| /* |
| * This file implements the perfmon-2 subsystem which is used |
| * to program the IA-64 Performance Monitoring Unit (PMU). |
| * |
| * The initial version of perfmon.c was written by |
| * Ganesh Venkitachalam, IBM Corp. |
| * |
| * Then it was modified for perfmon-1.x by Stephane Eranian and |
| * David Mosberger, Hewlett Packard Co. |
| * |
| * Version Perfmon-2.x is a rewrite of perfmon-1.x |
| * by Stephane Eranian, Hewlett Packard Co. |
| * |
| * Copyright (C) 1999-2005 Hewlett Packard Co |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * More information about perfmon available at: |
| * http://www.hpl.hp.com/research/linux/perfmon |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp_lock.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mm.h> |
| #include <linux/sysctl.h> |
| #include <linux/list.h> |
| #include <linux/file.h> |
| #include <linux/poll.h> |
| #include <linux/vfs.h> |
| #include <linux/pagemap.h> |
| #include <linux/mount.h> |
| #include <linux/version.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/errno.h> |
| #include <asm/intrinsics.h> |
| #include <asm/page.h> |
| #include <asm/perfmon.h> |
| #include <asm/processor.h> |
| #include <asm/signal.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/delay.h> |
| |
| #ifdef CONFIG_PERFMON |
| /* |
| * perfmon context state |
| */ |
| #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */ |
| #define PFM_CTX_LOADED 2 /* context is loaded onto a task */ |
| #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */ |
| #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */ |
| |
| #define PFM_INVALID_ACTIVATION (~0UL) |
| |
| /* |
| * depth of message queue |
| */ |
| #define PFM_MAX_MSGS 32 |
| #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail) |
| |
| /* |
| * type of a PMU register (bitmask). |
| * bitmask structure: |
| * bit0 : register implemented |
| * bit1 : end marker |
| * bit2-3 : reserved |
| * bit4 : pmc has pmc.pm |
| * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter |
| * bit6-7 : register type |
| * bit8-31: reserved |
| */ |
| #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */ |
| #define PFM_REG_IMPL 0x1 /* register implemented */ |
| #define PFM_REG_END 0x2 /* end marker */ |
| #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */ |
| #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */ |
| #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */ |
| #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */ |
| #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */ |
| |
| #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END) |
| #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END) |
| |
| #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY) |
| |
| /* i assumed unsigned */ |
| #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL)) |
| #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL)) |
| |
| /* XXX: these assume that register i is implemented */ |
| #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) |
| #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) |
| #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR) |
| #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL) |
| |
| #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value |
| #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask |
| #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0] |
| #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0] |
| |
| #define PFM_NUM_IBRS IA64_NUM_DBG_REGS |
| #define PFM_NUM_DBRS IA64_NUM_DBG_REGS |
| |
| #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0) |
| #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling) |
| #define PFM_CTX_TASK(h) (h)->ctx_task |
| |
| #define PMU_PMC_OI 5 /* position of pmc.oi bit */ |
| |
| /* XXX: does not support more than 64 PMDs */ |
| #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask) |
| #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL) |
| |
| #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask) |
| |
| #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64) |
| #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64) |
| #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1) |
| #define PFM_CODE_RR 0 /* requesting code range restriction */ |
| #define PFM_DATA_RR 1 /* requestion data range restriction */ |
| |
| #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v) |
| #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v) |
| #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info) |
| |
| #define RDEP(x) (1UL<<(x)) |
| |
| /* |
| * context protection macros |
| * in SMP: |
| * - we need to protect against CPU concurrency (spin_lock) |
| * - we need to protect against PMU overflow interrupts (local_irq_disable) |
| * in UP: |
| * - we need to protect against PMU overflow interrupts (local_irq_disable) |
| * |
| * spin_lock_irqsave()/spin_lock_irqrestore(): |
| * in SMP: local_irq_disable + spin_lock |
| * in UP : local_irq_disable |
| * |
| * spin_lock()/spin_lock(): |
| * in UP : removed automatically |
| * in SMP: protect against context accesses from other CPU. interrupts |
| * are not masked. This is useful for the PMU interrupt handler |
| * because we know we will not get PMU concurrency in that code. |
| */ |
| #define PROTECT_CTX(c, f) \ |
| do { \ |
| DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \ |
| spin_lock_irqsave(&(c)->ctx_lock, f); \ |
| DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \ |
| } while(0) |
| |
| #define UNPROTECT_CTX(c, f) \ |
| do { \ |
| DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \ |
| spin_unlock_irqrestore(&(c)->ctx_lock, f); \ |
| } while(0) |
| |
| #define PROTECT_CTX_NOPRINT(c, f) \ |
| do { \ |
| spin_lock_irqsave(&(c)->ctx_lock, f); \ |
| } while(0) |
| |
| |
| #define UNPROTECT_CTX_NOPRINT(c, f) \ |
| do { \ |
| spin_unlock_irqrestore(&(c)->ctx_lock, f); \ |
| } while(0) |
| |
| |
| #define PROTECT_CTX_NOIRQ(c) \ |
| do { \ |
| spin_lock(&(c)->ctx_lock); \ |
| } while(0) |
| |
| #define UNPROTECT_CTX_NOIRQ(c) \ |
| do { \ |
| spin_unlock(&(c)->ctx_lock); \ |
| } while(0) |
| |
| |
| #ifdef CONFIG_SMP |
| |
| #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number) |
| #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++ |
| #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION() |
| |
| #else /* !CONFIG_SMP */ |
| #define SET_ACTIVATION(t) do {} while(0) |
| #define GET_ACTIVATION(t) do {} while(0) |
| #define INC_ACTIVATION(t) do {} while(0) |
| #endif /* CONFIG_SMP */ |
| |
| #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0) |
| #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner) |
| #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx) |
| |
| #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g) |
| #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g) |
| |
| #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0) |
| |
| /* |
| * cmp0 must be the value of pmc0 |
| */ |
| #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL) |
| |
| #define PFMFS_MAGIC 0xa0b4d889 |
| |
| /* |
| * debugging |
| */ |
| #define PFM_DEBUGGING 1 |
| #ifdef PFM_DEBUGGING |
| #define DPRINT(a) \ |
| do { \ |
| if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \ |
| } while (0) |
| |
| #define DPRINT_ovfl(a) \ |
| do { \ |
| if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \ |
| } while (0) |
| #endif |
| |
| /* |
| * 64-bit software counter structure |
| * |
| * the next_reset_type is applied to the next call to pfm_reset_regs() |
| */ |
| typedef struct { |
| unsigned long val; /* virtual 64bit counter value */ |
| unsigned long lval; /* last reset value */ |
| unsigned long long_reset; /* reset value on sampling overflow */ |
| unsigned long short_reset; /* reset value on overflow */ |
| unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */ |
| unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */ |
| unsigned long seed; /* seed for random-number generator */ |
| unsigned long mask; /* mask for random-number generator */ |
| unsigned int flags; /* notify/do not notify */ |
| unsigned long eventid; /* overflow event identifier */ |
| } pfm_counter_t; |
| |
| /* |
| * context flags |
| */ |
| typedef struct { |
| unsigned int block:1; /* when 1, task will blocked on user notifications */ |
| unsigned int system:1; /* do system wide monitoring */ |
| unsigned int using_dbreg:1; /* using range restrictions (debug registers) */ |
| unsigned int is_sampling:1; /* true if using a custom format */ |
| unsigned int excl_idle:1; /* exclude idle task in system wide session */ |
| unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */ |
| unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */ |
| unsigned int no_msg:1; /* no message sent on overflow */ |
| unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */ |
| unsigned int reserved:22; |
| } pfm_context_flags_t; |
| |
| #define PFM_TRAP_REASON_NONE 0x0 /* default value */ |
| #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */ |
| #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */ |
| |
| |
| /* |
| * perfmon context: encapsulates all the state of a monitoring session |
| */ |
| |
| typedef struct pfm_context { |
| spinlock_t ctx_lock; /* context protection */ |
| |
| pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */ |
| unsigned int ctx_state; /* state: active/inactive (no bitfield) */ |
| |
| struct task_struct *ctx_task; /* task to which context is attached */ |
| |
| unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */ |
| |
| struct semaphore ctx_restart_sem; /* use for blocking notification mode */ |
| |
| unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */ |
| unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */ |
| unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */ |
| |
| unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */ |
| unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */ |
| unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */ |
| |
| unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */ |
| |
| unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */ |
| unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */ |
| unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */ |
| unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */ |
| |
| pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */ |
| |
| u64 ctx_saved_psr_up; /* only contains psr.up value */ |
| |
| unsigned long ctx_last_activation; /* context last activation number for last_cpu */ |
| unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */ |
| unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */ |
| |
| int ctx_fd; /* file descriptor used my this context */ |
| pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */ |
| |
| pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */ |
| void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */ |
| unsigned long ctx_smpl_size; /* size of sampling buffer */ |
| void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */ |
| |
| wait_queue_head_t ctx_msgq_wait; |
| pfm_msg_t ctx_msgq[PFM_MAX_MSGS]; |
| int ctx_msgq_head; |
| int ctx_msgq_tail; |
| struct fasync_struct *ctx_async_queue; |
| |
| wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */ |
| } pfm_context_t; |
| |
| /* |
| * magic number used to verify that structure is really |
| * a perfmon context |
| */ |
| #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops) |
| |
| #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context) |
| |
| #ifdef CONFIG_SMP |
| #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v) |
| #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu |
| #else |
| #define SET_LAST_CPU(ctx, v) do {} while(0) |
| #define GET_LAST_CPU(ctx) do {} while(0) |
| #endif |
| |
| |
| #define ctx_fl_block ctx_flags.block |
| #define ctx_fl_system ctx_flags.system |
| #define ctx_fl_using_dbreg ctx_flags.using_dbreg |
| #define ctx_fl_is_sampling ctx_flags.is_sampling |
| #define ctx_fl_excl_idle ctx_flags.excl_idle |
| #define ctx_fl_going_zombie ctx_flags.going_zombie |
| #define ctx_fl_trap_reason ctx_flags.trap_reason |
| #define ctx_fl_no_msg ctx_flags.no_msg |
| #define ctx_fl_can_restart ctx_flags.can_restart |
| |
| #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0); |
| #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking |
| |
| /* |
| * global information about all sessions |
| * mostly used to synchronize between system wide and per-process |
| */ |
| typedef struct { |
| spinlock_t pfs_lock; /* lock the structure */ |
| |
| unsigned int pfs_task_sessions; /* number of per task sessions */ |
| unsigned int pfs_sys_sessions; /* number of per system wide sessions */ |
| unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */ |
| unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */ |
| struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */ |
| } pfm_session_t; |
| |
| /* |
| * information about a PMC or PMD. |
| * dep_pmd[]: a bitmask of dependent PMD registers |
| * dep_pmc[]: a bitmask of dependent PMC registers |
| */ |
| typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs); |
| typedef struct { |
| unsigned int type; |
| int pm_pos; |
| unsigned long default_value; /* power-on default value */ |
| unsigned long reserved_mask; /* bitmask of reserved bits */ |
| pfm_reg_check_t read_check; |
| pfm_reg_check_t write_check; |
| unsigned long dep_pmd[4]; |
| unsigned long dep_pmc[4]; |
| } pfm_reg_desc_t; |
| |
| /* assume cnum is a valid monitor */ |
| #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1) |
| |
| /* |
| * This structure is initialized at boot time and contains |
| * a description of the PMU main characteristics. |
| * |
| * If the probe function is defined, detection is based |
| * on its return value: |
| * - 0 means recognized PMU |
| * - anything else means not supported |
| * When the probe function is not defined, then the pmu_family field |
| * is used and it must match the host CPU family such that: |
| * - cpu->family & config->pmu_family != 0 |
| */ |
| typedef struct { |
| unsigned long ovfl_val; /* overflow value for counters */ |
| |
| pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */ |
| pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */ |
| |
| unsigned int num_pmcs; /* number of PMCS: computed at init time */ |
| unsigned int num_pmds; /* number of PMDS: computed at init time */ |
| unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */ |
| unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */ |
| |
| char *pmu_name; /* PMU family name */ |
| unsigned int pmu_family; /* cpuid family pattern used to identify pmu */ |
| unsigned int flags; /* pmu specific flags */ |
| unsigned int num_ibrs; /* number of IBRS: computed at init time */ |
| unsigned int num_dbrs; /* number of DBRS: computed at init time */ |
| unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */ |
| int (*probe)(void); /* customized probe routine */ |
| unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */ |
| } pmu_config_t; |
| /* |
| * PMU specific flags |
| */ |
| #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */ |
| |
| /* |
| * debug register related type definitions |
| */ |
| typedef struct { |
| unsigned long ibr_mask:56; |
| unsigned long ibr_plm:4; |
| unsigned long ibr_ig:3; |
| unsigned long ibr_x:1; |
| } ibr_mask_reg_t; |
| |
| typedef struct { |
| unsigned long dbr_mask:56; |
| unsigned long dbr_plm:4; |
| unsigned long dbr_ig:2; |
| unsigned long dbr_w:1; |
| unsigned long dbr_r:1; |
| } dbr_mask_reg_t; |
| |
| typedef union { |
| unsigned long val; |
| ibr_mask_reg_t ibr; |
| dbr_mask_reg_t dbr; |
| } dbreg_t; |
| |
| |
| /* |
| * perfmon command descriptions |
| */ |
| typedef struct { |
| int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| char *cmd_name; |
| int cmd_flags; |
| unsigned int cmd_narg; |
| size_t cmd_argsize; |
| int (*cmd_getsize)(void *arg, size_t *sz); |
| } pfm_cmd_desc_t; |
| |
| #define PFM_CMD_FD 0x01 /* command requires a file descriptor */ |
| #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */ |
| #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */ |
| #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */ |
| |
| |
| #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name |
| #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ) |
| #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW) |
| #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD) |
| #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP) |
| |
| #define PFM_CMD_ARG_MANY -1 /* cannot be zero */ |
| |
| typedef struct { |
| unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */ |
| unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */ |
| unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */ |
| unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */ |
| unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */ |
| unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */ |
| unsigned long pfm_smpl_handler_calls; |
| unsigned long pfm_smpl_handler_cycles; |
| char pad[SMP_CACHE_BYTES] ____cacheline_aligned; |
| } pfm_stats_t; |
| |
| /* |
| * perfmon internal variables |
| */ |
| static pfm_stats_t pfm_stats[NR_CPUS]; |
| static pfm_session_t pfm_sessions; /* global sessions information */ |
| |
| static spinlock_t pfm_alt_install_check = SPIN_LOCK_UNLOCKED; |
| static pfm_intr_handler_desc_t *pfm_alt_intr_handler; |
| |
| static struct proc_dir_entry *perfmon_dir; |
| static pfm_uuid_t pfm_null_uuid = {0,}; |
| |
| static spinlock_t pfm_buffer_fmt_lock; |
| static LIST_HEAD(pfm_buffer_fmt_list); |
| |
| static pmu_config_t *pmu_conf; |
| |
| /* sysctl() controls */ |
| pfm_sysctl_t pfm_sysctl; |
| EXPORT_SYMBOL(pfm_sysctl); |
| |
| static ctl_table pfm_ctl_table[]={ |
| {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,}, |
| {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,}, |
| {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,}, |
| {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,}, |
| { 0, }, |
| }; |
| static ctl_table pfm_sysctl_dir[] = { |
| {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, }, |
| {0,}, |
| }; |
| static ctl_table pfm_sysctl_root[] = { |
| {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, }, |
| {0,}, |
| }; |
| static struct ctl_table_header *pfm_sysctl_header; |
| |
| static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| static int pfm_flush(struct file *filp); |
| |
| #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v) |
| #define pfm_get_cpu_data(a,b) per_cpu(a, b) |
| |
| static inline void |
| pfm_put_task(struct task_struct *task) |
| { |
| if (task != current) put_task_struct(task); |
| } |
| |
| static inline void |
| pfm_set_task_notify(struct task_struct *task) |
| { |
| struct thread_info *info; |
| |
| info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE); |
| set_bit(TIF_NOTIFY_RESUME, &info->flags); |
| } |
| |
| static inline void |
| pfm_clear_task_notify(void) |
| { |
| clear_thread_flag(TIF_NOTIFY_RESUME); |
| } |
| |
| static inline void |
| pfm_reserve_page(unsigned long a) |
| { |
| SetPageReserved(vmalloc_to_page((void *)a)); |
| } |
| static inline void |
| pfm_unreserve_page(unsigned long a) |
| { |
| ClearPageReserved(vmalloc_to_page((void*)a)); |
| } |
| |
| static inline unsigned long |
| pfm_protect_ctx_ctxsw(pfm_context_t *x) |
| { |
| spin_lock(&(x)->ctx_lock); |
| return 0UL; |
| } |
| |
| static inline unsigned long |
| pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) |
| { |
| spin_unlock(&(x)->ctx_lock); |
| } |
| |
| static inline unsigned int |
| pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct) |
| { |
| return do_munmap(mm, addr, len); |
| } |
| |
| static inline unsigned long |
| pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec) |
| { |
| return get_unmapped_area(file, addr, len, pgoff, flags); |
| } |
| |
| |
| static struct super_block * |
| pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) |
| { |
| return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC); |
| } |
| |
| static struct file_system_type pfm_fs_type = { |
| .name = "pfmfs", |
| .get_sb = pfmfs_get_sb, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| DEFINE_PER_CPU(unsigned long, pfm_syst_info); |
| DEFINE_PER_CPU(struct task_struct *, pmu_owner); |
| DEFINE_PER_CPU(pfm_context_t *, pmu_ctx); |
| DEFINE_PER_CPU(unsigned long, pmu_activation_number); |
| EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info); |
| |
| |
| /* forward declaration */ |
| static struct file_operations pfm_file_ops; |
| |
| /* |
| * forward declarations |
| */ |
| #ifndef CONFIG_SMP |
| static void pfm_lazy_save_regs (struct task_struct *ta); |
| #endif |
| |
| void dump_pmu_state(const char *); |
| static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); |
| |
| #include "perfmon_itanium.h" |
| #include "perfmon_mckinley.h" |
| #include "perfmon_generic.h" |
| |
| static pmu_config_t *pmu_confs[]={ |
| &pmu_conf_mck, |
| &pmu_conf_ita, |
| &pmu_conf_gen, /* must be last */ |
| NULL |
| }; |
| |
| |
| static int pfm_end_notify_user(pfm_context_t *ctx); |
| |
| static inline void |
| pfm_clear_psr_pp(void) |
| { |
| ia64_rsm(IA64_PSR_PP); |
| ia64_srlz_i(); |
| } |
| |
| static inline void |
| pfm_set_psr_pp(void) |
| { |
| ia64_ssm(IA64_PSR_PP); |
| ia64_srlz_i(); |
| } |
| |
| static inline void |
| pfm_clear_psr_up(void) |
| { |
| ia64_rsm(IA64_PSR_UP); |
| ia64_srlz_i(); |
| } |
| |
| static inline void |
| pfm_set_psr_up(void) |
| { |
| ia64_ssm(IA64_PSR_UP); |
| ia64_srlz_i(); |
| } |
| |
| static inline unsigned long |
| pfm_get_psr(void) |
| { |
| unsigned long tmp; |
| tmp = ia64_getreg(_IA64_REG_PSR); |
| ia64_srlz_i(); |
| return tmp; |
| } |
| |
| static inline void |
| pfm_set_psr_l(unsigned long val) |
| { |
| ia64_setreg(_IA64_REG_PSR_L, val); |
| ia64_srlz_i(); |
| } |
| |
| static inline void |
| pfm_freeze_pmu(void) |
| { |
| ia64_set_pmc(0,1UL); |
| ia64_srlz_d(); |
| } |
| |
| static inline void |
| pfm_unfreeze_pmu(void) |
| { |
| ia64_set_pmc(0,0UL); |
| ia64_srlz_d(); |
| } |
| |
| static inline void |
| pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs) |
| { |
| int i; |
| |
| for (i=0; i < nibrs; i++) { |
| ia64_set_ibr(i, ibrs[i]); |
| ia64_dv_serialize_instruction(); |
| } |
| ia64_srlz_i(); |
| } |
| |
| static inline void |
| pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs) |
| { |
| int i; |
| |
| for (i=0; i < ndbrs; i++) { |
| ia64_set_dbr(i, dbrs[i]); |
| ia64_dv_serialize_data(); |
| } |
| ia64_srlz_d(); |
| } |
| |
| /* |
| * PMD[i] must be a counter. no check is made |
| */ |
| static inline unsigned long |
| pfm_read_soft_counter(pfm_context_t *ctx, int i) |
| { |
| return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val); |
| } |
| |
| /* |
| * PMD[i] must be a counter. no check is made |
| */ |
| static inline void |
| pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val) |
| { |
| unsigned long ovfl_val = pmu_conf->ovfl_val; |
| |
| ctx->ctx_pmds[i].val = val & ~ovfl_val; |
| /* |
| * writing to unimplemented part is ignore, so we do not need to |
| * mask off top part |
| */ |
| ia64_set_pmd(i, val & ovfl_val); |
| } |
| |
| static pfm_msg_t * |
| pfm_get_new_msg(pfm_context_t *ctx) |
| { |
| int idx, next; |
| |
| next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS; |
| |
| DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); |
| if (next == ctx->ctx_msgq_head) return NULL; |
| |
| idx = ctx->ctx_msgq_tail; |
| ctx->ctx_msgq_tail = next; |
| |
| DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx)); |
| |
| return ctx->ctx_msgq+idx; |
| } |
| |
| static pfm_msg_t * |
| pfm_get_next_msg(pfm_context_t *ctx) |
| { |
| pfm_msg_t *msg; |
| |
| DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); |
| |
| if (PFM_CTXQ_EMPTY(ctx)) return NULL; |
| |
| /* |
| * get oldest message |
| */ |
| msg = ctx->ctx_msgq+ctx->ctx_msgq_head; |
| |
| /* |
| * and move forward |
| */ |
| ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS; |
| |
| DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type)); |
| |
| return msg; |
| } |
| |
| static void |
| pfm_reset_msgq(pfm_context_t *ctx) |
| { |
| ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; |
| DPRINT(("ctx=%p msgq reset\n", ctx)); |
| } |
| |
| static void * |
| pfm_rvmalloc(unsigned long size) |
| { |
| void *mem; |
| unsigned long addr; |
| |
| size = PAGE_ALIGN(size); |
| mem = vmalloc(size); |
| if (mem) { |
| //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem); |
| memset(mem, 0, size); |
| addr = (unsigned long)mem; |
| while (size > 0) { |
| pfm_reserve_page(addr); |
| addr+=PAGE_SIZE; |
| size-=PAGE_SIZE; |
| } |
| } |
| return mem; |
| } |
| |
| static void |
| pfm_rvfree(void *mem, unsigned long size) |
| { |
| unsigned long addr; |
| |
| if (mem) { |
| DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size)); |
| addr = (unsigned long) mem; |
| while ((long) size > 0) { |
| pfm_unreserve_page(addr); |
| addr+=PAGE_SIZE; |
| size-=PAGE_SIZE; |
| } |
| vfree(mem); |
| } |
| return; |
| } |
| |
| static pfm_context_t * |
| pfm_context_alloc(void) |
| { |
| pfm_context_t *ctx; |
| |
| /* |
| * allocate context descriptor |
| * must be able to free with interrupts disabled |
| */ |
| ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL); |
| if (ctx) { |
| memset(ctx, 0, sizeof(pfm_context_t)); |
| DPRINT(("alloc ctx @%p\n", ctx)); |
| } |
| return ctx; |
| } |
| |
| static void |
| pfm_context_free(pfm_context_t *ctx) |
| { |
| if (ctx) { |
| DPRINT(("free ctx @%p\n", ctx)); |
| kfree(ctx); |
| } |
| } |
| |
| static void |
| pfm_mask_monitoring(struct task_struct *task) |
| { |
| pfm_context_t *ctx = PFM_GET_CTX(task); |
| struct thread_struct *th = &task->thread; |
| unsigned long mask, val, ovfl_mask; |
| int i; |
| |
| DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid)); |
| |
| ovfl_mask = pmu_conf->ovfl_val; |
| /* |
| * monitoring can only be masked as a result of a valid |
| * counter overflow. In UP, it means that the PMU still |
| * has an owner. Note that the owner can be different |
| * from the current task. However the PMU state belongs |
| * to the owner. |
| * In SMP, a valid overflow only happens when task is |
| * current. Therefore if we come here, we know that |
| * the PMU state belongs to the current task, therefore |
| * we can access the live registers. |
| * |
| * So in both cases, the live register contains the owner's |
| * state. We can ONLY touch the PMU registers and NOT the PSR. |
| * |
| * As a consequence to this call, the thread->pmds[] array |
| * contains stale information which must be ignored |
| * when context is reloaded AND monitoring is active (see |
| * pfm_restart). |
| */ |
| mask = ctx->ctx_used_pmds[0]; |
| for (i = 0; mask; i++, mask>>=1) { |
| /* skip non used pmds */ |
| if ((mask & 0x1) == 0) continue; |
| val = ia64_get_pmd(i); |
| |
| if (PMD_IS_COUNTING(i)) { |
| /* |
| * we rebuild the full 64 bit value of the counter |
| */ |
| ctx->ctx_pmds[i].val += (val & ovfl_mask); |
| } else { |
| ctx->ctx_pmds[i].val = val; |
| } |
| DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", |
| i, |
| ctx->ctx_pmds[i].val, |
| val & ovfl_mask)); |
| } |
| /* |
| * mask monitoring by setting the privilege level to 0 |
| * we cannot use psr.pp/psr.up for this, it is controlled by |
| * the user |
| * |
| * if task is current, modify actual registers, otherwise modify |
| * thread save state, i.e., what will be restored in pfm_load_regs() |
| */ |
| mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; |
| for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { |
| if ((mask & 0x1) == 0UL) continue; |
| ia64_set_pmc(i, th->pmcs[i] & ~0xfUL); |
| th->pmcs[i] &= ~0xfUL; |
| DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i])); |
| } |
| /* |
| * make all of this visible |
| */ |
| ia64_srlz_d(); |
| } |
| |
| /* |
| * must always be done with task == current |
| * |
| * context must be in MASKED state when calling |
| */ |
| static void |
| pfm_restore_monitoring(struct task_struct *task) |
| { |
| pfm_context_t *ctx = PFM_GET_CTX(task); |
| struct thread_struct *th = &task->thread; |
| unsigned long mask, ovfl_mask; |
| unsigned long psr, val; |
| int i, is_system; |
| |
| is_system = ctx->ctx_fl_system; |
| ovfl_mask = pmu_conf->ovfl_val; |
| |
| if (task != current) { |
| printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid); |
| return; |
| } |
| if (ctx->ctx_state != PFM_CTX_MASKED) { |
| printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__, |
| task->pid, current->pid, ctx->ctx_state); |
| return; |
| } |
| psr = pfm_get_psr(); |
| /* |
| * monitoring is masked via the PMC. |
| * As we restore their value, we do not want each counter to |
| * restart right away. We stop monitoring using the PSR, |
| * restore the PMC (and PMD) and then re-establish the psr |
| * as it was. Note that there can be no pending overflow at |
| * this point, because monitoring was MASKED. |
| * |
| * system-wide session are pinned and self-monitoring |
| */ |
| if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { |
| /* disable dcr pp */ |
| ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); |
| pfm_clear_psr_pp(); |
| } else { |
| pfm_clear_psr_up(); |
| } |
| /* |
| * first, we restore the PMD |
| */ |
| mask = ctx->ctx_used_pmds[0]; |
| for (i = 0; mask; i++, mask>>=1) { |
| /* skip non used pmds */ |
| if ((mask & 0x1) == 0) continue; |
| |
| if (PMD_IS_COUNTING(i)) { |
| /* |
| * we split the 64bit value according to |
| * counter width |
| */ |
| val = ctx->ctx_pmds[i].val & ovfl_mask; |
| ctx->ctx_pmds[i].val &= ~ovfl_mask; |
| } else { |
| val = ctx->ctx_pmds[i].val; |
| } |
| ia64_set_pmd(i, val); |
| |
| DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", |
| i, |
| ctx->ctx_pmds[i].val, |
| val)); |
| } |
| /* |
| * restore the PMCs |
| */ |
| mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; |
| for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { |
| if ((mask & 0x1) == 0UL) continue; |
| th->pmcs[i] = ctx->ctx_pmcs[i]; |
| ia64_set_pmc(i, th->pmcs[i]); |
| DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i])); |
| } |
| ia64_srlz_d(); |
| |
| /* |
| * must restore DBR/IBR because could be modified while masked |
| * XXX: need to optimize |
| */ |
| if (ctx->ctx_fl_using_dbreg) { |
| pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); |
| pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); |
| } |
| |
| /* |
| * now restore PSR |
| */ |
| if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { |
| /* enable dcr pp */ |
| ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); |
| ia64_srlz_i(); |
| } |
| pfm_set_psr_l(psr); |
| } |
| |
| static inline void |
| pfm_save_pmds(unsigned long *pmds, unsigned long mask) |
| { |
| int i; |
| |
| ia64_srlz_d(); |
| |
| for (i=0; mask; i++, mask>>=1) { |
| if (mask & 0x1) pmds[i] = ia64_get_pmd(i); |
| } |
| } |
| |
| /* |
| * reload from thread state (used for ctxw only) |
| */ |
| static inline void |
| pfm_restore_pmds(unsigned long *pmds, unsigned long mask) |
| { |
| int i; |
| unsigned long val, ovfl_val = pmu_conf->ovfl_val; |
| |
| for (i=0; mask; i++, mask>>=1) { |
| if ((mask & 0x1) == 0) continue; |
| val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i]; |
| ia64_set_pmd(i, val); |
| } |
| ia64_srlz_d(); |
| } |
| |
| /* |
| * propagate PMD from context to thread-state |
| */ |
| static inline void |
| pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx) |
| { |
| struct thread_struct *thread = &task->thread; |
| unsigned long ovfl_val = pmu_conf->ovfl_val; |
| unsigned long mask = ctx->ctx_all_pmds[0]; |
| unsigned long val; |
| int i; |
| |
| DPRINT(("mask=0x%lx\n", mask)); |
| |
| for (i=0; mask; i++, mask>>=1) { |
| |
| val = ctx->ctx_pmds[i].val; |
| |
| /* |
| * We break up the 64 bit value into 2 pieces |
| * the lower bits go to the machine state in the |
| * thread (will be reloaded on ctxsw in). |
| * The upper part stays in the soft-counter. |
| */ |
| if (PMD_IS_COUNTING(i)) { |
| ctx->ctx_pmds[i].val = val & ~ovfl_val; |
| val &= ovfl_val; |
| } |
| thread->pmds[i] = val; |
| |
| DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n", |
| i, |
| thread->pmds[i], |
| ctx->ctx_pmds[i].val)); |
| } |
| } |
| |
| /* |
| * propagate PMC from context to thread-state |
| */ |
| static inline void |
| pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx) |
| { |
| struct thread_struct *thread = &task->thread; |
| unsigned long mask = ctx->ctx_all_pmcs[0]; |
| int i; |
| |
| DPRINT(("mask=0x%lx\n", mask)); |
| |
| for (i=0; mask; i++, mask>>=1) { |
| /* masking 0 with ovfl_val yields 0 */ |
| thread->pmcs[i] = ctx->ctx_pmcs[i]; |
| DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i])); |
| } |
| } |
| |
| |
| |
| static inline void |
| pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask) |
| { |
| int i; |
| |
| for (i=0; mask; i++, mask>>=1) { |
| if ((mask & 0x1) == 0) continue; |
| ia64_set_pmc(i, pmcs[i]); |
| } |
| ia64_srlz_d(); |
| } |
| |
| static inline int |
| pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b) |
| { |
| return memcmp(a, b, sizeof(pfm_uuid_t)); |
| } |
| |
| static inline int |
| pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs) |
| { |
| int ret = 0; |
| if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs); |
| return ret; |
| } |
| |
| static inline int |
| pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size) |
| { |
| int ret = 0; |
| if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size); |
| return ret; |
| } |
| |
| |
| static inline int |
| pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, |
| int cpu, void *arg) |
| { |
| int ret = 0; |
| if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg); |
| return ret; |
| } |
| |
| static inline int |
| pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags, |
| int cpu, void *arg) |
| { |
| int ret = 0; |
| if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg); |
| return ret; |
| } |
| |
| static inline int |
| pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) |
| { |
| int ret = 0; |
| if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs); |
| return ret; |
| } |
| |
| static inline int |
| pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) |
| { |
| int ret = 0; |
| if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs); |
| return ret; |
| } |
| |
| static pfm_buffer_fmt_t * |
| __pfm_find_buffer_fmt(pfm_uuid_t uuid) |
| { |
| struct list_head * pos; |
| pfm_buffer_fmt_t * entry; |
| |
| list_for_each(pos, &pfm_buffer_fmt_list) { |
| entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); |
| if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0) |
| return entry; |
| } |
| return NULL; |
| } |
| |
| /* |
| * find a buffer format based on its uuid |
| */ |
| static pfm_buffer_fmt_t * |
| pfm_find_buffer_fmt(pfm_uuid_t uuid) |
| { |
| pfm_buffer_fmt_t * fmt; |
| spin_lock(&pfm_buffer_fmt_lock); |
| fmt = __pfm_find_buffer_fmt(uuid); |
| spin_unlock(&pfm_buffer_fmt_lock); |
| return fmt; |
| } |
| |
| int |
| pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt) |
| { |
| int ret = 0; |
| |
| /* some sanity checks */ |
| if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL; |
| |
| /* we need at least a handler */ |
| if (fmt->fmt_handler == NULL) return -EINVAL; |
| |
| /* |
| * XXX: need check validity of fmt_arg_size |
| */ |
| |
| spin_lock(&pfm_buffer_fmt_lock); |
| |
| if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) { |
| printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name); |
| ret = -EBUSY; |
| goto out; |
| } |
| list_add(&fmt->fmt_list, &pfm_buffer_fmt_list); |
| printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name); |
| |
| out: |
| spin_unlock(&pfm_buffer_fmt_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(pfm_register_buffer_fmt); |
| |
| int |
| pfm_unregister_buffer_fmt(pfm_uuid_t uuid) |
| { |
| pfm_buffer_fmt_t *fmt; |
| int ret = 0; |
| |
| spin_lock(&pfm_buffer_fmt_lock); |
| |
| fmt = __pfm_find_buffer_fmt(uuid); |
| if (!fmt) { |
| printk(KERN_ERR "perfmon: cannot unregister format, not found\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| list_del_init(&fmt->fmt_list); |
| printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name); |
| |
| out: |
| spin_unlock(&pfm_buffer_fmt_lock); |
| return ret; |
| |
| } |
| EXPORT_SYMBOL(pfm_unregister_buffer_fmt); |
| |
| extern void update_pal_halt_status(int); |
| |
| static int |
| pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) |
| { |
| unsigned long flags; |
| /* |
| * validy checks on cpu_mask have been done upstream |
| */ |
| LOCK_PFS(flags); |
| |
| DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| pfm_sessions.pfs_sys_sessions, |
| pfm_sessions.pfs_task_sessions, |
| pfm_sessions.pfs_sys_use_dbregs, |
| is_syswide, |
| cpu)); |
| |
| if (is_syswide) { |
| /* |
| * cannot mix system wide and per-task sessions |
| */ |
| if (pfm_sessions.pfs_task_sessions > 0UL) { |
| DPRINT(("system wide not possible, %u conflicting task_sessions\n", |
| pfm_sessions.pfs_task_sessions)); |
| goto abort; |
| } |
| |
| if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict; |
| |
| DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id())); |
| |
| pfm_sessions.pfs_sys_session[cpu] = task; |
| |
| pfm_sessions.pfs_sys_sessions++ ; |
| |
| } else { |
| if (pfm_sessions.pfs_sys_sessions) goto abort; |
| pfm_sessions.pfs_task_sessions++; |
| } |
| |
| DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| pfm_sessions.pfs_sys_sessions, |
| pfm_sessions.pfs_task_sessions, |
| pfm_sessions.pfs_sys_use_dbregs, |
| is_syswide, |
| cpu)); |
| |
| /* |
| * disable default_idle() to go to PAL_HALT |
| */ |
| update_pal_halt_status(0); |
| |
| UNLOCK_PFS(flags); |
| |
| return 0; |
| |
| error_conflict: |
| DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n", |
| pfm_sessions.pfs_sys_session[cpu]->pid, |
| cpu)); |
| abort: |
| UNLOCK_PFS(flags); |
| |
| return -EBUSY; |
| |
| } |
| |
| static int |
| pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) |
| { |
| unsigned long flags; |
| /* |
| * validy checks on cpu_mask have been done upstream |
| */ |
| LOCK_PFS(flags); |
| |
| DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| pfm_sessions.pfs_sys_sessions, |
| pfm_sessions.pfs_task_sessions, |
| pfm_sessions.pfs_sys_use_dbregs, |
| is_syswide, |
| cpu)); |
| |
| |
| if (is_syswide) { |
| pfm_sessions.pfs_sys_session[cpu] = NULL; |
| /* |
| * would not work with perfmon+more than one bit in cpu_mask |
| */ |
| if (ctx && ctx->ctx_fl_using_dbreg) { |
| if (pfm_sessions.pfs_sys_use_dbregs == 0) { |
| printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx); |
| } else { |
| pfm_sessions.pfs_sys_use_dbregs--; |
| } |
| } |
| pfm_sessions.pfs_sys_sessions--; |
| } else { |
| pfm_sessions.pfs_task_sessions--; |
| } |
| DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", |
| pfm_sessions.pfs_sys_sessions, |
| pfm_sessions.pfs_task_sessions, |
| pfm_sessions.pfs_sys_use_dbregs, |
| is_syswide, |
| cpu)); |
| |
| /* |
| * if possible, enable default_idle() to go into PAL_HALT |
| */ |
| if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0) |
| update_pal_halt_status(1); |
| |
| UNLOCK_PFS(flags); |
| |
| return 0; |
| } |
| |
| /* |
| * removes virtual mapping of the sampling buffer. |
| * IMPORTANT: cannot be called with interrupts disable, e.g. inside |
| * a PROTECT_CTX() section. |
| */ |
| static int |
| pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size) |
| { |
| int r; |
| |
| /* sanity checks */ |
| if (task->mm == NULL || size == 0UL || vaddr == NULL) { |
| printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm); |
| return -EINVAL; |
| } |
| |
| DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size)); |
| |
| /* |
| * does the actual unmapping |
| */ |
| down_write(&task->mm->mmap_sem); |
| |
| DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size)); |
| |
| r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0); |
| |
| up_write(&task->mm->mmap_sem); |
| if (r !=0) { |
| printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size); |
| } |
| |
| DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r)); |
| |
| return 0; |
| } |
| |
| /* |
| * free actual physical storage used by sampling buffer |
| */ |
| #if 0 |
| static int |
| pfm_free_smpl_buffer(pfm_context_t *ctx) |
| { |
| pfm_buffer_fmt_t *fmt; |
| |
| if (ctx->ctx_smpl_hdr == NULL) goto invalid_free; |
| |
| /* |
| * we won't use the buffer format anymore |
| */ |
| fmt = ctx->ctx_buf_fmt; |
| |
| DPRINT(("sampling buffer @%p size %lu vaddr=%p\n", |
| ctx->ctx_smpl_hdr, |
| ctx->ctx_smpl_size, |
| ctx->ctx_smpl_vaddr)); |
| |
| pfm_buf_fmt_exit(fmt, current, NULL, NULL); |
| |
| /* |
| * free the buffer |
| */ |
| pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size); |
| |
| ctx->ctx_smpl_hdr = NULL; |
| ctx->ctx_smpl_size = 0UL; |
| |
| return 0; |
| |
| invalid_free: |
| printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid); |
| return -EINVAL; |
| } |
| #endif |
| |
| static inline void |
| pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt) |
| { |
| if (fmt == NULL) return; |
| |
| pfm_buf_fmt_exit(fmt, current, NULL, NULL); |
| |
| } |
| |
| /* |
| * pfmfs should _never_ be mounted by userland - too much of security hassle, |
| * no real gain from having the whole whorehouse mounted. So we don't need |
| * any operations on the root directory. However, we need a non-trivial |
| * d_name - pfm: will go nicely and kill the special-casing in procfs. |
| */ |
| static struct vfsmount *pfmfs_mnt; |
| |
| static int __init |
| init_pfm_fs(void) |
| { |
| int err = register_filesystem(&pfm_fs_type); |
| if (!err) { |
| pfmfs_mnt = kern_mount(&pfm_fs_type); |
| err = PTR_ERR(pfmfs_mnt); |
| if (IS_ERR(pfmfs_mnt)) |
| unregister_filesystem(&pfm_fs_type); |
| else |
| err = 0; |
| } |
| return err; |
| } |
| |
| static void __exit |
| exit_pfm_fs(void) |
| { |
| unregister_filesystem(&pfm_fs_type); |
| mntput(pfmfs_mnt); |
| } |
| |
| static ssize_t |
| pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) |
| { |
| pfm_context_t *ctx; |
| pfm_msg_t *msg; |
| ssize_t ret; |
| unsigned long flags; |
| DECLARE_WAITQUEUE(wait, current); |
| if (PFM_IS_FILE(filp) == 0) { |
| printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid); |
| return -EINVAL; |
| } |
| |
| ctx = (pfm_context_t *)filp->private_data; |
| if (ctx == NULL) { |
| printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid); |
| return -EINVAL; |
| } |
| |
| /* |
| * check even when there is no message |
| */ |
| if (size < sizeof(pfm_msg_t)) { |
| DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t))); |
| return -EINVAL; |
| } |
| |
| PROTECT_CTX(ctx, flags); |
| |
| /* |
| * put ourselves on the wait queue |
| */ |
| add_wait_queue(&ctx->ctx_msgq_wait, &wait); |
| |
| |
| for(;;) { |
| /* |
| * check wait queue |
| */ |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); |
| |
| ret = 0; |
| if(PFM_CTXQ_EMPTY(ctx) == 0) break; |
| |
| UNPROTECT_CTX(ctx, flags); |
| |
| /* |
| * check non-blocking read |
| */ |
| ret = -EAGAIN; |
| if(filp->f_flags & O_NONBLOCK) break; |
| |
| /* |
| * check pending signals |
| */ |
| if(signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| /* |
| * no message, so wait |
| */ |
| schedule(); |
| |
| PROTECT_CTX(ctx, flags); |
| } |
| DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret)); |
| set_current_state(TASK_RUNNING); |
| remove_wait_queue(&ctx->ctx_msgq_wait, &wait); |
| |
| if (ret < 0) goto abort; |
| |
| ret = -EINVAL; |
| msg = pfm_get_next_msg(ctx); |
| if (msg == NULL) { |
| printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid); |
| goto abort_locked; |
| } |
| |
| DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type)); |
| |
| ret = -EFAULT; |
| if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t); |
| |
| abort_locked: |
| UNPROTECT_CTX(ctx, flags); |
| abort: |
| return ret; |
| } |
| |
| static ssize_t |
| pfm_write(struct file *file, const char __user *ubuf, |
| size_t size, loff_t *ppos) |
| { |
| DPRINT(("pfm_write called\n")); |
| return -EINVAL; |
| } |
| |
| static unsigned int |
| pfm_poll(struct file *filp, poll_table * wait) |
| { |
| pfm_context_t *ctx; |
| unsigned long flags; |
| unsigned int mask = 0; |
| |
| if (PFM_IS_FILE(filp) == 0) { |
| printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid); |
| return 0; |
| } |
| |
| ctx = (pfm_context_t *)filp->private_data; |
| if (ctx == NULL) { |
| printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid); |
| return 0; |
| } |
| |
| |
| DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd)); |
| |
| poll_wait(filp, &ctx->ctx_msgq_wait, wait); |
| |
| PROTECT_CTX(ctx, flags); |
| |
| if (PFM_CTXQ_EMPTY(ctx) == 0) |
| mask = POLLIN | POLLRDNORM; |
| |
| UNPROTECT_CTX(ctx, flags); |
| |
| DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask)); |
| |
| return mask; |
| } |
| |
| static int |
| pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| DPRINT(("pfm_ioctl called\n")); |
| return -EINVAL; |
| } |
| |
| /* |
| * interrupt cannot be masked when coming here |
| */ |
| static inline int |
| pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on) |
| { |
| int ret; |
| |
| ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue); |
| |
| DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n", |
| current->pid, |
| fd, |
| on, |
| ctx->ctx_async_queue, ret)); |
| |
| return ret; |
| } |
| |
| static int |
| pfm_fasync(int fd, struct file *filp, int on) |
| { |
| pfm_context_t *ctx; |
| int ret; |
| |
| if (PFM_IS_FILE(filp) == 0) { |
| printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid); |
| return -EBADF; |
| } |
| |
| ctx = (pfm_context_t *)filp->private_data; |
| if (ctx == NULL) { |
| printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid); |
| return -EBADF; |
| } |
| /* |
| * we cannot mask interrupts during this call because this may |
| * may go to sleep if memory is not readily avalaible. |
| * |
| * We are protected from the conetxt disappearing by the get_fd()/put_fd() |
| * done in caller. Serialization of this function is ensured by caller. |
| */ |
| ret = pfm_do_fasync(fd, filp, ctx, on); |
| |
| |
| DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n", |
| fd, |
| on, |
| ctx->ctx_async_queue, ret)); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_SMP |
| /* |
| * this function is exclusively called from pfm_close(). |
| * The context is not protected at that time, nor are interrupts |
| * on the remote CPU. That's necessary to avoid deadlocks. |
| */ |
| static void |
| pfm_syswide_force_stop(void *info) |
| { |
| pfm_context_t *ctx = (pfm_context_t *)info; |
| struct pt_regs *regs = ia64_task_regs(current); |
| struct task_struct *owner; |
| unsigned long flags; |
| int ret; |
| |
| if (ctx->ctx_cpu != smp_processor_id()) { |
| printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n", |
| ctx->ctx_cpu, |
| smp_processor_id()); |
| return; |
| } |
| owner = GET_PMU_OWNER(); |
| if (owner != ctx->ctx_task) { |
| printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n", |
| smp_processor_id(), |
| owner->pid, ctx->ctx_task->pid); |
| return; |
| } |
| if (GET_PMU_CTX() != ctx) { |
| printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n", |
| smp_processor_id(), |
| GET_PMU_CTX(), ctx); |
| return; |
| } |
| |
| DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid)); |
| /* |
| * the context is already protected in pfm_close(), we simply |
| * need to mask interrupts to avoid a PMU interrupt race on |
| * this CPU |
| */ |
| local_irq_save(flags); |
| |
| ret = pfm_context_unload(ctx, NULL, 0, regs); |
| if (ret) { |
| DPRINT(("context_unload returned %d\n", ret)); |
| } |
| |
| /* |
| * unmask interrupts, PMU interrupts are now spurious here |
| */ |
| local_irq_restore(flags); |
| } |
| |
| static void |
| pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx) |
| { |
| int ret; |
| |
| DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu)); |
| ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1); |
| DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret)); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * called for each close(). Partially free resources. |
| * When caller is self-monitoring, the context is unloaded. |
| */ |
| static int |
| pfm_flush(struct file *filp) |
| { |
| pfm_context_t *ctx; |
| struct task_struct *task; |
| struct pt_regs *regs; |
| unsigned long flags; |
| unsigned long smpl_buf_size = 0UL; |
| void *smpl_buf_vaddr = NULL; |
| int state, is_system; |
| |
| if (PFM_IS_FILE(filp) == 0) { |
| DPRINT(("bad magic for\n")); |
| return -EBADF; |
| } |
| |
| ctx = (pfm_context_t *)filp->private_data; |
| if (ctx == NULL) { |
| printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid); |
| return -EBADF; |
| } |
| |
| /* |
| * remove our file from the async queue, if we use this mode. |
| * This can be done without the context being protected. We come |
| * here when the context has become unreacheable by other tasks. |
| * |
| * We may still have active monitoring at this point and we may |
| * end up in pfm_overflow_handler(). However, fasync_helper() |
| * operates with interrupts disabled and it cleans up the |
| * queue. If the PMU handler is called prior to entering |
| * fasync_helper() then it will send a signal. If it is |
| * invoked after, it will find an empty queue and no |
| * signal will be sent. In both case, we are safe |
| */ |
| if (filp->f_flags & FASYNC) { |
| DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue)); |
| pfm_do_fasync (-1, filp, ctx, 0); |
| } |
| |
| PROTECT_CTX(ctx, flags); |
| |
| state = ctx->ctx_state; |
| is_system = ctx->ctx_fl_system; |
| |
| task = PFM_CTX_TASK(ctx); |
| regs = ia64_task_regs(task); |
| |
| DPRINT(("ctx_state=%d is_current=%d\n", |
| state, |
| task == current ? 1 : 0)); |
| |
| /* |
| * if state == UNLOADED, then task is NULL |
| */ |
| |
| /* |
| * we must stop and unload because we are losing access to the context. |
| */ |
| if (task == current) { |
| #ifdef CONFIG_SMP |
| /* |
| * the task IS the owner but it migrated to another CPU: that's bad |
| * but we must handle this cleanly. Unfortunately, the kernel does |
| * not provide a mechanism to block migration (while the context is loaded). |
| * |
| * We need to release the resource on the ORIGINAL cpu. |
| */ |
| if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| |
| DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| /* |
| * keep context protected but unmask interrupt for IPI |
| */ |
| local_irq_restore(flags); |
| |
| pfm_syswide_cleanup_other_cpu(ctx); |
| |
| /* |
| * restore interrupt masking |
| */ |
| local_irq_save(flags); |
| |
| /* |
| * context is unloaded at this point |
| */ |
| } else |
| #endif /* CONFIG_SMP */ |
| { |
| |
| DPRINT(("forcing unload\n")); |
| /* |
| * stop and unload, returning with state UNLOADED |
| * and session unreserved. |
| */ |
| pfm_context_unload(ctx, NULL, 0, regs); |
| |
| DPRINT(("ctx_state=%d\n", ctx->ctx_state)); |
| } |
| } |
| |
| /* |
| * remove virtual mapping, if any, for the calling task. |
| * cannot reset ctx field until last user is calling close(). |
| * |
| * ctx_smpl_vaddr must never be cleared because it is needed |
| * by every task with access to the context |
| * |
| * When called from do_exit(), the mm context is gone already, therefore |
| * mm is NULL, i.e., the VMA is already gone and we do not have to |
| * do anything here |
| */ |
| if (ctx->ctx_smpl_vaddr && current->mm) { |
| smpl_buf_vaddr = ctx->ctx_smpl_vaddr; |
| smpl_buf_size = ctx->ctx_smpl_size; |
| } |
| |
| UNPROTECT_CTX(ctx, flags); |
| |
| /* |
| * if there was a mapping, then we systematically remove it |
| * at this point. Cannot be done inside critical section |
| * because some VM function reenables interrupts. |
| * |
| */ |
| if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size); |
| |
| return 0; |
| } |
| /* |
| * called either on explicit close() or from exit_files(). |
| * Only the LAST user of the file gets to this point, i.e., it is |
| * called only ONCE. |
| * |
| * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero |
| * (fput()),i.e, last task to access the file. Nobody else can access the |
| * file at this point. |
| * |
| * When called from exit_files(), the VMA has been freed because exit_mm() |
| * is executed before exit_files(). |
| * |
| * When called from exit_files(), the current task is not yet ZOMBIE but we |
| * flush the PMU state to the context. |
| */ |
| static int |
| pfm_close(struct inode *inode, struct file *filp) |
| { |
| pfm_context_t *ctx; |
| struct task_struct *task; |
| struct pt_regs *regs; |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long flags; |
| unsigned long smpl_buf_size = 0UL; |
| void *smpl_buf_addr = NULL; |
| int free_possible = 1; |
| int state, is_system; |
| |
| DPRINT(("pfm_close called private=%p\n", filp->private_data)); |
| |
| if (PFM_IS_FILE(filp) == 0) { |
| DPRINT(("bad magic\n")); |
| return -EBADF; |
| } |
| |
| ctx = (pfm_context_t *)filp->private_data; |
| if (ctx == NULL) { |
| printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid); |
| return -EBADF; |
| } |
| |
| PROTECT_CTX(ctx, flags); |
| |
| state = ctx->ctx_state; |
| is_system = ctx->ctx_fl_system; |
| |
| task = PFM_CTX_TASK(ctx); |
| regs = ia64_task_regs(task); |
| |
| DPRINT(("ctx_state=%d is_current=%d\n", |
| state, |
| task == current ? 1 : 0)); |
| |
| /* |
| * if task == current, then pfm_flush() unloaded the context |
| */ |
| if (state == PFM_CTX_UNLOADED) goto doit; |
| |
| /* |
| * context is loaded/masked and task != current, we need to |
| * either force an unload or go zombie |
| */ |
| |
| /* |
| * The task is currently blocked or will block after an overflow. |
| * we must force it to wakeup to get out of the |
| * MASKED state and transition to the unloaded state by itself. |
| * |
| * This situation is only possible for per-task mode |
| */ |
| if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) { |
| |
| /* |
| * set a "partial" zombie state to be checked |
| * upon return from down() in pfm_handle_work(). |
| * |
| * We cannot use the ZOMBIE state, because it is checked |
| * by pfm_load_regs() which is called upon wakeup from down(). |
| * In such case, it would free the context and then we would |
| * return to pfm_handle_work() which would access the |
| * stale context. Instead, we set a flag invisible to pfm_load_regs() |
| * but visible to pfm_handle_work(). |
| * |
| * For some window of time, we have a zombie context with |
| * ctx_state = MASKED and not ZOMBIE |
| */ |
| ctx->ctx_fl_going_zombie = 1; |
| |
| /* |
| * force task to wake up from MASKED state |
| */ |
| up(&ctx->ctx_restart_sem); |
| |
| DPRINT(("waking up ctx_state=%d\n", state)); |
| |
| /* |
| * put ourself to sleep waiting for the other |
| * task to report completion |
| * |
| * the context is protected by mutex, therefore there |
| * is no risk of being notified of completion before |
| * begin actually on the waitq. |
| */ |
| set_current_state(TASK_INTERRUPTIBLE); |
| add_wait_queue(&ctx->ctx_zombieq, &wait); |
| |
| UNPROTECT_CTX(ctx, flags); |
| |
| /* |
| * XXX: check for signals : |
| * - ok for explicit close |
| * - not ok when coming from exit_files() |
| */ |
| schedule(); |
| |
| |
| PROTECT_CTX(ctx, flags); |
| |
| |
| remove_wait_queue(&ctx->ctx_zombieq, &wait); |
| set_current_state(TASK_RUNNING); |
| |
| /* |
| * context is unloaded at this point |
| */ |
| DPRINT(("after zombie wakeup ctx_state=%d for\n", state)); |
| } |
| else if (task != current) { |
| #ifdef CONFIG_SMP |
| /* |
| * switch context to zombie state |
| */ |
| ctx->ctx_state = PFM_CTX_ZOMBIE; |
| |
| DPRINT(("zombie ctx for [%d]\n", task->pid)); |
| /* |
| * cannot free the context on the spot. deferred until |
| * the task notices the ZOMBIE state |
| */ |
| free_possible = 0; |
| #else |
| pfm_context_unload(ctx, NULL, 0, regs); |
| #endif |
| } |
| |
| doit: |
| /* reload state, may have changed during opening of critical section */ |
| state = ctx->ctx_state; |
| |
| /* |
| * the context is still attached to a task (possibly current) |
| * we cannot destroy it right now |
| */ |
| |
| /* |
| * we must free the sampling buffer right here because |
| * we cannot rely on it being cleaned up later by the |
| * monitored task. It is not possible to free vmalloc'ed |
| * memory in pfm_load_regs(). Instead, we remove the buffer |
| * now. should there be subsequent PMU overflow originally |
| * meant for sampling, the will be converted to spurious |
| * and that's fine because the monitoring tools is gone anyway. |
| */ |
| if (ctx->ctx_smpl_hdr) { |
| smpl_buf_addr = ctx->ctx_smpl_hdr; |
| smpl_buf_size = ctx->ctx_smpl_size; |
| /* no more sampling */ |
| ctx->ctx_smpl_hdr = NULL; |
| ctx->ctx_fl_is_sampling = 0; |
| } |
| |
| DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n", |
| state, |
| free_possible, |
| smpl_buf_addr, |
| smpl_buf_size)); |
| |
| if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt); |
| |
| /* |
| * UNLOADED that the session has already been unreserved. |
| */ |
| if (state == PFM_CTX_ZOMBIE) { |
| pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu); |
| } |
| |
| /* |
| * disconnect file descriptor from context must be done |
| * before we unlock. |
| */ |
| filp->private_data = NULL; |
| |
| /* |
| * if we free on the spot, the context is now completely unreacheable |
| * from the callers side. The monitored task side is also cut, so we |
| * can freely cut. |
| * |
| * If we have a deferred free, only the caller side is disconnected. |
| */ |
| UNPROTECT_CTX(ctx, flags); |
| |
| /* |
| * All memory free operations (especially for vmalloc'ed memory) |
| * MUST be done with interrupts ENABLED. |
| */ |
| if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size); |
| |
| /* |
| * return the memory used by the context |
| */ |
| if (free_possible) pfm_context_free(ctx); |
| |
| return 0; |
| } |
| |
| static int |
| pfm_no_open(struct inode *irrelevant, struct file *dontcare) |
| { |
| DPRINT(("pfm_no_open called\n")); |
| return -ENXIO; |
| } |
| |
| |
| |
| static struct file_operations pfm_file_ops = { |
| .llseek = no_llseek, |
| .read = pfm_read, |
| .write = pfm_write, |
| .poll = pfm_poll, |
| .ioctl = pfm_ioctl, |
| .open = pfm_no_open, /* special open code to disallow open via /proc */ |
| .fasync = pfm_fasync, |
| .release = pfm_close, |
| .flush = pfm_flush |
| }; |
| |
| static int |
| pfmfs_delete_dentry(struct dentry *dentry) |
| { |
| return 1; |
| } |
| |
| static struct dentry_operations pfmfs_dentry_operations = { |
| .d_delete = pfmfs_delete_dentry, |
| }; |
| |
| |
| static int |
| pfm_alloc_fd(struct file **cfile) |
| { |
| int fd, ret = 0; |
| struct file *file = NULL; |
| struct inode * inode; |
| char name[32]; |
| struct qstr this; |
| |
| fd = get_unused_fd(); |
| if (fd < 0) return -ENFILE; |
| |
| ret = -ENFILE; |
| |
| file = get_empty_filp(); |
| if (!file) goto out; |
| |
| /* |
| * allocate a new inode |
| */ |
| inode = new_inode(pfmfs_mnt->mnt_sb); |
| if (!inode) goto out; |
| |
| DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode)); |
| |
| inode->i_mode = S_IFCHR|S_IRUGO; |
| inode->i_uid = current->fsuid; |
| inode->i_gid = current->fsgid; |
| |
| sprintf(name, "[%lu]", inode->i_ino); |
| this.name = name; |
| this.len = strlen(name); |
| this.hash = inode->i_ino; |
| |
| ret = -ENOMEM; |
| |
| /* |
| * allocate a new dcache entry |
| */ |
| file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this); |
| if (!file->f_dentry) goto out; |
| |
| file->f_dentry->d_op = &pfmfs_dentry_operations; |
| |
| d_add(file->f_dentry, inode); |
| file->f_vfsmnt = mntget(pfmfs_mnt); |
| file->f_mapping = inode->i_mapping; |
| |
| file->f_op = &pfm_file_ops; |
| file->f_mode = FMODE_READ; |
| file->f_flags = O_RDONLY; |
| file->f_pos = 0; |
| |
| /* |
| * may have to delay until context is attached? |
| */ |
| fd_install(fd, file); |
| |
| /* |
| * the file structure we will use |
| */ |
| *cfile = file; |
| |
| return fd; |
| out: |
| if (file) put_filp(file); |
| put_unused_fd(fd); |
| return ret; |
| } |
| |
| static void |
| pfm_free_fd(int fd, struct file *file) |
| { |
| struct files_struct *files = current->files; |
| |
| /* |
| * there ie no fd_uninstall(), so we do it here |
| */ |
| spin_lock(&files->file_lock); |
| files->fd[fd] = NULL; |
| spin_unlock(&files->file_lock); |
| |
| if (file) put_filp(file); |
| put_unused_fd(fd); |
| } |
| |
| static int |
| pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size) |
| { |
| DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size)); |
| |
| while (size > 0) { |
| unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT; |
| |
| |
| if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY)) |
| return -ENOMEM; |
| |
| addr += PAGE_SIZE; |
| buf += PAGE_SIZE; |
| size -= PAGE_SIZE; |
| } |
| return 0; |
| } |
| |
| /* |
| * allocate a sampling buffer and remaps it into the user address space of the task |
| */ |
| static int |
| pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr) |
| { |
| struct mm_struct *mm = task->mm; |
| struct vm_area_struct *vma = NULL; |
| unsigned long size; |
| void *smpl_buf; |
| |
| |
| /* |
| * the fixed header + requested size and align to page boundary |
| */ |
| size = PAGE_ALIGN(rsize); |
| |
| DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size)); |
| |
| /* |
| * check requested size to avoid Denial-of-service attacks |
| * XXX: may have to refine this test |
| * Check against address space limit. |
| * |
| * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur) |
| * return -ENOMEM; |
| */ |
| if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur) |
| return -ENOMEM; |
| |
| /* |
| * We do the easy to undo allocations first. |
| * |
| * pfm_rvmalloc(), clears the buffer, so there is no leak |
| */ |
| smpl_buf = pfm_rvmalloc(size); |
| if (smpl_buf == NULL) { |
| DPRINT(("Can't allocate sampling buffer\n")); |
| return -ENOMEM; |
| } |
| |
| DPRINT(("smpl_buf @%p\n", smpl_buf)); |
| |
| /* allocate vma */ |
| vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); |
| if (!vma) { |
| DPRINT(("Cannot allocate vma\n")); |
| goto error_kmem; |
| } |
| memset(vma, 0, sizeof(*vma)); |
| |
| /* |
| * partially initialize the vma for the sampling buffer |
| */ |
| vma->vm_mm = mm; |
| vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED; |
| vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */ |
| |
| /* |
| * Now we have everything we need and we can initialize |
| * and connect all the data structures |
| */ |
| |
| ctx->ctx_smpl_hdr = smpl_buf; |
| ctx->ctx_smpl_size = size; /* aligned size */ |
| |
| /* |
| * Let's do the difficult operations next. |
| * |
| * now we atomically find some area in the address space and |
| * remap the buffer in it. |
| */ |
| down_write(&task->mm->mmap_sem); |
| |
| /* find some free area in address space, must have mmap sem held */ |
| vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0); |
| if (vma->vm_start == 0UL) { |
| DPRINT(("Cannot find unmapped area for size %ld\n", size)); |
| up_write(&task->mm->mmap_sem); |
| goto error; |
| } |
| vma->vm_end = vma->vm_start + size; |
| vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; |
| |
| DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start)); |
| |
| /* can only be applied to current task, need to have the mm semaphore held when called */ |
| if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) { |
| DPRINT(("Can't remap buffer\n")); |
| up_write(&task->mm->mmap_sem); |
| goto error; |
| } |
| |
| /* |
| * now insert the vma in the vm list for the process, must be |
| * done with mmap lock held |
| */ |
| insert_vm_struct(mm, vma); |
| |
| mm->total_vm += size >> PAGE_SHIFT; |
| vm_stat_account(vma); |
| up_write(&task->mm->mmap_sem); |
| |
| /* |
| * keep track of user level virtual address |
| */ |
| ctx->ctx_smpl_vaddr = (void *)vma->vm_start; |
| *(unsigned long *)user_vaddr = vma->vm_start; |
| |
| return 0; |
| |
| error: |
| kmem_cache_free(vm_area_cachep, vma); |
| error_kmem: |
| pfm_rvfree(smpl_buf, size); |
| |
| return -ENOMEM; |
| } |
| |
| /* |
| * XXX: do something better here |
| */ |
| static int |
| pfm_bad_permissions(struct task_struct *task) |
| { |
| /* inspired by ptrace_attach() */ |
| DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n", |
| current->uid, |
| current->gid, |
| task->euid, |
| task->suid, |
| task->uid, |
| task->egid, |
| task->sgid)); |
| |
| return ((current->uid != task->euid) |
| || (current->uid != task->suid) |
| || (current->uid != task->uid) |
| || (current->gid != task->egid) |
| || (current->gid != task->sgid) |
| || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE); |
| } |
| |
| static int |
| pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx) |
| { |
| int ctx_flags; |
| |
| /* valid signal */ |
| |
| ctx_flags = pfx->ctx_flags; |
| |
| if (ctx_flags & PFM_FL_SYSTEM_WIDE) { |
| |
| /* |
| * cannot block in this mode |
| */ |
| if (ctx_flags & PFM_FL_NOTIFY_BLOCK) { |
| DPRINT(("cannot use blocking mode when in system wide monitoring\n")); |
| return -EINVAL; |
| } |
| } else { |
| } |
| /* probably more to add here */ |
| |
| return 0; |
| } |
| |
| static int |
| pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags, |
| unsigned int cpu, pfarg_context_t *arg) |
| { |
| pfm_buffer_fmt_t *fmt = NULL; |
| unsigned long size = 0UL; |
| void *uaddr = NULL; |
| void *fmt_arg = NULL; |
| int ret = 0; |
| #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1) |
| |
| /* invoke and lock buffer format, if found */ |
| fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id); |
| if (fmt == NULL) { |
| DPRINT(("[%d] cannot find buffer format\n", task->pid)); |
| return -EINVAL; |
| } |
| |
| /* |
| * buffer argument MUST be contiguous to pfarg_context_t |
| */ |
| if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg); |
| |
| ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg); |
| |
| DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret)); |
| |
| if (ret) goto error; |
| |
| /* link buffer format and context */ |
| ctx->ctx_buf_fmt = fmt; |
| |
| /* |
| * check if buffer format wants to use perfmon buffer allocation/mapping service |
| */ |
| ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size); |
| if (ret) goto error; |
| |
| if (size) { |
| /* |
| * buffer is always remapped into the caller's address space |
| */ |
| ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr); |
| if (ret) goto error; |
| |
| /* keep track of user address of buffer */ |
| arg->ctx_smpl_vaddr = uaddr; |
| } |
| ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg); |
| |
| error: |
| return ret; |
| } |
| |
| static void |
| pfm_reset_pmu_state(pfm_context_t *ctx) |
| { |
| int i; |
| |
| /* |
| * install reset values for PMC. |
| */ |
| for (i=1; PMC_IS_LAST(i) == 0; i++) { |
| if (PMC_IS_IMPL(i) == 0) continue; |
| ctx->ctx_pmcs[i] = PMC_DFL_VAL(i); |
| DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i])); |
| } |
| /* |
| * PMD registers are set to 0UL when the context in memset() |
| */ |
| |
| /* |
| * On context switched restore, we must restore ALL pmc and ALL pmd even |
| * when they are not actively used by the task. In UP, the incoming process |
| * may otherwise pick up left over PMC, PMD state from the previous process. |
| * As opposed to PMD, stale PMC can cause harm to the incoming |
| * process because they may change what is being measured. |
| * Therefore, we must systematically reinstall the entire |
| * PMC state. In SMP, the same thing is possible on the |
| * same CPU but also on between 2 CPUs. |
| * |
| * The problem with PMD is information leaking especially |
| * to user level when psr.sp=0 |
| * |
| * There is unfortunately no easy way to avoid this problem |
| * on either UP or SMP. This definitively slows down the |
| * pfm_load_regs() function. |
| */ |
| |
| /* |
| * bitmask of all PMCs accessible to this context |
| * |
| * PMC0 is treated differently. |
| */ |
| ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1; |
| |
| /* |
| * bitmask of all PMDs that are accesible to this context |
| */ |
| ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0]; |
| |
| DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0])); |
| |
| /* |
| * useful in case of re-enable after disable |
| */ |
| ctx->ctx_used_ibrs[0] = 0UL; |
| ctx->ctx_used_dbrs[0] = 0UL; |
| } |
| |
| static int |
| pfm_ctx_getsize(void *arg, size_t *sz) |
| { |
| pfarg_context_t *req = (pfarg_context_t *)arg; |
| pfm_buffer_fmt_t *fmt; |
| |
| *sz = 0; |
| |
| if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0; |
| |
| fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id); |
| if (fmt == NULL) { |
| DPRINT(("cannot find buffer format\n")); |
| return -EINVAL; |
| } |
| /* get just enough to copy in user parameters */ |
| *sz = fmt->fmt_arg_size; |
| DPRINT(("arg_size=%lu\n", *sz)); |
| |
| return 0; |
| } |
| |
| |
| |
| /* |
| * cannot attach if : |
| * - kernel task |
| * - task not owned by caller |
| * - task incompatible with context mode |
| */ |
| static int |
| pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task) |
| { |
| /* |
| * no kernel task or task not owner by caller |
| */ |
| if (task->mm == NULL) { |
| DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid)); |
| return -EPERM; |
| } |
| if (pfm_bad_permissions(task)) { |
| DPRINT(("no permission to attach to [%d]\n", task->pid)); |
| return -EPERM; |
| } |
| /* |
| * cannot block in self-monitoring mode |
| */ |
| if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) { |
| DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid)); |
| return -EINVAL; |
| } |
| |
| if (task->exit_state == EXIT_ZOMBIE) { |
| DPRINT(("cannot attach to zombie task [%d]\n", task->pid)); |
| return -EBUSY; |
| } |
| |
| /* |
| * always ok for self |
| */ |
| if (task == current) return 0; |
| |
| if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) { |
| DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state)); |
| return -EBUSY; |
| } |
| /* |
| * make sure the task is off any CPU |
| */ |
| wait_task_inactive(task); |
| |
| /* more to come... */ |
| |
| return 0; |
| } |
| |
| static int |
| pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task) |
| { |
| struct task_struct *p = current; |
| int ret; |
| |
| /* XXX: need to add more checks here */ |
| if (pid < 2) return -EPERM; |
| |
| if (pid != current->pid) { |
| |
| read_lock(&tasklist_lock); |
| |
| p = find_task_by_pid(pid); |
| |
| /* make sure task cannot go away while we operate on it */ |
| if (p) get_task_struct(p); |
| |
| read_unlock(&tasklist_lock); |
| |
| if (p == NULL) return -ESRCH; |
| } |
| |
| ret = pfm_task_incompatible(ctx, p); |
| if (ret == 0) { |
| *task = p; |
| } else if (p != current) { |
| pfm_put_task(p); |
| } |
| return ret; |
| } |
| |
| |
| |
| static int |
| pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| { |
| pfarg_context_t *req = (pfarg_context_t *)arg; |
| struct file *filp; |
| int ctx_flags; |
| int ret; |
| |
| /* let's check the arguments first */ |
| ret = pfarg_is_sane(current, req); |
| if (ret < 0) return ret; |
| |
| ctx_flags = req->ctx_flags; |
| |
| ret = -ENOMEM; |
| |
| ctx = pfm_context_alloc(); |
| if (!ctx) goto error; |
| |
| ret = pfm_alloc_fd(&filp); |
| if (ret < 0) goto error_file; |
| |
| req->ctx_fd = ctx->ctx_fd = ret; |
| |
| /* |
| * attach context to file |
| */ |
| filp->private_data = ctx; |
| |
| /* |
| * does the user want to sample? |
| */ |
| if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) { |
| ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req); |
| if (ret) goto buffer_error; |
| } |
| |
| /* |
| * init context protection lock |
| */ |
| spin_lock_init(&ctx->ctx_lock); |
| |
| /* |
| * context is unloaded |
| */ |
| ctx->ctx_state = PFM_CTX_UNLOADED; |
| |
| /* |
| * initialization of context's flags |
| */ |
| ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0; |
| ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0; |
| ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */ |
| ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0; |
| /* |
| * will move to set properties |
| * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0; |
| */ |
| |
| /* |
| * init restart semaphore to locked |
| */ |
| sema_init(&ctx->ctx_restart_sem, 0); |
| |
| /* |
| * activation is used in SMP only |
| */ |
| ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; |
| SET_LAST_CPU(ctx, -1); |
| |
| /* |
| * initialize notification message queue |
| */ |
| ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; |
| init_waitqueue_head(&ctx->ctx_msgq_wait); |
| init_waitqueue_head(&ctx->ctx_zombieq); |
| |
| DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n", |
| ctx, |
| ctx_flags, |
| ctx->ctx_fl_system, |
| ctx->ctx_fl_block, |
| ctx->ctx_fl_excl_idle, |
| ctx->ctx_fl_no_msg, |
| ctx->ctx_fd)); |
| |
| /* |
| * initialize soft PMU state |
| */ |
| pfm_reset_pmu_state(ctx); |
| |
| return 0; |
| |
| buffer_error: |
| pfm_free_fd(ctx->ctx_fd, filp); |
| |
| if (ctx->ctx_buf_fmt) { |
| pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs); |
| } |
| error_file: |
| pfm_context_free(ctx); |
| |
| error: |
| return ret; |
| } |
| |
| static inline unsigned long |
| pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset) |
| { |
| unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset; |
| unsigned long new_seed, old_seed = reg->seed, mask = reg->mask; |
| extern unsigned long carta_random32 (unsigned long seed); |
| |
| if (reg->flags & PFM_REGFL_RANDOM) { |
| new_seed = carta_random32(old_seed); |
| val -= (old_seed & mask); /* counter values are negative numbers! */ |
| if ((mask >> 32) != 0) |
| /* construct a full 64-bit random value: */ |
| new_seed |= carta_random32(old_seed >> 32) << 32; |
| reg->seed = new_seed; |
| } |
| reg->lval = val; |
| return val; |
| } |
| |
| static void |
| pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) |
| { |
| unsigned long mask = ovfl_regs[0]; |
| unsigned long reset_others = 0UL; |
| unsigned long val; |
| int i; |
| |
| /* |
| * now restore reset value on sampling overflowed counters |
| */ |
| mask >>= PMU_FIRST_COUNTER; |
| for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { |
| |
| if ((mask & 0x1UL) == 0UL) continue; |
| |
| ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); |
| reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; |
| |
| DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); |
| } |
| |
| /* |
| * Now take care of resetting the other registers |
| */ |
| for(i = 0; reset_others; i++, reset_others >>= 1) { |
| |
| if ((reset_others & 0x1) == 0) continue; |
| |
| ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); |
| |
| DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", |
| is_long_reset ? "long" : "short", i, val)); |
| } |
| } |
| |
| static void |
| pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) |
| { |
| unsigned long mask = ovfl_regs[0]; |
| unsigned long reset_others = 0UL; |
| unsigned long val; |
| int i; |
| |
| DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset)); |
| |
| if (ctx->ctx_state == PFM_CTX_MASKED) { |
| pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset); |
| return; |
| } |
| |
| /* |
| * now restore reset value on sampling overflowed counters |
| */ |
| mask >>= PMU_FIRST_COUNTER; |
| for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { |
| |
| if ((mask & 0x1UL) == 0UL) continue; |
| |
| val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); |
| reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; |
| |
| DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); |
| |
| pfm_write_soft_counter(ctx, i, val); |
| } |
| |
| /* |
| * Now take care of resetting the other registers |
| */ |
| for(i = 0; reset_others; i++, reset_others >>= 1) { |
| |
| if ((reset_others & 0x1) == 0) continue; |
| |
| val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); |
| |
| if (PMD_IS_COUNTING(i)) { |
| pfm_write_soft_counter(ctx, i, val); |
| } else { |
| ia64_set_pmd(i, val); |
| } |
| DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", |
| is_long_reset ? "long" : "short", i, val)); |
| } |
| ia64_srlz_d(); |
| } |
| |
| static int |
| pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| { |
| struct thread_struct *thread = NULL; |
| struct task_struct *task; |
| pfarg_reg_t *req = (pfarg_reg_t *)arg; |
| unsigned long value, pmc_pm; |
| unsigned long smpl_pmds, reset_pmds, impl_pmds; |
| unsigned int cnum, reg_flags, flags, pmc_type; |
| int i, can_access_pmu = 0, is_loaded, is_system, expert_mode; |
| int is_monitor, is_counting, state; |
| int ret = -EINVAL; |
| pfm_reg_check_t wr_func; |
| #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z)) |
| |
| state = ctx->ctx_state; |
| is_loaded = state == PFM_CTX_LOADED ? 1 : 0; |
| is_system = ctx->ctx_fl_system; |
| task = ctx->ctx_task; |
| impl_pmds = pmu_conf->impl_pmds[0]; |
| |
| if (state == PFM_CTX_ZOMBIE) return -EINVAL; |
| |
| if (is_loaded) { |
| thread = &task->thread; |
| /* |
| * In system wide and when the context is loaded, access can only happen |
| * when the caller is running on the CPU being monitored by the session. |
| * It does not have to be the owner (ctx_task) of the context per se. |
| */ |
| if (is_system && ctx->ctx_cpu != smp_processor_id()) { |
| DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| return -EBUSY; |
| } |
| can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; |
| } |
| expert_mode = pfm_sysctl.expert_mode; |
| |
| for (i = 0; i < count; i++, req++) { |
| |
| cnum = req->reg_num; |
| reg_flags = req->reg_flags; |
| value = req->reg_value; |
| smpl_pmds = req->reg_smpl_pmds[0]; |
| reset_pmds = req->reg_reset_pmds[0]; |
| flags = 0; |
| |
| |
| if (cnum >= PMU_MAX_PMCS) { |
| DPRINT(("pmc%u is invalid\n", cnum)); |
| goto error; |
| } |
| |
| pmc_type = pmu_conf->pmc_desc[cnum].type; |
| pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1; |
| is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0; |
| is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0; |
| |
| /* |
| * we reject all non implemented PMC as well |
| * as attempts to modify PMC[0-3] which are used |
| * as status registers by the PMU |
| */ |
| if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) { |
| DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type)); |
| goto error; |
| } |
| wr_func = pmu_conf->pmc_desc[cnum].write_check; |
| /* |
| * If the PMC is a monitor, then if the value is not the default: |
| * - system-wide session: PMCx.pm=1 (privileged monitor) |
| * - per-task : PMCx.pm=0 (user monitor) |
| */ |
| if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) { |
| DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n", |
| cnum, |
| pmc_pm, |
| is_system)); |
| goto error; |
| } |
| |
| if (is_counting) { |
| /* |
| * enforce generation of overflow interrupt. Necessary on all |
| * CPUs. |
| */ |
| value |= 1 << PMU_PMC_OI; |
| |
| if (reg_flags & PFM_REGFL_OVFL_NOTIFY) { |
| flags |= PFM_REGFL_OVFL_NOTIFY; |
| } |
| |
| if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM; |
| |
| /* verify validity of smpl_pmds */ |
| if ((smpl_pmds & impl_pmds) != smpl_pmds) { |
| DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum)); |
| goto error; |
| } |
| |
| /* verify validity of reset_pmds */ |
| if ((reset_pmds & impl_pmds) != reset_pmds) { |
| DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum)); |
| goto error; |
| } |
| } else { |
| if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) { |
| DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum)); |
| goto error; |
| } |
| /* eventid on non-counting monitors are ignored */ |
| } |
| |
| /* |
| * execute write checker, if any |
| */ |
| if (likely(expert_mode == 0 && wr_func)) { |
| ret = (*wr_func)(task, ctx, cnum, &value, regs); |
| if (ret) goto error; |
| ret = -EINVAL; |
| } |
| |
| /* |
| * no error on this register |
| */ |
| PFM_REG_RETFLAG_SET(req->reg_flags, 0); |
| |
| /* |
| * Now we commit the changes to the software state |
| */ |
| |
| /* |
| * update overflow information |
| */ |
| if (is_counting) { |
| /* |
| * full flag update each time a register is programmed |
| */ |
| ctx->ctx_pmds[cnum].flags = flags; |
| |
| ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds; |
| ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds; |
| ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid; |
| |
| /* |
| * Mark all PMDS to be accessed as used. |
| * |
| * We do not keep track of PMC because we have to |
| * systematically restore ALL of them. |
| * |
| * We do not update the used_monitors mask, because |
| * if we have not programmed them, then will be in |
| * a quiescent state, therefore we will not need to |
| * mask/restore then when context is MASKED. |
| */ |
| CTX_USED_PMD(ctx, reset_pmds); |
| CTX_USED_PMD(ctx, smpl_pmds); |
| /* |
| * make sure we do not try to reset on |
| * restart because we have established new values |
| */ |
| if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; |
| } |
| /* |
| * Needed in case the user does not initialize the equivalent |
| * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no |
| * possible leak here. |
| */ |
| CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]); |
| |
| /* |
| * keep track of the monitor PMC that we are using. |
| * we save the value of the pmc in ctx_pmcs[] and if |
| * the monitoring is not stopped for the context we also |
| * place it in the saved state area so that it will be |
| * picked up later by the context switch code. |
| * |
| * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs(). |
| * |
| * The value in thread->pmcs[] may be modified on overflow, i.e., when |
| * monitoring needs to be stopped. |
| */ |
| if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum); |
| |
| /* |
| * update context state |
| */ |
| ctx->ctx_pmcs[cnum] = value; |
| |
| if (is_loaded) { |
| /* |
| * write thread state |
| */ |
| if (is_system == 0) thread->pmcs[cnum] = value; |
| |
| /* |
| * write hardware register if we can |
| */ |
| if (can_access_pmu) { |
| ia64_set_pmc(cnum, value); |
| } |
| #ifdef CONFIG_SMP |
| else { |
| /* |
| * per-task SMP only here |
| * |
| * we are guaranteed that the task is not running on the other CPU, |
| * we indicate that this PMD will need to be reloaded if the task |
| * is rescheduled on the CPU it ran last on. |
| */ |
| ctx->ctx_reload_pmcs[0] |= 1UL << cnum; |
| } |
| #endif |
| } |
| |
| DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n", |
| cnum, |
| value, |
| is_loaded, |
| can_access_pmu, |
| flags, |
| ctx->ctx_all_pmcs[0], |
| ctx->ctx_used_pmds[0], |
| ctx->ctx_pmds[cnum].eventid, |
| smpl_pmds, |
| reset_pmds, |
| ctx->ctx_reload_pmcs[0], |
| ctx->ctx_used_monitors[0], |
| ctx->ctx_ovfl_regs[0])); |
| } |
| |
| /* |
| * make sure the changes are visible |
| */ |
| if (can_access_pmu) ia64_srlz_d(); |
| |
| return 0; |
| error: |
| PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); |
| return ret; |
| } |
| |
| static int |
| pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) |
| { |
| struct thread_struct *thread = NULL; |
| struct task_struct *task; |
| pfarg_reg_t *req = (pfarg_reg_t *)arg; |
| unsigned long value, hw_value, ovfl_mask; |
| unsigned int cnum; |
| int i, can_access_pmu = 0, state; |
| int is_counting, is_loaded, is_system, expert_mode; |
| int ret = -EINVAL; |
| pfm_reg_check_t wr_func; |
| |
| |
| state = ctx->ctx_state; |
| is_loaded = state == PFM_CTX_LOADED ? 1 : 0; |
| is_system = ctx->ctx_fl_system; |
| ovfl_mask = pmu_conf->ovfl_val; |
| task = ctx->ctx_task; |
| |
| if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL; |
| |
| /* |
| * on both UP and SMP, we can only write to the PMC when the task is |
| * the owner of the local PMU. |
| */ |
| if (likely(is_loaded)) { |
| thread = &task->thread; |
| /* |
| * In system wide and when the context is loaded, access can only happen |
| * when the caller is running on the CPU being monitored by the session. |
| * It does not have to be the owner (ctx_task) of the context per se. |
| */ |
| if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { |
| DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); |
| return -EBUSY; |
| } |
| can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; |
| } |
| expert_mode = pfm_sysctl.expert_mode; |
| |
| for (i = 0; i < count; i++, req++) { |
| |
| cnum = req->reg_num; |
| value = req->reg_value; |
| |
| if (!PMD_IS_IMPL(cnum)) { |
| DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum)); |
| goto abort_mission; |
| } |
| is_counting = PMD_IS_COUNTING(cnum); |
| wr_func = pmu_conf->pmd_desc[cnum].write_check; |
| |
| /* |
| * execute write checker, if any |
| */ |
| if (unlikely(expert_mode == 0 && wr_func)) { |
| unsigned long v = value; |
| |
| ret = (*wr_func)(task, ctx, cnum, &v, regs); |
| if (ret) goto abort_mission; |
| |
| value = v; |
| ret = -EINVAL; |
| } |
| |
| /* |
| * no error on this register |
| */ |
| PFM_REG_RETFLAG_SET(req->reg_flags, 0); |
| |
| /* |
| * now commit changes to software state |
| */ |
| hw_value = value; |
| |
| /* |
| * update virtualized (64bits) counter |
| */ |
| if (is_counting) { |
| /* |
| * write context state |
| */ |
| ctx->ctx_pmds[cnum].lval = value; |
| |
| /* |
| * when context is load we use the split value |
| */ |
| if (is_loaded) { |
| hw_value = value & ovfl_mask; |
| value = value & ~ovfl_mask; |
| } |
| } |
| /* |
| * update reset values (not just for counters) |
| */ |
| ctx->ctx_pmds[cnum].long_reset |