blob: 71e3f93606580510dc5caf7c374f75ee45f1b460 [file] [log] [blame]
/*
* Apple Onboard Audio driver for Onyx codec
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
*
* GPL v2, can be found in COPYING.
*
*
* This is a driver for the pcm3052 codec chip (codenamed Onyx)
* that is present in newer Apple hardware (with digital output).
*
* The Onyx codec has the following connections (listed by the bit
* to be used in aoa_codec.connected):
* 0: analog output
* 1: digital output
* 2: line input
* 3: microphone input
* Note that even though I know of no machine that has for example
* the digital output connected but not the analog, I have handled
* all the different cases in the code so that this driver may serve
* as a good example of what to do.
*
* NOTE: This driver assumes that there's at most one chip to be
* used with one alsa card, in form of creating all kinds
* of mixer elements without regard for their existence.
* But snd-aoa assumes that there's at most one card, so
* this means you can only have one onyx on a system. This
* should probably be fixed by changing the assumption of
* having just a single card on a system, and making the
* 'card' pointer accessible to anyone who needs it instead
* of hiding it in the aoa_snd_* functions...
*
*/
#include <linux/delay.h>
#include <linux/module.h>
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("pcm3052 (onyx) codec driver for snd-aoa");
#include "snd-aoa-codec-onyx.h"
#include "../aoa.h"
#include "../soundbus/soundbus.h"
#define PFX "snd-aoa-codec-onyx: "
struct onyx {
/* cache registers 65 to 80, they are write-only! */
u8 cache[16];
struct i2c_client i2c;
struct aoa_codec codec;
u32 initialised:1,
spdif_locked:1,
analog_locked:1,
original_mute:2;
int open_count;
struct codec_info *codec_info;
/* mutex serializes concurrent access to the device
* and this structure.
*/
struct mutex mutex;
};
#define codec_to_onyx(c) container_of(c, struct onyx, codec)
/* both return 0 if all ok, else on error */
static int onyx_read_register(struct onyx *onyx, u8 reg, u8 *value)
{
s32 v;
if (reg != ONYX_REG_CONTROL) {
*value = onyx->cache[reg-FIRSTREGISTER];
return 0;
}
v = i2c_smbus_read_byte_data(&onyx->i2c, reg);
if (v < 0)
return -1;
*value = (u8)v;
onyx->cache[ONYX_REG_CONTROL-FIRSTREGISTER] = *value;
return 0;
}
static int onyx_write_register(struct onyx *onyx, u8 reg, u8 value)
{
int result;
result = i2c_smbus_write_byte_data(&onyx->i2c, reg, value);
if (!result)
onyx->cache[reg-FIRSTREGISTER] = value;
return result;
}
/* alsa stuff */
static int onyx_dev_register(struct snd_device *dev)
{
return 0;
}
static struct snd_device_ops ops = {
.dev_register = onyx_dev_register,
};
/* this is necessary because most alsa mixer programs
* can't properly handle the negative range */
#define VOLUME_RANGE_SHIFT 128
static int onyx_snd_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = -128 + VOLUME_RANGE_SHIFT;
uinfo->value.integer.max = -1 + VOLUME_RANGE_SHIFT;
return 0;
}
static int onyx_snd_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
s8 l, r;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_LEFT, &l);
onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT, &r);
mutex_unlock(&onyx->mutex);
ucontrol->value.integer.value[0] = l + VOLUME_RANGE_SHIFT;
ucontrol->value.integer.value[1] = r + VOLUME_RANGE_SHIFT;
return 0;
}
static int onyx_snd_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
s8 l, r;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_LEFT, &l);
onyx_read_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT, &r);
if (l + VOLUME_RANGE_SHIFT == ucontrol->value.integer.value[0] &&
r + VOLUME_RANGE_SHIFT == ucontrol->value.integer.value[1]) {
mutex_unlock(&onyx->mutex);
return 0;
}
onyx_write_register(onyx, ONYX_REG_DAC_ATTEN_LEFT,
ucontrol->value.integer.value[0]
- VOLUME_RANGE_SHIFT);
onyx_write_register(onyx, ONYX_REG_DAC_ATTEN_RIGHT,
ucontrol->value.integer.value[1]
- VOLUME_RANGE_SHIFT);
mutex_unlock(&onyx->mutex);
return 1;
}
static struct snd_kcontrol_new volume_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = onyx_snd_vol_info,
.get = onyx_snd_vol_get,
.put = onyx_snd_vol_put,
};
/* like above, this is necessary because a lot
* of alsa mixer programs don't handle ranges
* that don't start at 0 properly.
* even alsamixer is one of them... */
#define INPUTGAIN_RANGE_SHIFT (-3)
static int onyx_snd_inputgain_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 3 + INPUTGAIN_RANGE_SHIFT;
uinfo->value.integer.max = 28 + INPUTGAIN_RANGE_SHIFT;
return 0;
}
static int onyx_snd_inputgain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 ig;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &ig);
mutex_unlock(&onyx->mutex);
ucontrol->value.integer.value[0] =
(ig & ONYX_ADC_PGA_GAIN_MASK) + INPUTGAIN_RANGE_SHIFT;
return 0;
}
static int onyx_snd_inputgain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 v, n;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
n = v;
n &= ~ONYX_ADC_PGA_GAIN_MASK;
n |= (ucontrol->value.integer.value[0] - INPUTGAIN_RANGE_SHIFT)
& ONYX_ADC_PGA_GAIN_MASK;
onyx_write_register(onyx, ONYX_REG_ADC_CONTROL, n);
mutex_unlock(&onyx->mutex);
return n != v;
}
static struct snd_kcontrol_new inputgain_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Capture Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = onyx_snd_inputgain_info,
.get = onyx_snd_inputgain_get,
.put = onyx_snd_inputgain_put,
};
static int onyx_snd_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[] = { "Line-In", "Microphone" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item > 1)
uinfo->value.enumerated.item = 1;
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int onyx_snd_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
s8 v;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
mutex_unlock(&onyx->mutex);
ucontrol->value.enumerated.item[0] = !!(v&ONYX_ADC_INPUT_MIC);
return 0;
}
static void onyx_set_capture_source(struct onyx *onyx, int mic)
{
s8 v;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_ADC_CONTROL, &v);
v &= ~ONYX_ADC_INPUT_MIC;
if (mic)
v |= ONYX_ADC_INPUT_MIC;
onyx_write_register(onyx, ONYX_REG_ADC_CONTROL, v);
mutex_unlock(&onyx->mutex);
}
static int onyx_snd_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
onyx_set_capture_source(snd_kcontrol_chip(kcontrol),
ucontrol->value.enumerated.item[0]);
return 1;
}
static struct snd_kcontrol_new capture_source_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
/* If we name this 'Input Source', it properly shows up in
* alsamixer as a selection, * but it's shown under the
* 'Playback' category.
* If I name it 'Capture Source', it shows up in strange
* ways (two bools of which one can be selected at a
* time) but at least it's shown in the 'Capture'
* category.
* I was told that this was due to backward compatibility,
* but I don't understand then why the mangling is *not*
* done when I name it "Input Source".....
*/
.name = "Capture Source",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = onyx_snd_capture_source_info,
.get = onyx_snd_capture_source_get,
.put = onyx_snd_capture_source_put,
};
#define onyx_snd_mute_info snd_ctl_boolean_stereo_info
static int onyx_snd_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 c;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &c);
mutex_unlock(&onyx->mutex);
ucontrol->value.integer.value[0] = !(c & ONYX_MUTE_LEFT);
ucontrol->value.integer.value[1] = !(c & ONYX_MUTE_RIGHT);
return 0;
}
static int onyx_snd_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 v = 0, c = 0;
int err = -EBUSY;
mutex_lock(&onyx->mutex);
if (onyx->analog_locked)
goto out_unlock;
onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
c = v;
c &= ~(ONYX_MUTE_RIGHT | ONYX_MUTE_LEFT);
if (!ucontrol->value.integer.value[0])
c |= ONYX_MUTE_LEFT;
if (!ucontrol->value.integer.value[1])
c |= ONYX_MUTE_RIGHT;
err = onyx_write_register(onyx, ONYX_REG_DAC_CONTROL, c);
out_unlock:
mutex_unlock(&onyx->mutex);
return !err ? (v != c) : err;
}
static struct snd_kcontrol_new mute_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = onyx_snd_mute_info,
.get = onyx_snd_mute_get,
.put = onyx_snd_mute_put,
};
#define onyx_snd_single_bit_info snd_ctl_boolean_mono_info
#define FLAG_POLARITY_INVERT 1
#define FLAG_SPDIFLOCK 2
static int onyx_snd_single_bit_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 c;
long int pv = kcontrol->private_value;
u8 polarity = (pv >> 16) & FLAG_POLARITY_INVERT;
u8 address = (pv >> 8) & 0xff;
u8 mask = pv & 0xff;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, address, &c);
mutex_unlock(&onyx->mutex);
ucontrol->value.integer.value[0] = !!(c & mask) ^ polarity;
return 0;
}
static int onyx_snd_single_bit_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 v = 0, c = 0;
int err;
long int pv = kcontrol->private_value;
u8 polarity = (pv >> 16) & FLAG_POLARITY_INVERT;
u8 spdiflock = (pv >> 16) & FLAG_SPDIFLOCK;
u8 address = (pv >> 8) & 0xff;
u8 mask = pv & 0xff;
mutex_lock(&onyx->mutex);
if (spdiflock && onyx->spdif_locked) {
/* even if alsamixer doesn't care.. */
err = -EBUSY;
goto out_unlock;
}
onyx_read_register(onyx, address, &v);
c = v;
c &= ~(mask);
if (!!ucontrol->value.integer.value[0] ^ polarity)
c |= mask;
err = onyx_write_register(onyx, address, c);
out_unlock:
mutex_unlock(&onyx->mutex);
return !err ? (v != c) : err;
}
#define SINGLE_BIT(n, type, description, address, mask, flags) \
static struct snd_kcontrol_new n##_control = { \
.iface = SNDRV_CTL_ELEM_IFACE_##type, \
.name = description, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
.info = onyx_snd_single_bit_info, \
.get = onyx_snd_single_bit_get, \
.put = onyx_snd_single_bit_put, \
.private_value = (flags << 16) | (address << 8) | mask \
}
SINGLE_BIT(spdif,
MIXER,
SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
ONYX_REG_DIG_INFO4,
ONYX_SPDIF_ENABLE,
FLAG_SPDIFLOCK);
SINGLE_BIT(ovr1,
MIXER,
"Oversampling Rate",
ONYX_REG_DAC_CONTROL,
ONYX_OVR1,
0);
SINGLE_BIT(flt0,
MIXER,
"Fast Digital Filter Rolloff",
ONYX_REG_DAC_FILTER,
ONYX_ROLLOFF_FAST,
FLAG_POLARITY_INVERT);
SINGLE_BIT(hpf,
MIXER,
"Highpass Filter",
ONYX_REG_ADC_HPF_BYPASS,
ONYX_HPF_DISABLE,
FLAG_POLARITY_INVERT);
SINGLE_BIT(dm12,
MIXER,
"Digital De-Emphasis",
ONYX_REG_DAC_DEEMPH,
ONYX_DIGDEEMPH_CTRL,
0);
static int onyx_spdif_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int onyx_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
/* datasheet page 30, all others are 0 */
ucontrol->value.iec958.status[0] = 0x3e;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[3] = 0x3f;
ucontrol->value.iec958.status[4] = 0x0f;
return 0;
}
static struct snd_kcontrol_new onyx_spdif_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = onyx_spdif_info,
.get = onyx_spdif_mask_get,
};
static int onyx_spdif_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 v;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_DIG_INFO1, &v);
ucontrol->value.iec958.status[0] = v & 0x3e;
onyx_read_register(onyx, ONYX_REG_DIG_INFO2, &v);
ucontrol->value.iec958.status[1] = v;
onyx_read_register(onyx, ONYX_REG_DIG_INFO3, &v);
ucontrol->value.iec958.status[3] = v & 0x3f;
onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
ucontrol->value.iec958.status[4] = v & 0x0f;
mutex_unlock(&onyx->mutex);
return 0;
}
static int onyx_spdif_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct onyx *onyx = snd_kcontrol_chip(kcontrol);
u8 v;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_DIG_INFO1, &v);
v = (v & ~0x3e) | (ucontrol->value.iec958.status[0] & 0x3e);
onyx_write_register(onyx, ONYX_REG_DIG_INFO1, v);
v = ucontrol->value.iec958.status[1];
onyx_write_register(onyx, ONYX_REG_DIG_INFO2, v);
onyx_read_register(onyx, ONYX_REG_DIG_INFO3, &v);
v = (v & ~0x3f) | (ucontrol->value.iec958.status[3] & 0x3f);
onyx_write_register(onyx, ONYX_REG_DIG_INFO3, v);
onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
v = (v & ~0x0f) | (ucontrol->value.iec958.status[4] & 0x0f);
onyx_write_register(onyx, ONYX_REG_DIG_INFO4, v);
mutex_unlock(&onyx->mutex);
return 1;
}
static struct snd_kcontrol_new onyx_spdif_ctrl = {
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = onyx_spdif_info,
.get = onyx_spdif_get,
.put = onyx_spdif_put,
};
/* our registers */
static u8 register_map[] = {
ONYX_REG_DAC_ATTEN_LEFT,
ONYX_REG_DAC_ATTEN_RIGHT,
ONYX_REG_CONTROL,
ONYX_REG_DAC_CONTROL,
ONYX_REG_DAC_DEEMPH,
ONYX_REG_DAC_FILTER,
ONYX_REG_DAC_OUTPHASE,
ONYX_REG_ADC_CONTROL,
ONYX_REG_ADC_HPF_BYPASS,
ONYX_REG_DIG_INFO1,
ONYX_REG_DIG_INFO2,
ONYX_REG_DIG_INFO3,
ONYX_REG_DIG_INFO4
};
static u8 initial_values[ARRAY_SIZE(register_map)] = {
0x80, 0x80, /* muted */
ONYX_MRST | ONYX_SRST, /* but handled specially! */
ONYX_MUTE_LEFT | ONYX_MUTE_RIGHT,
0, /* no deemphasis */
ONYX_DAC_FILTER_ALWAYS,
ONYX_OUTPHASE_INVERTED,
(-1 /*dB*/ + 8) & 0xF, /* line in selected, -1 dB gain*/
ONYX_ADC_HPF_ALWAYS,
(1<<2), /* pcm audio */
2, /* category: pcm coder */
0, /* sampling frequency 44.1 kHz, clock accuracy level II */
1 /* 24 bit depth */
};
/* reset registers of chip, either to initial or to previous values */
static int onyx_register_init(struct onyx *onyx)
{
int i;
u8 val;
u8 regs[sizeof(initial_values)];
if (!onyx->initialised) {
memcpy(regs, initial_values, sizeof(initial_values));
if (onyx_read_register(onyx, ONYX_REG_CONTROL, &val))
return -1;
val &= ~ONYX_SILICONVERSION;
val |= initial_values[3];
regs[3] = val;
} else {
for (i=0; i<sizeof(register_map); i++)
regs[i] = onyx->cache[register_map[i]-FIRSTREGISTER];
}
for (i=0; i<sizeof(register_map); i++) {
if (onyx_write_register(onyx, register_map[i], regs[i]))
return -1;
}
onyx->initialised = 1;
return 0;
}
static struct transfer_info onyx_transfers[] = {
/* this is first so we can skip it if no input is present...
* No hardware exists with that, but it's here as an example
* of what to do :) */
{
/* analog input */
.formats = SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_8000_96000,
.transfer_in = 1,
.must_be_clock_source = 0,
.tag = 0,
},
{
/* if analog and digital are currently off, anything should go,
* so this entry describes everything we can do... */
.formats = SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_S24_BE
#ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
| SNDRV_PCM_FMTBIT_COMPRESSED_16BE
#endif
,
.rates = SNDRV_PCM_RATE_8000_96000,
.tag = 0,
},
{
/* analog output */
.formats = SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_8000_96000,
.transfer_in = 0,
.must_be_clock_source = 0,
.tag = 1,
},
{
/* digital pcm output, also possible for analog out */
.formats = SNDRV_PCM_FMTBIT_S8 |
SNDRV_PCM_FMTBIT_S16_BE |
SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000,
.transfer_in = 0,
.must_be_clock_source = 0,
.tag = 2,
},
#ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
/* Once alsa gets supports for this kind of thing we can add it... */
{
/* digital compressed output */
.formats = SNDRV_PCM_FMTBIT_COMPRESSED_16BE,
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000,
.tag = 2,
},
#endif
{}
};
static int onyx_usable(struct codec_info_item *cii,
struct transfer_info *ti,
struct transfer_info *out)
{
u8 v;
struct onyx *onyx = cii->codec_data;
int spdif_enabled, analog_enabled;
mutex_lock(&onyx->mutex);
onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
spdif_enabled = !!(v & ONYX_SPDIF_ENABLE);
onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
analog_enabled =
(v & (ONYX_MUTE_RIGHT|ONYX_MUTE_LEFT))
!= (ONYX_MUTE_RIGHT|ONYX_MUTE_LEFT);
mutex_unlock(&onyx->mutex);
switch (ti->tag) {
case 0: return 1;
case 1: return analog_enabled;
case 2: return spdif_enabled;
}
return 1;
}
static int onyx_prepare(struct codec_info_item *cii,
struct bus_info *bi,
struct snd_pcm_substream *substream)
{
u8 v;
struct onyx *onyx = cii->codec_data;
int err = -EBUSY;
mutex_lock(&onyx->mutex);
#ifdef SNDRV_PCM_FMTBIT_COMPRESSED_16BE
if (substream->runtime->format == SNDRV_PCM_FMTBIT_COMPRESSED_16BE) {
/* mute and lock analog output */
onyx_read_register(onyx, ONYX_REG_DAC_CONTROL, &v);
if (onyx_write_register(onyx,
ONYX_REG_DAC_CONTROL,
v | ONYX_MUTE_RIGHT | ONYX_MUTE_LEFT))
goto out_unlock;
onyx->analog_locked = 1;
err = 0;
goto out_unlock;
}
#endif
switch (substream->runtime->rate) {
case 32000:
case 44100:
case 48000:
/* these rates are ok for all outputs */
/* FIXME: program spdif channel control bits here so that
* userspace doesn't have to if it only plays pcm! */
err = 0;
goto out_unlock;
default:
/* got some rate that the digital output can't do,
* so disable and lock it */
onyx_read_register(cii->codec_data, ONYX_REG_DIG_INFO4, &v);
if (onyx_write_register(onyx,
ONYX_REG_DIG_INFO4,
v & ~ONYX_SPDIF_ENABLE))
goto out_unlock;
onyx->spdif_locked = 1;
err = 0;
goto out_unlock;
}
out_unlock:
mutex_unlock(&onyx->mutex);
return err;
}
static int onyx_open(struct codec_info_item *cii,
struct snd_pcm_substream *substream)
{
struct onyx *onyx = cii->codec_data;
mutex_lock(&onyx->mutex);
onyx->open_count++;
mutex_unlock(&onyx->mutex);
return 0;
}
static int onyx_close(struct codec_info_item *cii,
struct snd_pcm_substream *substream)
{
struct onyx *onyx = cii->codec_data;
mutex_lock(&onyx->mutex);
onyx->open_count--;
if (!onyx->open_count)
onyx->spdif_locked = onyx->analog_locked = 0;
mutex_unlock(&onyx->mutex);
return 0;
}
static int onyx_switch_clock(struct codec_info_item *cii,
enum clock_switch what)
{
struct onyx *onyx = cii->codec_data;
mutex_lock(&onyx->mutex);
/* this *MUST* be more elaborate later... */
switch (what) {
case CLOCK_SWITCH_PREPARE_SLAVE:
onyx->codec.gpio->methods->all_amps_off(onyx->codec.gpio);
break;
case CLOCK_SWITCH_SLAVE:
onyx->codec.gpio->methods->all_amps_restore(onyx->codec.gpio);
break;
default: /* silence warning */
break;
}
mutex_unlock(&onyx->mutex);
return 0;
}
#ifdef CONFIG_PM
static int onyx_suspend(struct codec_info_item *cii, pm_message_t state)
{
struct onyx *onyx = cii->codec_data;
u8 v;
int err = -ENXIO;
mutex_lock(&onyx->mutex);
if (onyx_read_register(onyx, ONYX_REG_CONTROL, &v))
goto out_unlock;
onyx_write_register(onyx, ONYX_REG_CONTROL, v | ONYX_ADPSV | ONYX_DAPSV);
/* Apple does a sleep here but the datasheet says to do it on resume */
err = 0;
out_unlock:
mutex_unlock(&onyx->mutex);
return err;
}
static int onyx_resume(struct codec_info_item *cii)
{
struct onyx *onyx = cii->codec_data;
u8 v;
int err = -ENXIO;
mutex_lock(&onyx->mutex);
/* reset codec */
onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
msleep(1);
onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 1);
msleep(1);
onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
msleep(1);
/* take codec out of suspend (if it still is after reset) */
if (onyx_read_register(onyx, ONYX_REG_CONTROL, &v))
goto out_unlock;
onyx_write_register(onyx, ONYX_REG_CONTROL, v & ~(ONYX_ADPSV | ONYX_DAPSV));
/* FIXME: should divide by sample rate, but 8k is the lowest we go */
msleep(2205000/8000);
/* reset all values */
onyx_register_init(onyx);
err = 0;
out_unlock:
mutex_unlock(&onyx->mutex);
return err;
}
#endif /* CONFIG_PM */
static struct codec_info onyx_codec_info = {
.transfers = onyx_transfers,
.sysclock_factor = 256,
.bus_factor = 64,
.owner = THIS_MODULE,
.usable = onyx_usable,
.prepare = onyx_prepare,
.open = onyx_open,
.close = onyx_close,
.switch_clock = onyx_switch_clock,
#ifdef CONFIG_PM
.suspend = onyx_suspend,
.resume = onyx_resume,
#endif
};
static int onyx_init_codec(struct aoa_codec *codec)
{
struct onyx *onyx = codec_to_onyx(codec);
struct snd_kcontrol *ctl;
struct codec_info *ci = &onyx_codec_info;
u8 v;
int err;
if (!onyx->codec.gpio || !onyx->codec.gpio->methods) {
printk(KERN_ERR PFX "gpios not assigned!!\n");
return -EINVAL;
}
onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
msleep(1);
onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 1);
msleep(1);
onyx->codec.gpio->methods->set_hw_reset(onyx->codec.gpio, 0);
msleep(1);
if (onyx_register_init(onyx)) {
printk(KERN_ERR PFX "failed to initialise onyx registers\n");
return -ENODEV;
}
if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, onyx, &ops)) {
printk(KERN_ERR PFX "failed to create onyx snd device!\n");
return -ENODEV;
}
/* nothing connected? what a joke! */
if ((onyx->codec.connected & 0xF) == 0)
return -ENOTCONN;
/* if no inputs are present... */
if ((onyx->codec.connected & 0xC) == 0) {
if (!onyx->codec_info)
onyx->codec_info = kmalloc(sizeof(struct codec_info), GFP_KERNEL);
if (!onyx->codec_info)
return -ENOMEM;
ci = onyx->codec_info;
*ci = onyx_codec_info;
ci->transfers++;
}
/* if no outputs are present... */
if ((onyx->codec.connected & 3) == 0) {
if (!onyx->codec_info)
onyx->codec_info = kmalloc(sizeof(struct codec_info), GFP_KERNEL);
if (!onyx->codec_info)
return -ENOMEM;
ci = onyx->codec_info;
/* this is fine as there have to be inputs
* if we end up in this part of the code */
*ci = onyx_codec_info;
ci->transfers[1].formats = 0;
}
if (onyx->codec.soundbus_dev->attach_codec(onyx->codec.soundbus_dev,
aoa_get_card(),
ci, onyx)) {
printk(KERN_ERR PFX "error creating onyx pcm\n");
return -ENODEV;
}
#define ADDCTL(n) \
do { \
ctl = snd_ctl_new1(&n, onyx); \
if (ctl) { \
ctl->id.device = \
onyx->codec.soundbus_dev->pcm->device; \
err = aoa_snd_ctl_add(ctl); \
if (err) \
goto error; \
} \
} while (0)
if (onyx->codec.soundbus_dev->pcm) {
/* give the user appropriate controls
* depending on what inputs are connected */
if ((onyx->codec.connected & 0xC) == 0xC)
ADDCTL(capture_source_control);
else if (onyx->codec.connected & 4)
onyx_set_capture_source(onyx, 0);
else
onyx_set_capture_source(onyx, 1);
if (onyx->codec.connected & 0xC)
ADDCTL(inputgain_control);
/* depending on what output is connected,
* give the user appropriate controls */
if (onyx->codec.connected & 1) {
ADDCTL(volume_control);
ADDCTL(mute_control);
ADDCTL(ovr1_control);
ADDCTL(flt0_control);
ADDCTL(hpf_control);
ADDCTL(dm12_control);
/* spdif control defaults to off */
}
if (onyx->codec.connected & 2) {
ADDCTL(onyx_spdif_mask);
ADDCTL(onyx_spdif_ctrl);
}
if ((onyx->codec.connected & 3) == 3)
ADDCTL(spdif_control);
/* if only S/PDIF is connected, enable it unconditionally */
if ((onyx->codec.connected & 3) == 2) {
onyx_read_register(onyx, ONYX_REG_DIG_INFO4, &v);
v |= ONYX_SPDIF_ENABLE;
onyx_write_register(onyx, ONYX_REG_DIG_INFO4, v);
}
}
#undef ADDCTL
printk(KERN_INFO PFX "attached to onyx codec via i2c\n");
return 0;
error:
onyx->codec.soundbus_dev->detach_codec(onyx->codec.soundbus_dev, onyx);
snd_device_free(aoa_get_card(), onyx);
return err;
}
static void onyx_exit_codec(struct aoa_codec *codec)
{
struct onyx *onyx = codec_to_onyx(codec);
if (!onyx->codec.soundbus_dev) {
printk(KERN_ERR PFX "onyx_exit_codec called without soundbus_dev!\n");
return;
}
onyx->codec.soundbus_dev->detach_codec(onyx->codec.soundbus_dev, onyx);
}
static struct i2c_driver onyx_driver;
static int onyx_create(struct i2c_adapter *adapter,
struct device_node *node,
int addr)
{
struct onyx *onyx;
u8 dummy;
onyx = kzalloc(sizeof(struct onyx), GFP_KERNEL);
if (!onyx)
return -ENOMEM;
mutex_init(&onyx->mutex);
onyx->i2c.driver = &onyx_driver;
onyx->i2c.adapter = adapter;
onyx->i2c.addr = addr & 0x7f;
strlcpy(onyx->i2c.name, "onyx audio codec", I2C_NAME_SIZE);
if (i2c_attach_client(&onyx->i2c)) {
printk(KERN_ERR PFX "failed to attach to i2c\n");
goto fail;
}
/* we try to read from register ONYX_REG_CONTROL
* to check if the codec is present */
if (onyx_read_register(onyx, ONYX_REG_CONTROL, &dummy) != 0) {
i2c_detach_client(&onyx->i2c);
printk(KERN_ERR PFX "failed to read control register\n");
goto fail;
}
strlcpy(onyx->codec.name, "onyx", MAX_CODEC_NAME_LEN);
onyx->codec.owner = THIS_MODULE;
onyx->codec.init = onyx_init_codec;
onyx->codec.exit = onyx_exit_codec;
onyx->codec.node = of_node_get(node);
if (aoa_codec_register(&onyx->codec)) {
i2c_detach_client(&onyx->i2c);
goto fail;
}
printk(KERN_DEBUG PFX "created and attached onyx instance\n");
return 0;
fail:
kfree(onyx);
return -EINVAL;
}
static int onyx_i2c_attach(struct i2c_adapter *adapter)
{
struct device_node *busnode, *dev = NULL;
struct pmac_i2c_bus *bus;
bus = pmac_i2c_adapter_to_bus(adapter);
if (bus == NULL)
return -ENODEV;
busnode = pmac_i2c_get_bus_node(bus);
while ((dev = of_get_next_child(busnode, dev)) != NULL) {
if (of_device_is_compatible(dev, "pcm3052")) {
const u32 *addr;
printk(KERN_DEBUG PFX "found pcm3052\n");
addr = of_get_property(dev, "reg", NULL);
if (!addr)
return -ENODEV;
return onyx_create(adapter, dev, (*addr)>>1);
}
}
/* if that didn't work, try desperate mode for older
* machines that have stuff missing from the device tree */
if (!of_device_is_compatible(busnode, "k2-i2c"))
return -ENODEV;
printk(KERN_DEBUG PFX "found k2-i2c, checking if onyx chip is on it\n");
/* probe both possible addresses for the onyx chip */
if (onyx_create(adapter, NULL, 0x46) == 0)
return 0;
return onyx_create(adapter, NULL, 0x47);
}
static int onyx_i2c_detach(struct i2c_client *client)
{
struct onyx *onyx = container_of(client, struct onyx, i2c);
int err;
if ((err = i2c_detach_client(client)))
return err;
aoa_codec_unregister(&onyx->codec);
of_node_put(onyx->codec.node);
if (onyx->codec_info)
kfree(onyx->codec_info);
kfree(onyx);
return 0;
}
static struct i2c_driver onyx_driver = {
.driver = {
.name = "aoa_codec_onyx",
.owner = THIS_MODULE,
},
.attach_adapter = onyx_i2c_attach,
.detach_client = onyx_i2c_detach,
};
static int __init onyx_init(void)
{
return i2c_add_driver(&onyx_driver);
}
static void __exit onyx_exit(void)
{
i2c_del_driver(&onyx_driver);
}
module_init(onyx_init);
module_exit(onyx_exit);