |
| |
| #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ |
| ADAPTER_STATUS_RMAC_LOCAL_FAULT))) |
| #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) |
| #define PANIC 1 |
| #define LOW 2 |
| static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) |
| { |
| int level = 0; |
| if ((sp->pkt_cnt[ring] - rxb_size) > 16) { |
| level = LOW; |
| if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) { |
| level = PANIC; |
| } |
| } |
| |
| return level; |
| } |
| |
| /* Ethtool related variables and Macros. */ |
| static char s2io_gstrings[][ETH_GSTRING_LEN] = { |
| "Register test\t(offline)", |
| "Eeprom test\t(offline)", |
| "Link test\t(online)", |
| "RLDRAM test\t(offline)", |
| "BIST Test\t(offline)" |
| }; |
| |
| static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { |
| {"tmac_frms"}, |
| {"tmac_data_octets"}, |
| {"tmac_drop_frms"}, |
| {"tmac_mcst_frms"}, |
| {"tmac_bcst_frms"}, |
| {"tmac_pause_ctrl_frms"}, |
| {"tmac_any_err_frms"}, |
| {"tmac_vld_ip_octets"}, |
| {"tmac_vld_ip"}, |
| {"tmac_drop_ip"}, |
| {"tmac_icmp"}, |
| {"tmac_rst_tcp"}, |
| {"tmac_tcp"}, |
| {"tmac_udp"}, |
| {"rmac_vld_frms"}, |
| {"rmac_data_octets"}, |
| {"rmac_fcs_err_frms"}, |
| {"rmac_drop_frms"}, |
| {"rmac_vld_mcst_frms"}, |
| {"rmac_vld_bcst_frms"}, |
| {"rmac_in_rng_len_err_frms"}, |
| {"rmac_long_frms"}, |
| {"rmac_pause_ctrl_frms"}, |
| {"rmac_discarded_frms"}, |
| {"rmac_usized_frms"}, |
| {"rmac_osized_frms"}, |
| {"rmac_frag_frms"}, |
| {"rmac_jabber_frms"}, |
| {"rmac_ip"}, |
| {"rmac_ip_octets"}, |
| {"rmac_hdr_err_ip"}, |
| {"rmac_drop_ip"}, |
| {"rmac_icmp"}, |
| {"rmac_tcp"}, |
| {"rmac_udp"}, |
| {"rmac_err_drp_udp"}, |
| {"rmac_pause_cnt"}, |
| {"rmac_accepted_ip"}, |
| {"rmac_err_tcp"}, |
| }; |
| |
| #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN |
| #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN |
| |
| #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN |
| #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN |
| |
| |
| /* |
| * Constants to be programmed into the Xena's registers, to configure |
| * the XAUI. |
| */ |
| |
| #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL |
| #define END_SIGN 0x0 |
| |
| static u64 default_mdio_cfg[] = { |
| /* Reset PMA PLL */ |
| 0xC001010000000000ULL, 0xC0010100000000E0ULL, |
| 0xC0010100008000E4ULL, |
| /* Remove Reset from PMA PLL */ |
| 0xC001010000000000ULL, 0xC0010100000000E0ULL, |
| 0xC0010100000000E4ULL, |
| END_SIGN |
| }; |
| |
| static u64 default_dtx_cfg[] = { |
| 0x8000051500000000ULL, 0x80000515000000E0ULL, |
| 0x80000515D93500E4ULL, 0x8001051500000000ULL, |
| 0x80010515000000E0ULL, 0x80010515001E00E4ULL, |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 0x80020515F21000E4ULL, |
| /* Set PADLOOPBACKN */ |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 0x80020515B20000E4ULL, 0x8003051500000000ULL, |
| 0x80030515000000E0ULL, 0x80030515B20000E4ULL, |
| 0x8004051500000000ULL, 0x80040515000000E0ULL, |
| 0x80040515B20000E4ULL, 0x8005051500000000ULL, |
| 0x80050515000000E0ULL, 0x80050515B20000E4ULL, |
| SWITCH_SIGN, |
| /* Remove PADLOOPBACKN */ |
| 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 0x80020515F20000E4ULL, 0x8003051500000000ULL, |
| 0x80030515000000E0ULL, 0x80030515F20000E4ULL, |
| 0x8004051500000000ULL, 0x80040515000000E0ULL, |
| 0x80040515F20000E4ULL, 0x8005051500000000ULL, |
| 0x80050515000000E0ULL, 0x80050515F20000E4ULL, |
| END_SIGN |
| }; |
| |
| |
| /* |
| * Constants for Fixing the MacAddress problem seen mostly on |
| * Alpha machines. |
| */ |
| static u64 fix_mac[] = { |
| 0x0060000000000000ULL, 0x0060600000000000ULL, |
| 0x0040600000000000ULL, 0x0000600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 0x0020600000000000ULL, 0x0000600000000000ULL, |
| 0x0040600000000000ULL, 0x0060600000000000ULL, |
| END_SIGN |
| }; |
| |
| /* Module Loadable parameters. */ |
| static unsigned int tx_fifo_num = 1; |
| static unsigned int tx_fifo_len[MAX_TX_FIFOS] = |
| {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; |
| static unsigned int rx_ring_num = 1; |
| static unsigned int rx_ring_sz[MAX_RX_RINGS] = |
| {[0 ...(MAX_RX_RINGS - 1)] = 0 }; |
| static unsigned int Stats_refresh_time = 4; |
| static unsigned int rmac_pause_time = 65535; |
| static unsigned int mc_pause_threshold_q0q3 = 187; |
| static unsigned int mc_pause_threshold_q4q7 = 187; |
| static unsigned int shared_splits; |
| static unsigned int tmac_util_period = 5; |
| static unsigned int rmac_util_period = 5; |
| #ifndef CONFIG_S2IO_NAPI |
| static unsigned int indicate_max_pkts; |
| #endif |
| |
| /* |
| * S2IO device table. |
| * This table lists all the devices that this driver supports. |
| */ |
| static struct pci_device_id s2io_tbl[] __devinitdata = { |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, |
| PCI_ANY_ID, PCI_ANY_ID}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, s2io_tbl); |
| |
| static struct pci_driver s2io_driver = { |
| .name = "S2IO", |
| .id_table = s2io_tbl, |
| .probe = s2io_init_nic, |
| .remove = __devexit_p(s2io_rem_nic), |
| }; |
| |
| /* A simplifier macro used both by init and free shared_mem Fns(). */ |
| #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) |
| |
| /** |
| * init_shared_mem - Allocation and Initialization of Memory |
| * @nic: Device private variable. |
| * Description: The function allocates all the memory areas shared |
| * between the NIC and the driver. This includes Tx descriptors, |
| * Rx descriptors and the statistics block. |
| */ |
| |
| static int init_shared_mem(struct s2io_nic *nic) |
| { |
| u32 size; |
| void *tmp_v_addr, *tmp_v_addr_next; |
| dma_addr_t tmp_p_addr, tmp_p_addr_next; |
| RxD_block_t *pre_rxd_blk = NULL; |
| int i, j, blk_cnt; |
| int lst_size, lst_per_page; |
| struct net_device *dev = nic->dev; |
| #ifdef CONFIG_2BUFF_MODE |
| unsigned long tmp; |
| buffAdd_t *ba; |
| #endif |
| |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| |
| /* Allocation and initialization of TXDLs in FIOFs */ |
| size = 0; |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| size += config->tx_cfg[i].fifo_len; |
| } |
| if (size > MAX_AVAILABLE_TXDS) { |
| DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "exceeds the maximum value "); |
| DBG_PRINT(ERR_DBG, "that can be used\n"); |
| return FAILURE; |
| } |
| |
| lst_size = (sizeof(TxD_t) * config->max_txds); |
| lst_per_page = PAGE_SIZE / lst_size; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int fifo_len = config->tx_cfg[i].fifo_len; |
| int list_holder_size = fifo_len * sizeof(list_info_hold_t); |
| nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL); |
| if (!nic->list_info[i]) { |
| DBG_PRINT(ERR_DBG, |
| "Malloc failed for list_info\n"); |
| return -ENOMEM; |
| } |
| memset(nic->list_info[i], 0, list_holder_size); |
| } |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| lst_per_page); |
| mac_control->tx_curr_put_info[i].offset = 0; |
| mac_control->tx_curr_put_info[i].fifo_len = |
| config->tx_cfg[i].fifo_len - 1; |
| mac_control->tx_curr_get_info[i].offset = 0; |
| mac_control->tx_curr_get_info[i].fifo_len = |
| config->tx_cfg[i].fifo_len - 1; |
| for (j = 0; j < page_num; j++) { |
| int k = 0; |
| dma_addr_t tmp_p; |
| void *tmp_v; |
| tmp_v = pci_alloc_consistent(nic->pdev, |
| PAGE_SIZE, &tmp_p); |
| if (!tmp_v) { |
| DBG_PRINT(ERR_DBG, |
| "pci_alloc_consistent "); |
| DBG_PRINT(ERR_DBG, "failed for TxDL\n"); |
| return -ENOMEM; |
| } |
| while (k < lst_per_page) { |
| int l = (j * lst_per_page) + k; |
| if (l == config->tx_cfg[i].fifo_len) |
| goto end_txd_alloc; |
| nic->list_info[i][l].list_virt_addr = |
| tmp_v + (k * lst_size); |
| nic->list_info[i][l].list_phy_addr = |
| tmp_p + (k * lst_size); |
| k++; |
| } |
| } |
| } |
| end_txd_alloc: |
| |
| /* Allocation and initialization of RXDs in Rings */ |
| size = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { |
| DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); |
| DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", |
| i); |
| DBG_PRINT(ERR_DBG, "RxDs per Block"); |
| return FAILURE; |
| } |
| size += config->rx_cfg[i].num_rxd; |
| nic->block_count[i] = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| nic->pkt_cnt[i] = |
| config->rx_cfg[i].num_rxd - nic->block_count[i]; |
| } |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| mac_control->rx_curr_get_info[i].block_index = 0; |
| mac_control->rx_curr_get_info[i].offset = 0; |
| mac_control->rx_curr_get_info[i].ring_len = |
| config->rx_cfg[i].num_rxd - 1; |
| mac_control->rx_curr_put_info[i].block_index = 0; |
| mac_control->rx_curr_put_info[i].offset = 0; |
| mac_control->rx_curr_put_info[i].ring_len = |
| config->rx_cfg[i].num_rxd - 1; |
| blk_cnt = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| /* Allocating all the Rx blocks */ |
| for (j = 0; j < blk_cnt; j++) { |
| #ifndef CONFIG_2BUFF_MODE |
| size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); |
| #else |
| size = SIZE_OF_BLOCK; |
| #endif |
| tmp_v_addr = pci_alloc_consistent(nic->pdev, size, |
| &tmp_p_addr); |
| if (tmp_v_addr == NULL) { |
| /* |
| * In case of failure, free_shared_mem() |
| * is called, which should free any |
| * memory that was alloced till the |
| * failure happened. |
| */ |
| nic->rx_blocks[i][j].block_virt_addr = |
| tmp_v_addr; |
| return -ENOMEM; |
| } |
| memset(tmp_v_addr, 0, size); |
| nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; |
| nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr; |
| } |
| /* Interlinking all Rx Blocks */ |
| for (j = 0; j < blk_cnt; j++) { |
| tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; |
| tmp_v_addr_next = |
| nic->rx_blocks[i][(j + 1) % |
| blk_cnt].block_virt_addr; |
| tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; |
| tmp_p_addr_next = |
| nic->rx_blocks[i][(j + 1) % |
| blk_cnt].block_dma_addr; |
| |
| pre_rxd_blk = (RxD_block_t *) tmp_v_addr; |
| pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD |
| * marker. |
| */ |
| #ifndef CONFIG_2BUFF_MODE |
| pre_rxd_blk->reserved_2_pNext_RxD_block = |
| (unsigned long) tmp_v_addr_next; |
| #endif |
| pre_rxd_blk->pNext_RxD_Blk_physical = |
| (u64) tmp_p_addr_next; |
| } |
| } |
| |
| #ifdef CONFIG_2BUFF_MODE |
| /* |
| * Allocation of Storages for buffer addresses in 2BUFF mode |
| * and the buffers as well. |
| */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt), |
| GFP_KERNEL); |
| if (!nic->ba[i]) |
| return -ENOMEM; |
| for (j = 0; j < blk_cnt; j++) { |
| int k = 0; |
| nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) * |
| (MAX_RXDS_PER_BLOCK + 1)), |
| GFP_KERNEL); |
| if (!nic->ba[i][j]) |
| return -ENOMEM; |
| while (k != MAX_RXDS_PER_BLOCK) { |
| ba = &nic->ba[i][j][k]; |
| |
| ba->ba_0_org = kmalloc |
| (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); |
| if (!ba->ba_0_org) |
| return -ENOMEM; |
| tmp = (unsigned long) ba->ba_0_org; |
| tmp += ALIGN_SIZE; |
| tmp &= ~((unsigned long) ALIGN_SIZE); |
| ba->ba_0 = (void *) tmp; |
| |
| ba->ba_1_org = kmalloc |
| (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); |
| if (!ba->ba_1_org) |
| return -ENOMEM; |
| tmp = (unsigned long) ba->ba_1_org; |
| tmp += ALIGN_SIZE; |
| tmp &= ~((unsigned long) ALIGN_SIZE); |
| ba->ba_1 = (void *) tmp; |
| k++; |
| } |
| } |
| } |
| #endif |
| |
| /* Allocation and initialization of Statistics block */ |
| size = sizeof(StatInfo_t); |
| mac_control->stats_mem = pci_alloc_consistent |
| (nic->pdev, size, &mac_control->stats_mem_phy); |
| |
| if (!mac_control->stats_mem) { |
| /* |
| * In case of failure, free_shared_mem() is called, which |
| * should free any memory that was alloced till the |
| * failure happened. |
| */ |
| return -ENOMEM; |
| } |
| mac_control->stats_mem_sz = size; |
| |
| tmp_v_addr = mac_control->stats_mem; |
| mac_control->stats_info = (StatInfo_t *) tmp_v_addr; |
| memset(tmp_v_addr, 0, size); |
| |
| DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, |
| (unsigned long long) tmp_p_addr); |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * free_shared_mem - Free the allocated Memory |
| * @nic: Device private variable. |
| * Description: This function is to free all memory locations allocated by |
| * the init_shared_mem() function and return it to the kernel. |
| */ |
| |
| static void free_shared_mem(struct s2io_nic *nic) |
| { |
| int i, j, blk_cnt, size; |
| void *tmp_v_addr; |
| dma_addr_t tmp_p_addr; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int lst_size, lst_per_page; |
| |
| |
| if (!nic) |
| return; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| lst_size = (sizeof(TxD_t) * config->max_txds); |
| lst_per_page = PAGE_SIZE / lst_size; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| lst_per_page); |
| for (j = 0; j < page_num; j++) { |
| int mem_blks = (j * lst_per_page); |
| if (!nic->list_info[i][mem_blks].list_virt_addr) |
| break; |
| pci_free_consistent(nic->pdev, PAGE_SIZE, |
| nic->list_info[i][mem_blks]. |
| list_virt_addr, |
| nic->list_info[i][mem_blks]. |
| list_phy_addr); |
| } |
| kfree(nic->list_info[i]); |
| } |
| |
| #ifndef CONFIG_2BUFF_MODE |
| size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); |
| #else |
| size = SIZE_OF_BLOCK; |
| #endif |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = nic->block_count[i]; |
| for (j = 0; j < blk_cnt; j++) { |
| tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; |
| tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; |
| if (tmp_v_addr == NULL) |
| break; |
| pci_free_consistent(nic->pdev, size, |
| tmp_v_addr, tmp_p_addr); |
| } |
| } |
| |
| #ifdef CONFIG_2BUFF_MODE |
| /* Freeing buffer storage addresses in 2BUFF mode. */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| blk_cnt = |
| config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| if (!nic->ba[i]) |
| goto end_free; |
| for (j = 0; j < blk_cnt; j++) { |
| int k = 0; |
| if (!nic->ba[i][j]) { |
| kfree(nic->ba[i]); |
| goto end_free; |
| } |
| while (k != MAX_RXDS_PER_BLOCK) { |
| buffAdd_t *ba = &nic->ba[i][j][k]; |
| if (!ba || !ba->ba_0_org || !ba->ba_1_org) |
| { |
| kfree(nic->ba[i]); |
| kfree(nic->ba[i][j]); |
| if(ba->ba_0_org) |
| kfree(ba->ba_0_org); |
| if(ba->ba_1_org) |
| kfree(ba->ba_1_org); |
| goto end_free; |
| } |
| kfree(ba->ba_0_org); |
| kfree(ba->ba_1_org); |
| k++; |
| } |
| kfree(nic->ba[i][j]); |
| } |
| kfree(nic->ba[i]); |
| } |
| end_free: |
| #endif |
| |
| if (mac_control->stats_mem) { |
| pci_free_consistent(nic->pdev, |
| mac_control->stats_mem_sz, |
| mac_control->stats_mem, |
| mac_control->stats_mem_phy); |
| } |
| } |
| |
| /** |
| * init_nic - Initialization of hardware |
| * @nic: device peivate variable |
| * Description: The function sequentially configures every block |
| * of the H/W from their reset values. |
| * Return Value: SUCCESS on success and |
| * '-1' on failure (endian settings incorrect). |
| */ |
| |
| static int init_nic(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| struct net_device *dev = nic->dev; |
| register u64 val64 = 0; |
| void __iomem *add; |
| u32 time; |
| int i, j; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int mdio_cnt = 0, dtx_cnt = 0; |
| unsigned long long mem_share; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* Initialize swapper control register */ |
| if (s2io_set_swapper(nic)) { |
| DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); |
| return -1; |
| } |
| |
| /* Remove XGXS from reset state */ |
| val64 = 0; |
| writeq(val64, &bar0->sw_reset); |
| val64 = readq(&bar0->sw_reset); |
| msleep(500); |
| |
| /* Enable Receiving broadcasts */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_RMAC_BCAST_ENABLE; |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| /* Read registers in all blocks */ |
| val64 = readq(&bar0->mac_int_mask); |
| val64 = readq(&bar0->mc_int_mask); |
| val64 = readq(&bar0->xgxs_int_mask); |
| |
| /* Set MTU */ |
| val64 = dev->mtu; |
| writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| |
| /* |
| * Configuring the XAUI Interface of Xena. |
| * *************************************** |
| * To Configure the Xena's XAUI, one has to write a series |
| * of 64 bit values into two registers in a particular |
| * sequence. Hence a macro 'SWITCH_SIGN' has been defined |
| * which will be defined in the array of configuration values |
| * (default_dtx_cfg & default_mdio_cfg) at appropriate places |
| * to switch writing from one regsiter to another. We continue |
| * writing these values until we encounter the 'END_SIGN' macro. |
| * For example, After making a series of 21 writes into |
| * dtx_control register the 'SWITCH_SIGN' appears and hence we |
| * start writing into mdio_control until we encounter END_SIGN. |
| */ |
| while (1) { |
| dtx_cfg: |
| while (default_dtx_cfg[dtx_cnt] != END_SIGN) { |
| if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { |
| dtx_cnt++; |
| goto mdio_cfg; |
| } |
| SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt], |
| &bar0->dtx_control, UF); |
| val64 = readq(&bar0->dtx_control); |
| dtx_cnt++; |
| } |
| mdio_cfg: |
| while (default_mdio_cfg[mdio_cnt] != END_SIGN) { |
| if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { |
| mdio_cnt++; |
| goto dtx_cfg; |
| } |
| SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt], |
| &bar0->mdio_control, UF); |
| val64 = readq(&bar0->mdio_control); |
| mdio_cnt++; |
| } |
| if ((default_dtx_cfg[dtx_cnt] == END_SIGN) && |
| (default_mdio_cfg[mdio_cnt] == END_SIGN)) { |
| break; |
| } else { |
| goto dtx_cfg; |
| } |
| } |
| |
| /* Tx DMA Initialization */ |
| val64 = 0; |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| writeq(val64, &bar0->tx_fifo_partition_1); |
| writeq(val64, &bar0->tx_fifo_partition_2); |
| writeq(val64, &bar0->tx_fifo_partition_3); |
| |
| |
| for (i = 0, j = 0; i < config->tx_fifo_num; i++) { |
| val64 |= |
| vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), |
| 13) | vBIT(config->tx_cfg[i].fifo_priority, |
| ((i * 32) + 5), 3); |
| |
| if (i == (config->tx_fifo_num - 1)) { |
| if (i % 2 == 0) |
| i++; |
| } |
| |
| switch (i) { |
| case 1: |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| val64 = 0; |
| break; |
| case 3: |
| writeq(val64, &bar0->tx_fifo_partition_1); |
| val64 = 0; |
| break; |
| case 5: |
| writeq(val64, &bar0->tx_fifo_partition_2); |
| val64 = 0; |
| break; |
| case 7: |
| writeq(val64, &bar0->tx_fifo_partition_3); |
| break; |
| } |
| } |
| |
| /* Enable Tx FIFO partition 0. */ |
| val64 = readq(&bar0->tx_fifo_partition_0); |
| val64 |= BIT(0); /* To enable the FIFO partition. */ |
| writeq(val64, &bar0->tx_fifo_partition_0); |
| |
| val64 = readq(&bar0->tx_fifo_partition_0); |
| DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", |
| &bar0->tx_fifo_partition_0, (unsigned long long) val64); |
| |
| /* |
| * Initialization of Tx_PA_CONFIG register to ignore packet |
| * integrity checking. |
| */ |
| val64 = readq(&bar0->tx_pa_cfg); |
| val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | |
| TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; |
| writeq(val64, &bar0->tx_pa_cfg); |
| |
| /* Rx DMA intialization. */ |
| val64 = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 |= |
| vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), |
| 3); |
| } |
| writeq(val64, &bar0->rx_queue_priority); |
| |
| /* |
| * Allocating equal share of memory to all the |
| * configured Rings. |
| */ |
| val64 = 0; |
| for (i = 0; i < config->rx_ring_num; i++) { |
| switch (i) { |
| case 0: |
| mem_share = (64 / config->rx_ring_num + |
| 64 % config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); |
| continue; |
| case 1: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); |
| continue; |
| case 2: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); |
| continue; |
| case 3: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); |
| continue; |
| case 4: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); |
| continue; |
| case 5: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); |
| continue; |
| case 6: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); |
| continue; |
| case 7: |
| mem_share = (64 / config->rx_ring_num); |
| val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); |
| continue; |
| } |
| } |
| writeq(val64, &bar0->rx_queue_cfg); |
| |
| /* |
| * Initializing the Tx round robin registers to 0. |
| * Filling Tx and Rx round robin registers as per the |
| * number of FIFOs and Rings is still TODO. |
| */ |
| writeq(0, &bar0->tx_w_round_robin_0); |
| writeq(0, &bar0->tx_w_round_robin_1); |
| writeq(0, &bar0->tx_w_round_robin_2); |
| writeq(0, &bar0->tx_w_round_robin_3); |
| writeq(0, &bar0->tx_w_round_robin_4); |
| |
| /* |
| * TODO |
| * Disable Rx steering. Hard coding all packets be steered to |
| * Queue 0 for now. |
| */ |
| val64 = 0x8080808080808080ULL; |
| writeq(val64, &bar0->rts_qos_steering); |
| |
| /* UDP Fix */ |
| val64 = 0; |
| for (i = 1; i < 8; i++) |
| writeq(val64, &bar0->rts_frm_len_n[i]); |
| |
| /* Set rts_frm_len register for fifo 0 */ |
| writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22), |
| &bar0->rts_frm_len_n[0]); |
| |
| /* Enable statistics */ |
| writeq(mac_control->stats_mem_phy, &bar0->stat_addr); |
| val64 = SET_UPDT_PERIOD(Stats_refresh_time) | |
| STAT_CFG_STAT_RO | STAT_CFG_STAT_EN; |
| writeq(val64, &bar0->stat_cfg); |
| |
| /* |
| * Initializing the sampling rate for the device to calculate the |
| * bandwidth utilization. |
| */ |
| val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | |
| MAC_RX_LINK_UTIL_VAL(rmac_util_period); |
| writeq(val64, &bar0->mac_link_util); |
| |
| |
| /* |
| * Initializing the Transmit and Receive Traffic Interrupt |
| * Scheme. |
| */ |
| /* TTI Initialization. Default Tx timer gets us about |
| * 250 interrupts per sec. Continuous interrupts are enabled |
| * by default. |
| */ |
| val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) | |
| TTI_DATA1_MEM_TX_URNG_A(0xA) | |
| TTI_DATA1_MEM_TX_URNG_B(0x10) | |
| TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN | |
| TTI_DATA1_MEM_TX_TIMER_CI_EN; |
| writeq(val64, &bar0->tti_data1_mem); |
| |
| val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | |
| TTI_DATA2_MEM_TX_UFC_B(0x20) | |
| TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); |
| writeq(val64, &bar0->tti_data2_mem); |
| |
| val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; |
| writeq(val64, &bar0->tti_command_mem); |
| |
| /* |
| * Once the operation completes, the Strobe bit of the command |
| * register will be reset. We poll for this particular condition |
| * We wait for a maximum of 500ms for the operation to complete, |
| * if it's not complete by then we return error. |
| */ |
| time = 0; |
| while (TRUE) { |
| val64 = readq(&bar0->tti_command_mem); |
| if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { |
| break; |
| } |
| if (time > 10) { |
| DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", |
| dev->name); |
| return -1; |
| } |
| msleep(50); |
| time++; |
| } |
| |
| /* RTI Initialization */ |
| val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) | |
| RTI_DATA1_MEM_RX_URNG_A(0xA) | |
| RTI_DATA1_MEM_RX_URNG_B(0x10) | |
| RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; |
| |
| writeq(val64, &bar0->rti_data1_mem); |
| |
| val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | |
| RTI_DATA2_MEM_RX_UFC_B(0x2) | |
| RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); |
| writeq(val64, &bar0->rti_data2_mem); |
| |
| val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD; |
| writeq(val64, &bar0->rti_command_mem); |
| |
| /* |
| * Once the operation completes, the Strobe bit of the command |
| * register will be reset. We poll for this particular condition |
| * We wait for a maximum of 500ms for the operation to complete, |
| * if it's not complete by then we return error. |
| */ |
| time = 0; |
| while (TRUE) { |
| val64 = readq(&bar0->rti_command_mem); |
| if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { |
| break; |
| } |
| if (time > 10) { |
| DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", |
| dev->name); |
| return -1; |
| } |
| time++; |
| msleep(50); |
| } |
| |
| /* |
| * Initializing proper values as Pause threshold into all |
| * the 8 Queues on Rx side. |
| */ |
| writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); |
| writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); |
| |
| /* Disable RMAC PAD STRIPPING */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64), add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| val64 = readq(&bar0->mac_cfg); |
| |
| /* |
| * Set the time value to be inserted in the pause frame |
| * generated by xena. |
| */ |
| val64 = readq(&bar0->rmac_pause_cfg); |
| val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); |
| val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); |
| writeq(val64, &bar0->rmac_pause_cfg); |
| |
| /* |
| * Set the Threshold Limit for Generating the pause frame |
| * If the amount of data in any Queue exceeds ratio of |
| * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 |
| * pause frame is generated |
| */ |
| val64 = 0; |
| for (i = 0; i < 4; i++) { |
| val64 |= |
| (((u64) 0xFF00 | nic->mac_control. |
| mc_pause_threshold_q0q3) |
| << (i * 2 * 8)); |
| } |
| writeq(val64, &bar0->mc_pause_thresh_q0q3); |
| |
| val64 = 0; |
| for (i = 0; i < 4; i++) { |
| val64 |= |
| (((u64) 0xFF00 | nic->mac_control. |
| mc_pause_threshold_q4q7) |
| << (i * 2 * 8)); |
| } |
| writeq(val64, &bar0->mc_pause_thresh_q4q7); |
| |
| /* |
| * TxDMA will stop Read request if the number of read split has |
| * exceeded the limit pointed by shared_splits |
| */ |
| val64 = readq(&bar0->pic_control); |
| val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); |
| writeq(val64, &bar0->pic_control); |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * en_dis_able_nic_intrs - Enable or Disable the interrupts |
| * @nic: device private variable, |
| * @mask: A mask indicating which Intr block must be modified and, |
| * @flag: A flag indicating whether to enable or disable the Intrs. |
| * Description: This function will either disable or enable the interrupts |
| * depending on the flag argument. The mask argument can be used to |
| * enable/disable any Intr block. |
| * Return Value: NONE. |
| */ |
| |
| static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0, temp64 = 0; |
| |
| /* Top level interrupt classification */ |
| /* PIC Interrupts */ |
| if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { |
| /* Enable PIC Intrs in the general intr mask register */ |
| val64 = TXPIC_INT_M | PIC_RX_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * Disabled all PCIX, Flash, MDIO, IIC and GPIO |
| * interrupts for now. |
| * TODO |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| /* |
| * No MSI Support is available presently, so TTI and |
| * RTI interrupts are also disabled. |
| */ |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable PIC Intrs in the general |
| * intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* DMA Interrupts */ |
| /* Enabling/Disabling Tx DMA interrupts */ |
| if (mask & TX_DMA_INTR) { |
| /* Enable TxDMA Intrs in the general intr mask register */ |
| val64 = TXDMA_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * Keep all interrupts other than PFC interrupt |
| * and PCC interrupt disabled in DMA level. |
| */ |
| val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | |
| TXDMA_PCC_INT_M); |
| writeq(val64, &bar0->txdma_int_mask); |
| /* |
| * Enable only the MISC error 1 interrupt in PFC block |
| */ |
| val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); |
| writeq(val64, &bar0->pfc_err_mask); |
| /* |
| * Enable only the FB_ECC error interrupt in PCC block |
| */ |
| val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); |
| writeq(val64, &bar0->pcc_err_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable TxDMA Intrs in the general intr mask |
| * register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); |
| writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* Enabling/Disabling Rx DMA interrupts */ |
| if (mask & RX_DMA_INTR) { |
| /* Enable RxDMA Intrs in the general intr mask register */ |
| val64 = RXDMA_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All RxDMA block interrupts are disabled for now |
| * TODO |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable RxDMA Intrs in the general intr mask |
| * register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* MAC Interrupts */ |
| /* Enabling/Disabling MAC interrupts */ |
| if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { |
| val64 = TXMAC_INT_M | RXMAC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All MAC block error interrupts are disabled for now |
| * except the link status change interrupt. |
| * TODO |
| */ |
| val64 = MAC_INT_STATUS_RMAC_INT; |
| temp64 = readq(&bar0->mac_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->mac_int_mask); |
| |
| val64 = readq(&bar0->mac_rmac_err_mask); |
| val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT); |
| writeq(val64, &bar0->mac_rmac_err_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable MAC Intrs in the general intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); |
| writeq(DISABLE_ALL_INTRS, |
| &bar0->mac_rmac_err_mask); |
| |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* XGXS Interrupts */ |
| if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { |
| val64 = TXXGXS_INT_M | RXXGXS_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All XGXS block error interrupts are disabled for now |
| * TODO |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable MC Intrs in the general intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* Memory Controller(MC) interrupts */ |
| if (mask & MC_INTR) { |
| val64 = MC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * All MC block error interrupts are disabled for now |
| * TODO |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable MC Intrs in the general intr mask register |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| |
| /* Tx traffic interrupts */ |
| if (mask & TX_TRAFFIC_INTR) { |
| val64 = TXTRAFFIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* |
| * Enable all the Tx side interrupts |
| * writing 0 Enables all 64 TX interrupt levels |
| */ |
| writeq(0x0, &bar0->tx_traffic_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable Tx Traffic Intrs in the general intr mask |
| * register. |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| |
| /* Rx traffic interrupts */ |
| if (mask & RX_TRAFFIC_INTR) { |
| val64 = RXTRAFFIC_INT_M; |
| if (flag == ENABLE_INTRS) { |
| temp64 = readq(&bar0->general_int_mask); |
| temp64 &= ~((u64) val64); |
| writeq(temp64, &bar0->general_int_mask); |
| /* writing 0 Enables all 8 RX interrupt levels */ |
| writeq(0x0, &bar0->rx_traffic_mask); |
| } else if (flag == DISABLE_INTRS) { |
| /* |
| * Disable Rx Traffic Intrs in the general intr mask |
| * register. |
| */ |
| writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); |
| temp64 = readq(&bar0->general_int_mask); |
| val64 |= temp64; |
| writeq(val64, &bar0->general_int_mask); |
| } |
| } |
| } |
| |
| /** |
| * verify_xena_quiescence - Checks whether the H/W is ready |
| * @val64 : Value read from adapter status register. |
| * @flag : indicates if the adapter enable bit was ever written once |
| * before. |
| * Description: Returns whether the H/W is ready to go or not. Depending |
| * on whether adapter enable bit was written or not the comparison |
| * differs and the calling function passes the input argument flag to |
| * indicate this. |
| * Return: 1 If xena is quiescence |
| * 0 If Xena is not quiescence |
| */ |
| |
| static int verify_xena_quiescence(u64 val64, int flag) |
| { |
| int ret = 0; |
| u64 tmp64 = ~((u64) val64); |
| |
| if (! |
| (tmp64 & |
| (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | |
| ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | |
| ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | |
| ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | |
| ADAPTER_STATUS_P_PLL_LOCK))) { |
| if (flag == FALSE) { |
| if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && |
| ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT)) { |
| |
| ret = 1; |
| |
| } |
| } else { |
| if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == |
| ADAPTER_STATUS_RMAC_PCC_IDLE) && |
| (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || |
| ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| ADAPTER_STATUS_RC_PRC_QUIESCENT))) { |
| |
| ret = 1; |
| |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * fix_mac_address - Fix for Mac addr problem on Alpha platforms |
| * @sp: Pointer to device specifc structure |
| * Description : |
| * New procedure to clear mac address reading problems on Alpha platforms |
| * |
| */ |
| |
| static void fix_mac_address(nic_t * sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| int i = 0; |
| |
| while (fix_mac[i] != END_SIGN) { |
| writeq(fix_mac[i++], &bar0->gpio_control); |
| val64 = readq(&bar0->gpio_control); |
| } |
| } |
| |
| /** |
| * start_nic - Turns the device on |
| * @nic : device private variable. |
| * Description: |
| * This function actually turns the device on. Before this function is |
| * called,all Registers are configured from their reset states |
| * and shared memory is allocated but the NIC is still quiescent. On |
| * calling this function, the device interrupts are cleared and the NIC is |
| * literally switched on by writing into the adapter control register. |
| * Return Value: |
| * SUCCESS on success and -1 on failure. |
| */ |
| |
| static int start_nic(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| struct net_device *dev = nic->dev; |
| register u64 val64 = 0; |
| u16 interruptible, i; |
| u16 subid; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* PRC Initialization and configuration */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| writeq((u64) nic->rx_blocks[i][0].block_dma_addr, |
| &bar0->prc_rxd0_n[i]); |
| |
| val64 = readq(&bar0->prc_ctrl_n[i]); |
| #ifndef CONFIG_2BUFF_MODE |
| val64 |= PRC_CTRL_RC_ENABLED; |
| #else |
| val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; |
| #endif |
| writeq(val64, &bar0->prc_ctrl_n[i]); |
| } |
| |
| #ifdef CONFIG_2BUFF_MODE |
| /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ |
| val64 = readq(&bar0->rx_pa_cfg); |
| val64 |= RX_PA_CFG_IGNORE_L2_ERR; |
| writeq(val64, &bar0->rx_pa_cfg); |
| #endif |
| |
| /* |
| * Enabling MC-RLDRAM. After enabling the device, we timeout |
| * for around 100ms, which is approximately the time required |
| * for the device to be ready for operation. |
| */ |
| val64 = readq(&bar0->mc_rldram_mrs); |
| val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; |
| SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| val64 = readq(&bar0->mc_rldram_mrs); |
| |
| msleep(100); /* Delay by around 100 ms. */ |
| |
| /* Enabling ECC Protection. */ |
| val64 = readq(&bar0->adapter_control); |
| val64 &= ~ADAPTER_ECC_EN; |
| writeq(val64, &bar0->adapter_control); |
| |
| /* |
| * Clearing any possible Link state change interrupts that |
| * could have popped up just before Enabling the card. |
| */ |
| val64 = readq(&bar0->mac_rmac_err_reg); |
| if (val64) |
| writeq(val64, &bar0->mac_rmac_err_reg); |
| |
| /* |
| * Verify if the device is ready to be enabled, if so enable |
| * it. |
| */ |
| val64 = readq(&bar0->adapter_status); |
| if (!verify_xena_quiescence(val64, nic->device_enabled_once)) { |
| DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); |
| DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| |
| /* Enable select interrupts */ |
| interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | |
| RX_MAC_INTR; |
| en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); |
| |
| /* |
| * With some switches, link might be already up at this point. |
| * Because of this weird behavior, when we enable laser, |
| * we may not get link. We need to handle this. We cannot |
| * figure out which switch is misbehaving. So we are forced to |
| * make a global change. |
| */ |
| |
| /* Enabling Laser. */ |
| val64 = readq(&bar0->adapter_control); |
| val64 |= ADAPTER_EOI_TX_ON; |
| writeq(val64, &bar0->adapter_control); |
| |
| /* SXE-002: Initialize link and activity LED */ |
| subid = nic->pdev->subsystem_device; |
| if ((subid & 0xFF) >= 0x07) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *) bar0 + 0x2700); |
| } |
| |
| /* |
| * Don't see link state interrupts on certain switches, so |
| * directly scheduling a link state task from here. |
| */ |
| schedule_work(&nic->set_link_task); |
| |
| /* |
| * Here we are performing soft reset on XGXS to |
| * force link down. Since link is already up, we will get |
| * link state change interrupt after this reset |
| */ |
| SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF); |
| val64 = readq(&bar0->dtx_control); |
| udelay(50); |
| SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF); |
| val64 = readq(&bar0->dtx_control); |
| udelay(50); |
| SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF); |
| val64 = readq(&bar0->dtx_control); |
| udelay(50); |
| |
| return SUCCESS; |
| } |
| |
| /** |
| * free_tx_buffers - Free all queued Tx buffers |
| * @nic : device private variable. |
| * Description: |
| * Free all queued Tx buffers. |
| * Return Value: void |
| */ |
| |
| static void free_tx_buffers(struct s2io_nic *nic) |
| { |
| struct net_device *dev = nic->dev; |
| struct sk_buff *skb; |
| TxD_t *txdp; |
| int i, j; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| int cnt = 0; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { |
| txdp = (TxD_t *) nic->list_info[i][j]. |
| list_virt_addr; |
| skb = |
| (struct sk_buff *) ((unsigned long) txdp-> |
| Host_Control); |
| if (skb == NULL) { |
| memset(txdp, 0, sizeof(TxD_t)); |
| continue; |
| } |
| dev_kfree_skb(skb); |
| memset(txdp, 0, sizeof(TxD_t)); |
| cnt++; |
| } |
| DBG_PRINT(INTR_DBG, |
| "%s:forcibly freeing %d skbs on FIFO%d\n", |
| dev->name, cnt, i); |
| mac_control->tx_curr_get_info[i].offset = 0; |
| mac_control->tx_curr_put_info[i].offset = 0; |
| } |
| } |
| |
| /** |
| * stop_nic - To stop the nic |
| * @nic ; device private variable. |
| * Description: |
| * This function does exactly the opposite of what the start_nic() |
| * function does. This function is called to stop the device. |
| * Return Value: |
| * void. |
| */ |
| |
| static void stop_nic(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0; |
| u16 interruptible, i; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* Disable all interrupts */ |
| interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | |
| RX_MAC_INTR; |
| en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); |
| |
| /* Disable PRCs */ |
| for (i = 0; i < config->rx_ring_num; i++) { |
| val64 = readq(&bar0->prc_ctrl_n[i]); |
| val64 &= ~((u64) PRC_CTRL_RC_ENABLED); |
| writeq(val64, &bar0->prc_ctrl_n[i]); |
| } |
| } |
| |
| /** |
| * fill_rx_buffers - Allocates the Rx side skbs |
| * @nic: device private variable |
| * @ring_no: ring number |
| * Description: |
| * The function allocates Rx side skbs and puts the physical |
| * address of these buffers into the RxD buffer pointers, so that the NIC |
| * can DMA the received frame into these locations. |
| * The NIC supports 3 receive modes, viz |
| * 1. single buffer, |
| * 2. three buffer and |
| * 3. Five buffer modes. |
| * Each mode defines how many fragments the received frame will be split |
| * up into by the NIC. The frame is split into L3 header, L4 Header, |
| * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself |
| * is split into 3 fragments. As of now only single buffer mode is |
| * supported. |
| * Return Value: |
| * SUCCESS on success or an appropriate -ve value on failure. |
| */ |
| |
| static int fill_rx_buffers(struct s2io_nic *nic, int ring_no) |
| { |
| struct net_device *dev = nic->dev; |
| struct sk_buff *skb; |
| RxD_t *rxdp; |
| int off, off1, size, block_no, block_no1; |
| int offset, offset1; |
| u32 alloc_tab = 0; |
| u32 alloc_cnt = nic->pkt_cnt[ring_no] - |
| atomic_read(&nic->rx_bufs_left[ring_no]); |
| mac_info_t *mac_control; |
| struct config_param *config; |
| #ifdef CONFIG_2BUFF_MODE |
| RxD_t *rxdpnext; |
| int nextblk; |
| unsigned long tmp; |
| buffAdd_t *ba; |
| dma_addr_t rxdpphys; |
| #endif |
| #ifndef CONFIG_S2IO_NAPI |
| unsigned long flags; |
| #endif |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + HEADER_SNAP_SIZE; |
| |
| while (alloc_tab < alloc_cnt) { |
| block_no = mac_control->rx_curr_put_info[ring_no]. |
| block_index; |
| block_no1 = mac_control->rx_curr_get_info[ring_no]. |
| block_index; |
| off = mac_control->rx_curr_put_info[ring_no].offset; |
| off1 = mac_control->rx_curr_get_info[ring_no].offset; |
| #ifndef CONFIG_2BUFF_MODE |
| offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; |
| offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; |
| #else |
| offset = block_no * (MAX_RXDS_PER_BLOCK) + off; |
| offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; |
| #endif |
| |
| rxdp = nic->rx_blocks[ring_no][block_no]. |
| block_virt_addr + off; |
| if ((offset == offset1) && (rxdp->Host_Control)) { |
| DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); |
| DBG_PRINT(INTR_DBG, " info equated\n"); |
| goto end; |
| } |
| #ifndef CONFIG_2BUFF_MODE |
| if (rxdp->Control_1 == END_OF_BLOCK) { |
| mac_control->rx_curr_put_info[ring_no]. |
| block_index++; |
| mac_control->rx_curr_put_info[ring_no]. |
| block_index %= nic->block_count[ring_no]; |
| block_no = mac_control->rx_curr_put_info |
| [ring_no].block_index; |
| off++; |
| off %= (MAX_RXDS_PER_BLOCK + 1); |
| mac_control->rx_curr_put_info[ring_no].offset = |
| off; |
| rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); |
| DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", |
| dev->name, rxdp); |
| } |
| #ifndef CONFIG_S2IO_NAPI |
| spin_lock_irqsave(&nic->put_lock, flags); |
| nic->put_pos[ring_no] = |
| (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; |
| spin_unlock_irqrestore(&nic->put_lock, flags); |
| #endif |
| #else |
| if (rxdp->Host_Control == END_OF_BLOCK) { |
| mac_control->rx_curr_put_info[ring_no]. |
| block_index++; |
| mac_control->rx_curr_put_info[ring_no]. |
| block_index %= nic->block_count[ring_no]; |
| block_no = mac_control->rx_curr_put_info |
| [ring_no].block_index; |
| off = 0; |
| DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", |
| dev->name, block_no, |
| (unsigned long long) rxdp->Control_1); |
| mac_control->rx_curr_put_info[ring_no].offset = |
| off; |
| rxdp = nic->rx_blocks[ring_no][block_no]. |
| block_virt_addr; |
| } |
| #ifndef CONFIG_S2IO_NAPI |
| spin_lock_irqsave(&nic->put_lock, flags); |
| nic->put_pos[ring_no] = (block_no * |
| (MAX_RXDS_PER_BLOCK + 1)) + off; |
| spin_unlock_irqrestore(&nic->put_lock, flags); |
| #endif |
| #endif |
| |
| #ifndef CONFIG_2BUFF_MODE |
| if (rxdp->Control_1 & RXD_OWN_XENA) |
| #else |
| if (rxdp->Control_2 & BIT(0)) |
| #endif |
| { |
| mac_control->rx_curr_put_info[ring_no]. |
| offset = off; |
| goto end; |
| } |
| #ifdef CONFIG_2BUFF_MODE |
| /* |
| * RxDs Spanning cache lines will be replenished only |
| * if the succeeding RxD is also owned by Host. It |
| * will always be the ((8*i)+3) and ((8*i)+6) |
| * descriptors for the 48 byte descriptor. The offending |
| * decsriptor is of-course the 3rd descriptor. |
| */ |
| rxdpphys = nic->rx_blocks[ring_no][block_no]. |
| block_dma_addr + (off * sizeof(RxD_t)); |
| if (((u64) (rxdpphys)) % 128 > 80) { |
| rxdpnext = nic->rx_blocks[ring_no][block_no]. |
| block_virt_addr + (off + 1); |
| if (rxdpnext->Host_Control == END_OF_BLOCK) { |
| nextblk = (block_no + 1) % |
| (nic->block_count[ring_no]); |
| rxdpnext = nic->rx_blocks[ring_no] |
| [nextblk].block_virt_addr; |
| } |
| if (rxdpnext->Control_2 & BIT(0)) |
| goto end; |
| } |
| #endif |
| |
| #ifndef CONFIG_2BUFF_MODE |
| skb = dev_alloc_skb(size + NET_IP_ALIGN); |
| #else |
| skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); |
| #endif |
| if (!skb) { |
| DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); |
| DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); |
| return -ENOMEM; |
| } |
| #ifndef CONFIG_2BUFF_MODE |
| skb_reserve(skb, NET_IP_ALIGN); |
| memset(rxdp, 0, sizeof(RxD_t)); |
| rxdp->Buffer0_ptr = pci_map_single |
| (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); |
| rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); |
| rxdp->Control_2 |= SET_BUFFER0_SIZE(size); |
| rxdp->Host_Control = (unsigned long) (skb); |
| rxdp->Control_1 |= RXD_OWN_XENA; |
| off++; |
| off %= (MAX_RXDS_PER_BLOCK + 1); |
| mac_control->rx_curr_put_info[ring_no].offset = off; |
| #else |
| ba = &nic->ba[ring_no][block_no][off]; |
| skb_reserve(skb, BUF0_LEN); |
| tmp = (unsigned long) skb->data; |
| tmp += ALIGN_SIZE; |
| tmp &= ~ALIGN_SIZE; |
| skb->data = (void *) tmp; |
| skb->tail = (void *) tmp; |
| |
| memset(rxdp, 0, sizeof(RxD_t)); |
| rxdp->Buffer2_ptr = pci_map_single |
| (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| rxdp->Buffer0_ptr = |
| pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, |
| PCI_DMA_FROMDEVICE); |
| rxdp->Buffer1_ptr = |
| pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| |
| rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); |
| rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); |
| rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ |
| rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ |
| rxdp->Host_Control = (u64) ((unsigned long) (skb)); |
| rxdp->Control_1 |= RXD_OWN_XENA; |
| off++; |
| mac_control->rx_curr_put_info[ring_no].offset = off; |
| #endif |
| atomic_inc(&nic->rx_bufs_left[ring_no]); |
| alloc_tab++; |
| } |
| |
| end: |
| return SUCCESS; |
| } |
| |
| /** |
| * free_rx_buffers - Frees all Rx buffers |
| * @sp: device private variable. |
| * Description: |
| * This function will free all Rx buffers allocated by host. |
| * Return Value: |
| * NONE. |
| */ |
| |
| static void free_rx_buffers(struct s2io_nic *sp) |
| { |
| struct net_device *dev = sp->dev; |
| int i, j, blk = 0, off, buf_cnt = 0; |
| RxD_t *rxdp; |
| struct sk_buff *skb; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| #ifdef CONFIG_2BUFF_MODE |
| buffAdd_t *ba; |
| #endif |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { |
| off = j % (MAX_RXDS_PER_BLOCK + 1); |
| rxdp = sp->rx_blocks[i][blk].block_virt_addr + off; |
| |
| #ifndef CONFIG_2BUFF_MODE |
| if (rxdp->Control_1 == END_OF_BLOCK) { |
| rxdp = |
| (RxD_t *) ((unsigned long) rxdp-> |
| Control_2); |
| j++; |
| blk++; |
| } |
| #else |
| if (rxdp->Host_Control == END_OF_BLOCK) { |
| blk++; |
| continue; |
| } |
| #endif |
| |
| if (!(rxdp->Control_1 & RXD_OWN_XENA)) { |
| memset(rxdp, 0, sizeof(RxD_t)); |
| continue; |
| } |
| |
| skb = |
| (struct sk_buff *) ((unsigned long) rxdp-> |
| Host_Control); |
| if (skb) { |
| #ifndef CONFIG_2BUFF_MODE |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| dev->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE |
| + HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| #else |
| ba = &sp->ba[i][blk][off]; |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| BUF0_LEN, |
| PCI_DMA_FROMDEVICE); |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer1_ptr, |
| BUF1_LEN, |
| PCI_DMA_FROMDEVICE); |
| pci_unmap_single(sp->pdev, (dma_addr_t) |
| rxdp->Buffer2_ptr, |
| dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| #endif |
| dev_kfree_skb(skb); |
| atomic_dec(&sp->rx_bufs_left[i]); |
| buf_cnt++; |
| } |
| memset(rxdp, 0, sizeof(RxD_t)); |
| } |
| mac_control->rx_curr_put_info[i].block_index = 0; |
| mac_control->rx_curr_get_info[i].block_index = 0; |
| mac_control->rx_curr_put_info[i].offset = 0; |
| mac_control->rx_curr_get_info[i].offset = 0; |
| atomic_set(&sp->rx_bufs_left[i], 0); |
| DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", |
| dev->name, buf_cnt, i); |
| } |
| } |
| |
| /** |
| * s2io_poll - Rx interrupt handler for NAPI support |
| * @dev : pointer to the device structure. |
| * @budget : The number of packets that were budgeted to be processed |
| * during one pass through the 'Poll" function. |
| * Description: |
| * Comes into picture only if NAPI support has been incorporated. It does |
| * the same thing that rx_intr_handler does, but not in a interrupt context |
| * also It will process only a given number of packets. |
| * Return value: |
| * 0 on success and 1 if there are No Rx packets to be processed. |
| */ |
| |
| #ifdef CONFIG_S2IO_NAPI |
| static int s2io_poll(struct net_device *dev, int *budget) |
| { |
| nic_t *nic = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| int pkts_to_process = *budget, pkt_cnt = 0; |
| register u64 val64 = 0; |
| rx_curr_get_info_t get_info, put_info; |
| int i, get_block, put_block, get_offset, put_offset, ring_bufs; |
| #ifndef CONFIG_2BUFF_MODE |
| u16 val16, cksum; |
| #endif |
| struct sk_buff *skb; |
| RxD_t *rxdp; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| #ifdef CONFIG_2BUFF_MODE |
| buffAdd_t *ba; |
| #endif |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| if (pkts_to_process > dev->quota) |
| pkts_to_process = dev->quota; |
| |
| val64 = readq(&bar0->rx_traffic_int); |
| writeq(val64, &bar0->rx_traffic_int); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| get_info = mac_control->rx_curr_get_info[i]; |
| get_block = get_info.block_index; |
| put_info = mac_control->rx_curr_put_info[i]; |
| put_block = put_info.block_index; |
| ring_bufs = config->rx_cfg[i].num_rxd; |
| rxdp = nic->rx_blocks[i][get_block].block_virt_addr + |
| get_info.offset; |
| #ifndef CONFIG_2BUFF_MODE |
| get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| put_info.offset; |
| while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| (((get_offset + 1) % ring_bufs) != put_offset)) { |
| if (--pkts_to_process < 0) { |
| goto no_rx; |
| } |
| if (rxdp->Control_1 == END_OF_BLOCK) { |
| rxdp = |
| (RxD_t *) ((unsigned long) rxdp-> |
| Control_2); |
| get_info.offset++; |
| get_info.offset %= |
| (MAX_RXDS_PER_BLOCK + 1); |
| get_block++; |
| get_block %= nic->block_count[i]; |
| mac_control->rx_curr_get_info[i]. |
| offset = get_info.offset; |
| mac_control->rx_curr_get_info[i]. |
| block_index = get_block; |
| continue; |
| } |
| get_offset = |
| (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| skb = |
| (struct sk_buff *) ((unsigned long) rxdp-> |
| Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| goto no_rx; |
| } |
| val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); |
| val16 = (u16) (val64 >> 48); |
| cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| dev->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| rx_osm_handler(nic, val16, rxdp, i); |
| pkt_cnt++; |
| get_info.offset++; |
| get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); |
| rxdp = |
| nic->rx_blocks[i][get_block].block_virt_addr + |
| get_info.offset; |
| mac_control->rx_curr_get_info[i].offset = |
| get_info.offset; |
| } |
| #else |
| get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| put_info.offset; |
| while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| !(rxdp->Control_2 & BIT(0))) && |
| (((get_offset + 1) % ring_bufs) != put_offset)) { |
| if (--pkts_to_process < 0) { |
| goto no_rx; |
| } |
| skb = (struct sk_buff *) ((unsigned long) |
| rxdp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| goto no_rx; |
| } |
| |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer1_ptr, |
| BUF1_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer2_ptr, |
| dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| ba = &nic->ba[i][get_block][get_info.offset]; |
| |
| rx_osm_handler(nic, rxdp, i, ba); |
| |
| get_info.offset++; |
| mac_control->rx_curr_get_info[i].offset = |
| get_info.offset; |
| rxdp = |
| nic->rx_blocks[i][get_block].block_virt_addr + |
| get_info.offset; |
| |
| if (get_info.offset && |
| (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { |
| get_info.offset = 0; |
| mac_control->rx_curr_get_info[i]. |
| offset = get_info.offset; |
| get_block++; |
| get_block %= nic->block_count[i]; |
| mac_control->rx_curr_get_info[i]. |
| block_index = get_block; |
| rxdp = |
| nic->rx_blocks[i][get_block]. |
| block_virt_addr; |
| } |
| get_offset = |
| (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| pkt_cnt++; |
| } |
| #endif |
| } |
| if (!pkt_cnt) |
| pkt_cnt = 1; |
| |
| dev->quota -= pkt_cnt; |
| *budget -= pkt_cnt; |
| netif_rx_complete(dev); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (fill_rx_buffers(nic, i) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); |
| DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); |
| break; |
| } |
| } |
| /* Re enable the Rx interrupts. */ |
| en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); |
| return 0; |
| |
| no_rx: |
| dev->quota -= pkt_cnt; |
| *budget -= pkt_cnt; |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| if (fill_rx_buffers(nic, i) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); |
| DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); |
| break; |
| } |
| } |
| return 1; |
| } |
| #else |
| /** |
| * rx_intr_handler - Rx interrupt handler |
| * @nic: device private variable. |
| * Description: |
| * If the interrupt is because of a received frame or if the |
| * receive ring contains fresh as yet un-processed frames,this function is |
| * called. It picks out the RxD at which place the last Rx processing had |
| * stopped and sends the skb to the OSM's Rx handler and then increments |
| * the offset. |
| * Return Value: |
| * NONE. |
| */ |
| |
| static void rx_intr_handler(struct s2io_nic *nic) |
| { |
| struct net_device *dev = (struct net_device *) nic->dev; |
| XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; |
| rx_curr_get_info_t get_info, put_info; |
| RxD_t *rxdp; |
| struct sk_buff *skb; |
| #ifndef CONFIG_2BUFF_MODE |
| u16 val16, cksum; |
| #endif |
| register u64 val64 = 0; |
| int get_block, get_offset, put_block, put_offset, ring_bufs; |
| int i, pkt_cnt = 0; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| #ifdef CONFIG_2BUFF_MODE |
| buffAdd_t *ba; |
| #endif |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* |
| * rx_traffic_int reg is an R1 register, hence we read and write back |
| * the samevalue in the register to clear it. |
| */ |
| val64 = readq(&bar0->rx_traffic_int); |
| writeq(val64, &bar0->rx_traffic_int); |
| |
| for (i = 0; i < config->rx_ring_num; i++) { |
| get_info = mac_control->rx_curr_get_info[i]; |
| get_block = get_info.block_index; |
| put_info = mac_control->rx_curr_put_info[i]; |
| put_block = put_info.block_index; |
| ring_bufs = config->rx_cfg[i].num_rxd; |
| rxdp = nic->rx_blocks[i][get_block].block_virt_addr + |
| get_info.offset; |
| #ifndef CONFIG_2BUFF_MODE |
| get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| spin_lock(&nic->put_lock); |
| put_offset = nic->put_pos[i]; |
| spin_unlock(&nic->put_lock); |
| while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| (((get_offset + 1) % ring_bufs) != put_offset)) { |
| if (rxdp->Control_1 == END_OF_BLOCK) { |
| rxdp = (RxD_t *) ((unsigned long) |
| rxdp->Control_2); |
| get_info.offset++; |
| get_info.offset %= |
| (MAX_RXDS_PER_BLOCK + 1); |
| get_block++; |
| get_block %= nic->block_count[i]; |
| mac_control->rx_curr_get_info[i]. |
| offset = get_info.offset; |
| mac_control->rx_curr_get_info[i]. |
| block_index = get_block; |
| continue; |
| } |
| get_offset = |
| (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| skb = (struct sk_buff *) ((unsigned long) |
| rxdp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| return; |
| } |
| val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); |
| val16 = (u16) (val64 >> 48); |
| cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| dev->mtu + |
| HEADER_ETHERNET_II_802_3_SIZE + |
| HEADER_802_2_SIZE + |
| HEADER_SNAP_SIZE, |
| PCI_DMA_FROMDEVICE); |
| rx_osm_handler(nic, val16, rxdp, i); |
| get_info.offset++; |
| get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); |
| rxdp = |
| nic->rx_blocks[i][get_block].block_virt_addr + |
| get_info.offset; |
| mac_control->rx_curr_get_info[i].offset = |
| get_info.offset; |
| pkt_cnt++; |
| if ((indicate_max_pkts) |
| && (pkt_cnt > indicate_max_pkts)) |
| break; |
| } |
| #else |
| get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| spin_lock(&nic->put_lock); |
| put_offset = nic->put_pos[i]; |
| spin_unlock(&nic->put_lock); |
| while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| !(rxdp->Control_2 & BIT(0))) && |
| (((get_offset + 1) % ring_bufs) != put_offset)) { |
| skb = (struct sk_buff *) ((unsigned long) |
| rxdp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| return; |
| } |
| |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer0_ptr, |
| BUF0_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer1_ptr, |
| BUF1_LEN, PCI_DMA_FROMDEVICE); |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| rxdp->Buffer2_ptr, |
| dev->mtu + BUF0_LEN + 4, |
| PCI_DMA_FROMDEVICE); |
| ba = &nic->ba[i][get_block][get_info.offset]; |
| |
| rx_osm_handler(nic, rxdp, i, ba); |
| |
| get_info.offset++; |
| mac_control->rx_curr_get_info[i].offset = |
| get_info.offset; |
| rxdp = |
| nic->rx_blocks[i][get_block].block_virt_addr + |
| get_info.offset; |
| |
| if (get_info.offset && |
| (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { |
| get_info.offset = 0; |
| mac_control->rx_curr_get_info[i]. |
| offset = get_info.offset; |
| get_block++; |
| get_block %= nic->block_count[i]; |
| mac_control->rx_curr_get_info[i]. |
| block_index = get_block; |
| rxdp = |
| nic->rx_blocks[i][get_block]. |
| block_virt_addr; |
| } |
| get_offset = |
| (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| get_info.offset; |
| pkt_cnt++; |
| if ((indicate_max_pkts) |
| && (pkt_cnt > indicate_max_pkts)) |
| break; |
| } |
| #endif |
| if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) |
| break; |
| } |
| } |
| #endif |
| /** |
| * tx_intr_handler - Transmit interrupt handler |
| * @nic : device private variable |
| * Description: |
| * If an interrupt was raised to indicate DMA complete of the |
| * Tx packet, this function is called. It identifies the last TxD |
| * whose buffer was freed and frees all skbs whose data have already |
| * DMA'ed into the NICs internal memory. |
| * Return Value: |
| * NONE |
| */ |
| |
| static void tx_intr_handler(struct s2io_nic *nic) |
| { |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| struct net_device *dev = (struct net_device *) nic->dev; |
| tx_curr_get_info_t get_info, put_info; |
| struct sk_buff *skb; |
| TxD_t *txdlp; |
| register u64 val64 = 0; |
| int i; |
| u16 j, frg_cnt; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &nic->mac_control; |
| config = &nic->config; |
| |
| /* |
| * tx_traffic_int reg is an R1 register, hence we read and write |
| * back the samevalue in the register to clear it. |
| */ |
| val64 = readq(&bar0->tx_traffic_int); |
| writeq(val64, &bar0->tx_traffic_int); |
| |
| for (i = 0; i < config->tx_fifo_num; i++) { |
| get_info = mac_control->tx_curr_get_info[i]; |
| put_info = mac_control->tx_curr_put_info[i]; |
| txdlp = (TxD_t *) nic->list_info[i][get_info.offset]. |
| list_virt_addr; |
| while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && |
| (get_info.offset != put_info.offset) && |
| (txdlp->Host_Control)) { |
| /* Check for TxD errors */ |
| if (txdlp->Control_1 & TXD_T_CODE) { |
| unsigned long long err; |
| err = txdlp->Control_1 & TXD_T_CODE; |
| DBG_PRINT(ERR_DBG, "***TxD error %llx\n", |
| err); |
| } |
| |
| skb = (struct sk_buff *) ((unsigned long) |
| txdlp->Host_Control); |
| if (skb == NULL) { |
| DBG_PRINT(ERR_DBG, "%s: Null skb ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); |
| return; |
| } |
| nic->tx_pkt_count++; |
| |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| |
| /* For unfragmented skb */ |
| pci_unmap_single(nic->pdev, (dma_addr_t) |
| txdlp->Buffer_Pointer, |
| skb->len - skb->data_len, |
| PCI_DMA_TODEVICE); |
| if (frg_cnt) { |
| TxD_t *temp = txdlp; |
| txdlp++; |
| for (j = 0; j < frg_cnt; j++, txdlp++) { |
| skb_frag_t *frag = |
| &skb_shinfo(skb)->frags[j]; |
| pci_unmap_page(nic->pdev, |
| (dma_addr_t) |
| txdlp-> |
| Buffer_Pointer, |
| frag->size, |
| PCI_DMA_TODEVICE); |
| } |
| txdlp = temp; |
| } |
| memset(txdlp, 0, |
| (sizeof(TxD_t) * config->max_txds)); |
| |
| /* Updating the statistics block */ |
| nic->stats.tx_packets++; |
| nic->stats.tx_bytes += skb->len; |
| dev_kfree_skb_irq(skb); |
| |
| get_info.offset++; |
| get_info.offset %= get_info.fifo_len + 1; |
| txdlp = (TxD_t *) nic->list_info[i] |
| [get_info.offset].list_virt_addr; |
| mac_control->tx_curr_get_info[i].offset = |
| get_info.offset; |
| } |
| } |
| |
| spin_lock(&nic->tx_lock); |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| spin_unlock(&nic->tx_lock); |
| } |
| |
| /** |
| * alarm_intr_handler - Alarm Interrrupt handler |
| * @nic: device private variable |
| * Description: If the interrupt was neither because of Rx packet or Tx |
| * complete, this function is called. If the interrupt was to indicate |
| * a loss of link, the OSM link status handler is invoked for any other |
| * alarm interrupt the block that raised the interrupt is displayed |
| * and a H/W reset is issued. |
| * Return Value: |
| * NONE |
| */ |
| |
| static void alarm_intr_handler(struct s2io_nic *nic) |
| { |
| struct net_device *dev = (struct net_device *) nic->dev; |
| XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| register u64 val64 = 0, err_reg = 0; |
| |
| /* Handling link status change error Intr */ |
| err_reg = readq(&bar0->mac_rmac_err_reg); |
| writeq(err_reg, &bar0->mac_rmac_err_reg); |
| if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { |
| schedule_work(&nic->set_link_task); |
| } |
| |
| /* In case of a serious error, the device will be Reset. */ |
| val64 = readq(&bar0->serr_source); |
| if (val64 & SERR_SOURCE_ANY) { |
| DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); |
| DBG_PRINT(ERR_DBG, "serious error!!\n"); |
| netif_stop_queue(dev); |
| schedule_work(&nic->rst_timer_task); |
| } |
| |
| /* |
| * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC |
| * Error occurs, the adapter will be recycled by disabling the |
| * adapter enable bit and enabling it again after the device |
| * becomes Quiescent. |
| */ |
| val64 = readq(&bar0->pcc_err_reg); |
| writeq(val64, &bar0->pcc_err_reg); |
| if (val64 & PCC_FB_ECC_DB_ERR) { |
| u64 ac = readq(&bar0->adapter_control); |
| ac &= ~(ADAPTER_CNTL_EN); |
| writeq(ac, &bar0->adapter_control); |
| ac = readq(&bar0->adapter_control); |
| schedule_work(&nic->set_link_task); |
| } |
| |
| /* Other type of interrupts are not being handled now, TODO */ |
| } |
| |
| /** |
| * wait_for_cmd_complete - waits for a command to complete. |
| * @sp : private member of the device structure, which is a pointer to the |
| * s2io_nic structure. |
| * Description: Function that waits for a command to Write into RMAC |
| * ADDR DATA registers to be completed and returns either success or |
| * error depending on whether the command was complete or not. |
| * Return value: |
| * SUCCESS on success and FAILURE on failure. |
| */ |
| |
| static int wait_for_cmd_complete(nic_t * sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| int ret = FAILURE, cnt = 0; |
| u64 val64; |
| |
| while (TRUE) { |
| val64 = readq(&bar0->rmac_addr_cmd_mem); |
| if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { |
| ret = SUCCESS; |
| break; |
| } |
| msleep(50); |
| if (cnt++ > 10) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * s2io_reset - Resets the card. |
| * @sp : private member of the device structure. |
| * Description: Function to Reset the card. This function then also |
| * restores the previously saved PCI configuration space registers as |
| * the card reset also resets the configuration space. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_reset(nic_t * sp) |
| { |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64; |
| u16 subid; |
| |
| val64 = SW_RESET_ALL; |
| writeq(val64, &bar0->sw_reset); |
| |
| /* |
| * At this stage, if the PCI write is indeed completed, the |
| * card is reset and so is the PCI Config space of the device. |
| * So a read cannot be issued at this stage on any of the |
| * registers to ensure the write into "sw_reset" register |
| * has gone through. |
| * Question: Is there any system call that will explicitly force |
| * all the write commands still pending on the bus to be pushed |
| * through? |
| * As of now I'am just giving a 250ms delay and hoping that the |
| * PCI write to sw_reset register is done by this time. |
| */ |
| msleep(250); |
| |
| /* Restore the PCI state saved during initializarion. */ |
| pci_restore_state(sp->pdev); |
| s2io_init_pci(sp); |
| |
| msleep(250); |
| |
| /* SXE-002: Configure link and activity LED to turn it off */ |
| subid = sp->pdev->subsystem_device; |
| if ((subid & 0xFF) >= 0x07) { |
| val64 = readq(&bar0->gpio_control); |
| val64 |= 0x0000800000000000ULL; |
| writeq(val64, &bar0->gpio_control); |
| val64 = 0x0411040400000000ULL; |
| writeq(val64, (void __iomem *) bar0 + 0x2700); |
| } |
| |
| sp->device_enabled_once = FALSE; |
| } |
| |
| /** |
| * s2io_set_swapper - to set the swapper controle on the card |
| * @sp : private member of the device structure, |
| * pointer to the s2io_nic structure. |
| * Description: Function to set the swapper control on the card |
| * correctly depending on the 'endianness' of the system. |
| * Return value: |
| * SUCCESS on success and FAILURE on failure. |
| */ |
| |
| static int s2io_set_swapper(nic_t * sp) |
| { |
| struct net_device *dev = sp->dev; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64, valt, valr; |
| |
| /* |
| * Set proper endian settings and verify the same by reading |
| * the PIF Feed-back register. |
| */ |
| |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x0123456789ABCDEFULL) { |
| int i = 0; |
| u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ |
| 0x8100008181000081ULL, /* FE=1, SE=0 */ |
| 0x4200004242000042ULL, /* FE=0, SE=1 */ |
| 0}; /* FE=0, SE=0 */ |
| |
| while(i<4) { |
| writeq(value[i], &bar0->swapper_ctrl); |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 == 0x0123456789ABCDEFULL) |
| break; |
| i++; |
| } |
| if (i == 4) { |
| DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| valr = value[i]; |
| } else { |
| valr = readq(&bar0->swapper_ctrl); |
| } |
| |
| valt = 0x0123456789ABCDEFULL; |
| writeq(valt, &bar0->xmsi_address); |
| val64 = readq(&bar0->xmsi_address); |
| |
| if(val64 != valt) { |
| int i = 0; |
| u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ |
| 0x0081810000818100ULL, /* FE=1, SE=0 */ |
| 0x0042420000424200ULL, /* FE=0, SE=1 */ |
| 0}; /* FE=0, SE=0 */ |
| |
| while(i<4) { |
| writeq((value[i] | valr), &bar0->swapper_ctrl); |
| writeq(valt, &bar0->xmsi_address); |
| val64 = readq(&bar0->xmsi_address); |
| if(val64 == valt) |
| break; |
| i++; |
| } |
| if(i == 4) { |
| DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); |
| DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64); |
| return FAILURE; |
| } |
| } |
| val64 = readq(&bar0->swapper_ctrl); |
| val64 &= 0xFFFF000000000000ULL; |
| |
| #ifdef __BIG_ENDIAN |
| /* |
| * The device by default set to a big endian format, so a |
| * big endian driver need not set anything. |
| */ |
| val64 |= (SWAPPER_CTRL_TXP_FE | |
| SWAPPER_CTRL_TXP_SE | |
| SWAPPER_CTRL_TXD_R_FE | |
| SWAPPER_CTRL_TXD_W_FE | |
| SWAPPER_CTRL_TXF_R_FE | |
| SWAPPER_CTRL_RXD_R_FE | |
| SWAPPER_CTRL_RXD_W_FE | |
| SWAPPER_CTRL_RXF_W_FE | |
| SWAPPER_CTRL_XMSI_FE | |
| SWAPPER_CTRL_XMSI_SE | |
| SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| writeq(val64, &bar0->swapper_ctrl); |
| #else |
| /* |
| * Initially we enable all bits to make it accessible by the |
| * driver, then we selectively enable only those bits that |
| * we want to set. |
| */ |
| val64 |= (SWAPPER_CTRL_TXP_FE | |
| SWAPPER_CTRL_TXP_SE | |
| SWAPPER_CTRL_TXD_R_FE | |
| SWAPPER_CTRL_TXD_R_SE | |
| SWAPPER_CTRL_TXD_W_FE | |
| SWAPPER_CTRL_TXD_W_SE | |
| SWAPPER_CTRL_TXF_R_FE | |
| SWAPPER_CTRL_RXD_R_FE | |
| SWAPPER_CTRL_RXD_R_SE | |
| SWAPPER_CTRL_RXD_W_FE | |
| SWAPPER_CTRL_RXD_W_SE | |
| SWAPPER_CTRL_RXF_W_FE | |
| SWAPPER_CTRL_XMSI_FE | |
| SWAPPER_CTRL_XMSI_SE | |
| SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| writeq(val64, &bar0->swapper_ctrl); |
| #endif |
| val64 = readq(&bar0->swapper_ctrl); |
| |
| /* |
| * Verifying if endian settings are accurate by reading a |
| * feedback register. |
| */ |
| val64 = readq(&bar0->pif_rd_swapper_fb); |
| if (val64 != 0x0123456789ABCDEFULL) { |
| /* Endian settings are incorrect, calls for another dekko. */ |
| DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| (unsigned long long) val64); |
| return FAILURE; |
| } |
| |
| return SUCCESS; |
| } |
| |
| /* ********************************************************* * |
| * Functions defined below concern the OS part of the driver * |
| * ********************************************************* */ |
| |
| /** |
| * s2io_open - open entry point of the driver |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function is the open entry point of the driver. It mainly calls a |
| * function to allocate Rx buffers and inserts them into the buffer |
| * descriptors and then enables the Rx part of the NIC. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| static int s2io_open(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| int err = 0; |
| |
| /* |
| * Make sure you have link off by default every time |
| * Nic is initialized |
| */ |
| netif_carrier_off(dev); |
| sp->last_link_state = LINK_DOWN; |
| |
| /* Initialize H/W and enable interrupts */ |
| if (s2io_card_up(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| dev->name); |
| return -ENODEV; |
| } |
| |
| /* After proper initialization of H/W, register ISR */ |
| err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, |
| sp->name, dev); |
| if (err) { |
| s2io_reset(sp); |
| DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", |
| dev->name); |
| return err; |
| } |
| |
| if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { |
| DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); |
| s2io_reset(sp); |
| return -ENODEV; |
| } |
| |
| netif_start_queue(dev); |
| return 0; |
| } |
| |
| /** |
| * s2io_close -close entry point of the driver |
| * @dev : device pointer. |
| * Description: |
| * This is the stop entry point of the driver. It needs to undo exactly |
| * whatever was done by the open entry point,thus it's usually referred to |
| * as the close function.Among other things this function mainly stops the |
| * Rx side of the NIC and frees all the Rx buffers in the Rx rings. |
| * Return value: |
| * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| * file on failure. |
| */ |
| |
| static int s2io_close(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| |
| flush_scheduled_work(); |
| netif_stop_queue(dev); |
| /* Reset card, kill tasklet and free Tx and Rx buffers. */ |
| s2io_card_down(sp); |
| |
| free_irq(dev->irq, dev); |
| sp->device_close_flag = TRUE; /* Device is shut down. */ |
| return 0; |
| } |
| |
| /** |
| * s2io_xmit - Tx entry point of te driver |
| * @skb : the socket buffer containing the Tx data. |
| * @dev : device pointer. |
| * Description : |
| * This function is the Tx entry point of the driver. S2IO NIC supports |
| * certain protocol assist features on Tx side, namely CSO, S/G, LSO. |
| * NOTE: when device cant queue the pkt,just the trans_start variable will |
| * not be upadted. |
| * Return value: |
| * 0 on success & 1 on failure. |
| */ |
| |
| static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; |
| register u64 val64; |
| TxD_t *txdp; |
| TxFIFO_element_t __iomem *tx_fifo; |
| unsigned long flags; |
| #ifdef NETIF_F_TSO |
| int mss; |
| #endif |
| mac_info_t *mac_control; |
| struct config_param *config; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name); |
| spin_lock_irqsave(&sp->tx_lock, flags); |
| |
| if (atomic_read(&sp->card_state) == CARD_DOWN) { |
| DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n", |
| dev->name); |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| return 1; |
| } |
| |
| queue = 0; |
| put_off = (u16) mac_control->tx_curr_put_info[queue].offset; |
| get_off = (u16) mac_control->tx_curr_get_info[queue].offset; |
| txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr; |
| |
| queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1; |
| /* Avoid "put" pointer going beyond "get" pointer */ |
| if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { |
| DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); |
| netif_stop_queue(dev); |
| dev_kfree_skb(skb); |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| return 0; |
| } |
| #ifdef NETIF_F_TSO |
| mss = skb_shinfo(skb)->tso_size; |
| if (mss) { |
| txdp->Control_1 |= TXD_TCP_LSO_EN; |
| txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); |
| } |
| #endif |
| |
| frg_cnt = skb_shinfo(skb)->nr_frags; |
| frg_len = skb->len - skb->data_len; |
| |
| txdp->Host_Control = (unsigned long) skb; |
| txdp->Buffer_Pointer = pci_map_single |
| (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); |
| if (skb->ip_summed == CHECKSUM_HW) { |
| txdp->Control_2 |= |
| (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | |
| TXD_TX_CKO_UDP_EN); |
| } |
| |
| txdp->Control_2 |= config->tx_intr_type; |
| |
| txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | |
| TXD_GATHER_CODE_FIRST); |
| txdp->Control_1 |= TXD_LIST_OWN_XENA; |
| |
| /* For fragmented SKB. */ |
| for (i = 0; i < frg_cnt; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| txdp++; |
| txdp->Buffer_Pointer = (u64) pci_map_page |
| (sp->pdev, frag->page, frag->page_offset, |
| frag->size, PCI_DMA_TODEVICE); |
| txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); |
| } |
| txdp->Control_1 |= TXD_GATHER_CODE_LAST; |
| |
| tx_fifo = mac_control->tx_FIFO_start[queue]; |
| val64 = sp->list_info[queue][put_off].list_phy_addr; |
| writeq(val64, &tx_fifo->TxDL_Pointer); |
| |
| val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | |
| TX_FIFO_LAST_LIST); |
| #ifdef NETIF_F_TSO |
| if (mss) |
| val64 |= TX_FIFO_SPECIAL_FUNC; |
| #endif |
| writeq(val64, &tx_fifo->List_Control); |
| |
| /* Perform a PCI read to flush previous writes */ |
| val64 = readq(&bar0->general_int_status); |
| |
| put_off++; |
| put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1; |
| mac_control->tx_curr_put_info[queue].offset = put_off; |
| |
| /* Avoid "put" pointer going beyond "get" pointer */ |
| if (((put_off + 1) % queue_len) == get_off) { |
| DBG_PRINT(TX_DBG, |
| "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", |
| put_off, get_off); |
| netif_stop_queue(dev); |
| } |
| |
| dev->trans_start = jiffies; |
| spin_unlock_irqrestore(&sp->tx_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * s2io_isr - ISR handler of the device . |
| * @irq: the irq of the device. |
| * @dev_id: a void pointer to the dev structure of the NIC. |
| * @pt_regs: pointer to the registers pushed on the stack. |
| * Description: This function is the ISR handler of the device. It |
| * identifies the reason for the interrupt and calls the relevant |
| * service routines. As a contongency measure, this ISR allocates the |
| * recv buffers, if their numbers are below the panic value which is |
| * presently set to 25% of the original number of rcv buffers allocated. |
| * Return value: |
| * IRQ_HANDLED: will be returned if IRQ was handled by this routine |
| * IRQ_NONE: will be returned if interrupt is not from our device |
| */ |
| static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| #ifndef CONFIG_S2IO_NAPI |
| int i, ret; |
| #endif |
| u64 reason = 0; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| /* |
| * Identify the cause for interrupt and call the appropriate |
| * interrupt handler. Causes for the interrupt could be; |
| * 1. Rx of packet. |
| * 2. Tx complete. |
| * 3. Link down. |
| * 4. Error in any functional blocks of the NIC. |
| */ |
| reason = readq(&bar0->general_int_status); |
| |
| if (!reason) { |
| /* The interrupt was not raised by Xena. */ |
| return IRQ_NONE; |
| } |
| |
| /* If Intr is because of Tx Traffic */ |
| if (reason & GEN_INTR_TXTRAFFIC) { |
| tx_intr_handler(sp); |
| } |
| |
| /* If Intr is because of an error */ |
| if (reason & (GEN_ERROR_INTR)) |
| alarm_intr_handler(sp); |
| |
| #ifdef CONFIG_S2IO_NAPI |
| if (reason & GEN_INTR_RXTRAFFIC) { |
| if (netif_rx_schedule_prep(dev)) { |
| en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, |
| DISABLE_INTRS); |
| __netif_rx_schedule(dev); |
| } |
| } |
| #else |
| /* If Intr is because of Rx Traffic */ |
| if (reason & GEN_INTR_RXTRAFFIC) { |
| rx_intr_handler(sp); |
| } |
| #endif |
| |
| /* |
| * If the Rx buffer count is below the panic threshold then |
| * reallocate the buffers from the interrupt handler itself, |
| * else schedule a tasklet to reallocate the buffers. |
| */ |
| #ifndef CONFIG_S2IO_NAPI |
| for (i = 0; i < config->rx_ring_num; i++) { |
| int rxb_size = atomic_read(&sp->rx_bufs_left[i]); |
| int level = rx_buffer_level(sp, rxb_size, i); |
| |
| if ((level == PANIC) && (!TASKLET_IN_USE)) { |
| DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); |
| DBG_PRINT(INTR_DBG, "PANIC levels\n"); |
| if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { |
| DBG_PRINT(ERR_DBG, "%s:Out of memory", |
| dev->name); |
| DBG_PRINT(ERR_DBG, " in ISR!!\n"); |
| clear_bit(0, (&sp->tasklet_status)); |
| return IRQ_HANDLED; |
| } |
| clear_bit(0, (&sp->tasklet_status)); |
| } else if (level == LOW) { |
| tasklet_schedule(&sp->task); |
| } |
| } |
| #endif |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * s2io_get_stats - Updates the device statistics structure. |
| * @dev : pointer to the device structure. |
| * Description: |
| * This function updates the device statistics structure in the s2io_nic |
| * structure and returns a pointer to the same. |
| * Return value: |
| * pointer to the updated net_device_stats structure. |
| */ |
| |
| static struct net_device_stats *s2io_get_stats(struct net_device *dev) |
| { |
| nic_t *sp = dev->priv; |
| mac_info_t *mac_control; |
| struct config_param *config; |
| |
| mac_control = &sp->mac_control; |
| config = &sp->config; |
| |
| sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms; |
| sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms; |
| sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms; |
| sp->stats.rx_length_errors = |
| mac_control->stats_info->rmac_long_frms; |
| |
| return (&sp->stats); |
| } |
| |
| /** |
| * s2io_set_multicast - entry point for multicast address enable/disable. |
| * @dev : pointer to the device structure |
| * Description: |
| * This function is a driver entry point which gets called by the kernel |
| * whenever multicast addresses must be enabled/disabled. This also gets |
| * called to set/reset promiscuous mode. Depending on the deivce flag, we |
| * determine, if multicast address must be enabled or if promiscuous mode |
| * is to be disabled etc. |
| * Return value: |
| * void. |
| */ |
| |
| static void s2io_set_multicast(struct net_device *dev) |
| { |
| int i, j, prev_cnt; |
| struct dev_mc_list *mclist; |
| nic_t *sp = dev->priv; |
| XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = |
| 0xfeffffffffffULL; |
| u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; |
| void __iomem *add; |
| |
| if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { |
| /* Enable all Multicast addresses */ |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| wait_for_cmd_complete(sp); |
| |
| sp->m_cast_flg = 1; |
| sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; |
| } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { |
| /* Disable all Multicast addresses */ |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| &bar0->rmac_addr_data0_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| /* Wait till command completes */ |
| wait_for_cmd_complete(sp); |
| |
| sp->m_cast_flg = 0; |
| sp->all_multi_pos = 0; |
| } |
| |
| if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { |
| /* Put the NIC into promiscuous mode */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 |= MAC_CFG_RMAC_PROM_ENABLE; |
| |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| val64 = readq(&bar0->mac_cfg); |
| sp->promisc_flg = 1; |
| DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", |
| dev->name); |
| } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { |
| /* Remove the NIC from promiscuous mode */ |
| add = &bar0->mac_cfg; |
| val64 = readq(&bar0->mac_cfg); |
| val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; |
| |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) val64, add); |
| writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| writel((u32) (val64 >> 32), (add + 4)); |
| |
| val64 = readq(&bar0->mac_cfg); |
| sp->promisc_flg = 0; |
| DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", |
| dev->name); |
| } |
| |
| /* Update individual M_CAST address list */ |
| if ((!sp->m_cast_flg) && dev->mc_count) { |
| if (dev->mc_count > |
| (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { |
| DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "can be added, please enable "); |
| DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); |
| return; |
| } |
| |
| prev_cnt = sp->mc_addr_count; |
| sp->mc_addr_count = dev->mc_count; |
| |
| /* Clear out the previous list of Mc in the H/W. */ |
| for (i = 0; i < prev_cnt; i++) { |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| &bar0->rmac_addr_data1_mem); |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| RMAC_ADDR_CMD_MEM_OFFSET |
| (MAC_MC_ADDR_START_OFFSET + i); |
| writeq(val64, &bar0->rmac_addr_cmd_mem); |
| |
| /* Wait for command completes */ |
| if (wait_for_cmd_complete(sp)) { |
| DBG_PRINT(ERR_DBG, "%s: Adding ", |
| dev->name); |
| DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| return; |
| } |
| } |
| |
| /* Create the new Rx filter list and update the same in H/W. */ |
| for (i = 0, mclist = dev->mc_list; i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, |
| ETH_ALEN); |
| for (j = 0; j < ETH_ALEN; j++) { |
| mac_addr |= mclist->dmi_addr[j]; |
| mac_addr <<= 8; |
| } |
| mac_addr >>= 8; |
| writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), |
| &bar0->rmac_addr_data0_mem); |
| writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| &bar0->rmac_addr_data1_mem); |
| |
| val64 = RMAC_ADDR_CMD_MEM_WE | |
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
|