blob: 62efd74b8c04746da6cb1ccfa425139fa67e89bf [file] [log] [blame]
/* ced_ioc.c
ioctl part of the 1401 usb device driver for linux.
Copyright (C) 2010 Cambridge Electronic Design Ltd
Author Greg P Smith (greg@ced.co.uk)
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/uaccess.h>
#include <linux/usb.h>
#include <linux/mutex.h>
#include <linux/page-flags.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include "usb1401.h"
/****************************************************************************
** FlushOutBuff
**
** Empties the Output buffer and sets int lines. Used from user level only
****************************************************************************/
static void FlushOutBuff(DEVICE_EXTENSION *pdx)
{
dev_dbg(&pdx->interface->dev, "%s currentState=%d", __func__,
pdx->sCurrentState);
if (pdx->sCurrentState == U14ERR_TIME) /* Do nothing if hardware in trouble */
return;
/* Kill off any pending I/O */
/* CharSend_Cancel(pdx); */
spin_lock_irq(&pdx->charOutLock);
pdx->dwNumOutput = 0;
pdx->dwOutBuffGet = 0;
pdx->dwOutBuffPut = 0;
spin_unlock_irq(&pdx->charOutLock);
}
/****************************************************************************
**
** FlushInBuff
**
** Empties the input buffer and sets int lines
****************************************************************************/
static void FlushInBuff(DEVICE_EXTENSION *pdx)
{
dev_dbg(&pdx->interface->dev, "%s currentState=%d", __func__,
pdx->sCurrentState);
if (pdx->sCurrentState == U14ERR_TIME) /* Do nothing if hardware in trouble */
return;
/* Kill off any pending I/O */
/* CharRead_Cancel(pDevObject); */
spin_lock_irq(&pdx->charInLock);
pdx->dwNumInput = 0;
pdx->dwInBuffGet = 0;
pdx->dwInBuffPut = 0;
spin_unlock_irq(&pdx->charInLock);
}
/****************************************************************************
** PutChars
**
** Utility routine to copy chars into the output buffer and fire them off.
** called from user mode, holds charOutLock.
****************************************************************************/
static int PutChars(DEVICE_EXTENSION *pdx, const char *pCh,
unsigned int uCount)
{
int iReturn;
spin_lock_irq(&pdx->charOutLock); /* get the output spin lock */
if ((OUTBUF_SZ - pdx->dwNumOutput) >= uCount) {
unsigned int u;
for (u = 0; u < uCount; u++) {
pdx->outputBuffer[pdx->dwOutBuffPut++] = pCh[u];
if (pdx->dwOutBuffPut >= OUTBUF_SZ)
pdx->dwOutBuffPut = 0;
}
pdx->dwNumOutput += uCount;
spin_unlock_irq(&pdx->charOutLock);
iReturn = SendChars(pdx); /* ...give a chance to transmit data */
} else {
iReturn = U14ERR_NOOUT; /* no room at the out (ha-ha) */
spin_unlock_irq(&pdx->charOutLock);
}
return iReturn;
}
/*****************************************************************************
** Add the data in pData (local pointer) of length n to the output buffer, and
** trigger an output transfer if this is appropriate. User mode.
** Holds the io_mutex
*****************************************************************************/
int SendString(DEVICE_EXTENSION *pdx, const char __user *pData,
unsigned int n)
{
int iReturn = U14ERR_NOERROR; /* assume all will be well */
char buffer[OUTBUF_SZ + 1]; /* space in our address space for characters */
if (n > OUTBUF_SZ) /* check space in local buffer... */
return U14ERR_NOOUT; /* ...too many characters */
if (copy_from_user(buffer, pData, n))
return -EFAULT;
buffer[n] = 0; /* terminate for debug purposes */
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
if (n > 0) { /* do nothing if nowt to do! */
dev_dbg(&pdx->interface->dev, "%s n=%d>%s<", __func__, n,
buffer);
iReturn = PutChars(pdx, buffer, n);
}
Allowi(pdx); /* make sure we have input int */
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** SendChar
**
** Sends a single character to the 1401. User mode, holds io_mutex.
****************************************************************************/
int SendChar(DEVICE_EXTENSION *pdx, char c)
{
int iReturn;
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
iReturn = PutChars(pdx, &c, 1);
dev_dbg(&pdx->interface->dev, "SendChar >%c< (0x%02x)", c, c);
Allowi(pdx); /* Make sure char reads are running */
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/***************************************************************************
**
** Get1401State
**
** Retrieves state information from the 1401, adjusts the 1401 state held
** in the device extension to indicate the current 1401 type.
**
** *state is updated with information about the 1401 state as returned by the
** 1401. The low byte is a code for what 1401 is doing:
**
** 0 normal 1401 operation
** 1 sending chars to host
** 2 sending block data to host
** 3 reading block data from host
** 4 sending an escape sequence to the host
** 0x80 1401 is executing self-test, in which case the upper word
** is the last error code seen (or zero for no new error).
**
** *error is updated with error information if a self-test error code
** is returned in the upper word of state.
**
** both state and error are set to -1 if there are comms problems, and
** to zero if there is a simple failure.
**
** return error code (U14ERR_NOERROR for OK)
*/
int Get1401State(DEVICE_EXTENSION *pdx, __u32 *state, __u32 *error)
{
int nGot;
dev_dbg(&pdx->interface->dev, "Get1401State() entry");
*state = 0xFFFFFFFF; /* Start off with invalid state */
nGot = usb_control_msg(pdx->udev, usb_rcvctrlpipe(pdx->udev, 0),
GET_STATUS, (D_TO_H | VENDOR | DEVREQ), 0, 0,
pdx->statBuf, sizeof(pdx->statBuf), HZ);
if (nGot != sizeof(pdx->statBuf)) {
dev_err(&pdx->interface->dev,
"Get1401State() FAILED, return code %d", nGot);
pdx->sCurrentState = U14ERR_TIME; /* Indicate that things are very wrong indeed */
*state = 0; /* Force status values to a known state */
*error = 0;
} else {
int nDevice;
dev_dbg(&pdx->interface->dev,
"Get1401State() Success, state: 0x%x, 0x%x",
pdx->statBuf[0], pdx->statBuf[1]);
*state = pdx->statBuf[0]; /* Return the state values to the calling code */
*error = pdx->statBuf[1];
nDevice = pdx->udev->descriptor.bcdDevice >> 8; /* 1401 type code value */
switch (nDevice) { /* so we can clean up current state */
case 0:
pdx->sCurrentState = U14ERR_U1401;
break;
default: /* allow lots of device codes for future 1401s */
if ((nDevice >= 1) && (nDevice <= 23))
pdx->sCurrentState = (short)(nDevice + 6);
else
pdx->sCurrentState = U14ERR_ILL;
break;
}
}
return pdx->sCurrentState >= 0 ? U14ERR_NOERROR : pdx->sCurrentState;
}
/****************************************************************************
** ReadWrite_Cancel
**
** Kills off staged read\write request from the USB if one is pending.
****************************************************************************/
int ReadWrite_Cancel(DEVICE_EXTENSION *pdx)
{
dev_dbg(&pdx->interface->dev, "ReadWrite_Cancel entry %d",
pdx->bStagedUrbPending);
#ifdef NOT_WRITTEN_YET
int ntStatus = STATUS_SUCCESS;
bool bResult = false;
unsigned int i;
/* We can fill this in when we know how we will implement the staged transfer stuff */
spin_lock_irq(&pdx->stagedLock);
if (pdx->bStagedUrbPending) { /* anything to be cancelled? May need more... */
dev_info(&pdx->interface - dev,
"ReadWrite_Cancel about to cancel Urb");
/* Clear the staging done flag */
/* KeClearEvent(&pdx->StagingDoneEvent); */
USB_ASSERT(pdx->pStagedIrp != NULL);
/* Release the spinlock first otherwise the completion routine may hang */
/* on the spinlock while this function hands waiting for the event. */
spin_unlock_irq(&pdx->stagedLock);
bResult = IoCancelIrp(pdx->pStagedIrp); /* Actually do the cancel */
if (bResult) {
LARGE_INTEGER timeout;
timeout.QuadPart = -10000000; /* Use a timeout of 1 second */
dev_info(&pdx->interface - dev,
"ReadWrite_Cancel about to wait till done");
ntStatus =
KeWaitForSingleObject(&pdx->StagingDoneEvent,
Executive, KernelMode, FALSE,
&timeout);
} else {
dev_info(&pdx->interface - dev,
"ReadWrite_Cancel, cancellation failed");
ntStatus = U14ERR_FAIL;
}
USB_KdPrint(DBGLVL_DEFAULT,
("ReadWrite_Cancel ntStatus = 0x%x decimal %d\n",
ntStatus, ntStatus));
} else
spin_unlock_irq(&pdx->stagedLock);
dev_info(&pdx->interface - dev, "ReadWrite_Cancel done");
return ntStatus;
#else
return U14ERR_NOERROR;
#endif
}
/***************************************************************************
** InSelfTest - utility to check in self test. Return 1 for ST, 0 for not or
** a -ve error code if we failed for some reason.
***************************************************************************/
static int InSelfTest(DEVICE_EXTENSION *pdx, unsigned int *pState)
{
unsigned int state, error;
int iReturn = Get1401State(pdx, &state, &error); /* see if in self-test */
if (iReturn == U14ERR_NOERROR) /* if all still OK */
iReturn = (state == (unsigned int)-1) || /* TX problem or... */
((state & 0xff) == 0x80); /* ...self test */
*pState = state; /* return actual state */
return iReturn;
}
/***************************************************************************
** Is1401 - ALWAYS CALLED HOLDING THE io_mutex
**
** Tests for the current state of the 1401. Sets sCurrentState:
**
** U14ERR_NOIF 1401 i/f card not installed (not done here)
** U14ERR_OFF 1401 apparently not switched on
** U14ERR_NC 1401 appears to be not connected
** U14ERR_ILL 1401 if it is there its not very well at all
** U14ERR_TIME 1401 appears OK, but doesn't communicate - very bad
** U14ERR_STD 1401 OK and ready for use
** U14ERR_PLUS 1401+ OK and ready for use
** U14ERR_U1401 Micro1401 OK and ready for use
** U14ERR_POWER Power1401 OK and ready for use
** U14ERR_U14012 Micro1401 mkII OK and ready for use
**
** Returns TRUE if a 1401 detected and OK, else FALSE
****************************************************************************/
bool Is1401(DEVICE_EXTENSION *pdx)
{
int iReturn;
dev_dbg(&pdx->interface->dev, "%s", __func__);
ced_draw_down(pdx); /* wait for, then kill outstanding Urbs */
FlushInBuff(pdx); /* Clear out input buffer & pipe */
FlushOutBuff(pdx); /* Clear output buffer & pipe */
/* The next call returns 0 if OK, but has returned 1 in the past, meaning that */
/* usb_unlock_device() is needed... now it always is */
iReturn = usb_lock_device_for_reset(pdx->udev, pdx->interface);
/* release the io_mutex because if we don't, we will deadlock due to system */
/* calls back into the driver. */
mutex_unlock(&pdx->io_mutex); /* locked, so we will not get system calls */
if (iReturn >= 0) { /* if we failed */
iReturn = usb_reset_device(pdx->udev); /* try to do the reset */
usb_unlock_device(pdx->udev); /* undo the lock */
}
mutex_lock(&pdx->io_mutex); /* hold stuff off while we wait */
pdx->dwDMAFlag = MODE_CHAR; /* Clear DMA mode flag regardless! */
if (iReturn == 0) { /* if all is OK still */
unsigned int state;
iReturn = InSelfTest(pdx, &state); /* see if likely in self test */
if (iReturn > 0) { /* do we need to wait for self-test? */
unsigned long ulTimeOut = jiffies + 30 * HZ; /* when to give up */
while ((iReturn > 0) && time_before(jiffies, ulTimeOut)) {
schedule(); /* let other stuff run */
iReturn = InSelfTest(pdx, &state); /* see if done yet */
}
}
if (iReturn == 0) /* if all is OK... */
iReturn = state == 0; /* then success is that the state is 0 */
} else
iReturn = 0; /* we failed */
pdx->bForceReset = false; /* Clear forced reset flag now */
return iReturn > 0;
}
/****************************************************************************
** QuickCheck - ALWAYS CALLED HOLDING THE io_mutex
** This is used to test for a 1401. It will try to do a quick check if all is
** OK, that is the 1401 was OK the last time it was asked, and there is no DMA
** in progress, and if the bTestBuff flag is set, the character buffers must be
** empty too. If the quick check shows that the state is still the same, then
** all is OK.
**
** If any of the above conditions are not met, or if the state or type of the
** 1401 has changed since the previous test, the full Is1401 test is done, but
** only if bCanReset is also TRUE.
**
** The return value is TRUE if a useable 1401 is found, FALSE if not
*/
bool QuickCheck(DEVICE_EXTENSION *pdx, bool bTestBuff, bool bCanReset)
{
bool bRet = false; /* assume it will fail and we will reset */
bool bShortTest;
bShortTest = ((pdx->dwDMAFlag == MODE_CHAR) && /* no DMA running */
(!pdx->bForceReset) && /* Not had a real reset forced */
(pdx->sCurrentState >= U14ERR_STD)); /* No 1401 errors stored */
dev_dbg(&pdx->interface->dev,
"%s DMAFlag:%d, state:%d, force:%d, testBuff:%d, short:%d",
__func__, pdx->dwDMAFlag, pdx->sCurrentState, pdx->bForceReset,
bTestBuff, bShortTest);
if ((bTestBuff) && /* Buffer check requested, and... */
(pdx->dwNumInput || pdx->dwNumOutput)) { /* ...characters were in the buffer? */
bShortTest = false; /* Then do the full test */
dev_dbg(&pdx->interface->dev,
"%s will reset as buffers not empty", __func__);
}
if (bShortTest || !bCanReset) { /* Still OK to try the short test? */
/* Always test if no reset - we want state update */
unsigned int state, error;
dev_dbg(&pdx->interface->dev, "%s->Get1401State", __func__);
if (Get1401State(pdx, &state, &error) == U14ERR_NOERROR) { /* Check on the 1401 state */
if ((state & 0xFF) == 0) /* If call worked, check the status value */
bRet = true; /* If that was zero, all is OK, no reset needed */
}
}
if (!bRet && bCanReset) { /* If all not OK, then */
dev_info(&pdx->interface->dev, "%s->Is1401 %d %d %d %d",
__func__, bShortTest, pdx->sCurrentState, bTestBuff,
pdx->bForceReset);
bRet = Is1401(pdx); /* do full test */
}
return bRet;
}
/****************************************************************************
** Reset1401
**
** Resets the 1401 and empties the i/o buffers
*****************************************************************************/
int Reset1401(DEVICE_EXTENSION *pdx)
{
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
dev_dbg(&pdx->interface->dev, "ABout to call QuickCheck");
QuickCheck(pdx, true, true); /* Check 1401, reset if not OK */
mutex_unlock(&pdx->io_mutex);
return U14ERR_NOERROR;
}
/****************************************************************************
** GetChar
**
** Gets a single character from the 1401
****************************************************************************/
int GetChar(DEVICE_EXTENSION *pdx)
{
int iReturn = U14ERR_NOIN; /* assume we will get nothing */
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
dev_dbg(&pdx->interface->dev, "GetChar");
Allowi(pdx); /* Make sure char reads are running */
SendChars(pdx); /* and send any buffered chars */
spin_lock_irq(&pdx->charInLock);
if (pdx->dwNumInput > 0) { /* worth looking */
iReturn = pdx->inputBuffer[pdx->dwInBuffGet++];
if (pdx->dwInBuffGet >= INBUF_SZ)
pdx->dwInBuffGet = 0;
pdx->dwNumInput--;
} else
iReturn = U14ERR_NOIN; /* no input data to read */
spin_unlock_irq(&pdx->charInLock);
Allowi(pdx); /* Make sure char reads are running */
mutex_unlock(&pdx->io_mutex); /* Protect disconnect from new i/o */
return iReturn;
}
/****************************************************************************
** GetString
**
** Gets a string from the 1401. Returns chars up to the next CR or when
** there are no more to read or nowhere to put them. CR is translated to
** 0 and counted as a character. If the string does not end in a 0, we will
** add one, if there is room, but it is not counted as a character.
**
** returns the count of characters (including the terminator, or 0 if none
** or a negative error code.
****************************************************************************/
int GetString(DEVICE_EXTENSION *pdx, char __user *pUser, int n)
{
int nAvailable; /* character in the buffer */
int iReturn = U14ERR_NOIN;
if (n <= 0)
return -ENOMEM;
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
Allowi(pdx); /* Make sure char reads are running */
SendChars(pdx); /* and send any buffered chars */
spin_lock_irq(&pdx->charInLock);
nAvailable = pdx->dwNumInput; /* characters available now */
if (nAvailable > n) /* read max of space in pUser... */
nAvailable = n; /* ...or input characters */
if (nAvailable > 0) { /* worth looking? */
char buffer[INBUF_SZ + 1]; /* space for a linear copy of data */
int nGot = 0;
int nCopyToUser; /* number to copy to user */
char cData;
do {
cData = pdx->inputBuffer[pdx->dwInBuffGet++];
if (cData == CR_CHAR) /* replace CR with zero */
cData = (char)0;
if (pdx->dwInBuffGet >= INBUF_SZ)
pdx->dwInBuffGet = 0; /* wrap buffer pointer */
buffer[nGot++] = cData; /* save the output */
} while ((nGot < nAvailable) && cData);
nCopyToUser = nGot; /* what to copy... */
if (cData) { /* do we need null */
buffer[nGot] = (char)0; /* make it tidy */
if (nGot < n) /* if space in user buffer... */
++nCopyToUser; /* ...copy the 0 as well. */
}
pdx->dwNumInput -= nGot;
spin_unlock_irq(&pdx->charInLock);
dev_dbg(&pdx->interface->dev,
"GetString read %d characters >%s<", nGot, buffer);
if (copy_to_user(pUser, buffer, nCopyToUser))
iReturn = -EFAULT;
else
iReturn = nGot; /* report characters read */
} else
spin_unlock_irq(&pdx->charInLock);
Allowi(pdx); /* Make sure char reads are running */
mutex_unlock(&pdx->io_mutex); /* Protect disconnect from new i/o */
return iReturn;
}
/*******************************************************************************
** Get count of characters in the inout buffer.
*******************************************************************************/
int Stat1401(DEVICE_EXTENSION *pdx)
{
int iReturn;
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
Allowi(pdx); /* make sure we allow pending chars */
SendChars(pdx); /* in both directions */
iReturn = pdx->dwNumInput; /* no lock as single read */
mutex_unlock(&pdx->io_mutex); /* Protect disconnect from new i/o */
return iReturn;
}
/****************************************************************************
** LineCount
**
** Returns the number of newline chars in the buffer. There is no need for
** any fancy interlocks as we only read the interrupt routine data, and the
** system is arranged so nothing can be destroyed.
****************************************************************************/
int LineCount(DEVICE_EXTENSION *pdx)
{
int iReturn = 0; /* will be count of line ends */
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
Allowi(pdx); /* Make sure char reads are running */
SendChars(pdx); /* and send any buffered chars */
spin_lock_irq(&pdx->charInLock); /* Get protection */
if (pdx->dwNumInput > 0) { /* worth looking? */
unsigned int dwIndex = pdx->dwInBuffGet; /* start at first available */
unsigned int dwEnd = pdx->dwInBuffPut; /* Position for search end */
do {
if (pdx->inputBuffer[dwIndex++] == CR_CHAR)
++iReturn; /* inc count if CR */
if (dwIndex >= INBUF_SZ) /* see if we fall off buff */
dwIndex = 0;
} while (dwIndex != dwEnd); /* go to last available */
}
spin_unlock_irq(&pdx->charInLock);
dev_dbg(&pdx->interface->dev, "LineCount returned %d", iReturn);
mutex_unlock(&pdx->io_mutex); /* Protect disconnect from new i/o */
return iReturn;
}
/****************************************************************************
** GetOutBufSpace
**
** Gets the space in the output buffer. Called from user code.
*****************************************************************************/
int GetOutBufSpace(DEVICE_EXTENSION *pdx)
{
int iReturn;
mutex_lock(&pdx->io_mutex); /* Protect disconnect from new i/o */
SendChars(pdx); /* send any buffered chars */
iReturn = (int)(OUTBUF_SZ - pdx->dwNumOutput); /* no lock needed for single read */
dev_dbg(&pdx->interface->dev, "OutBufSpace %d", iReturn);
mutex_unlock(&pdx->io_mutex); /* Protect disconnect from new i/o */
return iReturn;
}
/****************************************************************************
**
** ClearArea
**
** Clears up a transfer area. This is always called in the context of a user
** request, never from a call-back.
****************************************************************************/
int ClearArea(DEVICE_EXTENSION *pdx, int nArea)
{
int iReturn = U14ERR_NOERROR;
if ((nArea < 0) || (nArea >= MAX_TRANSAREAS)) {
iReturn = U14ERR_BADAREA;
dev_err(&pdx->interface->dev, "%s Attempt to clear area %d",
__func__, nArea);
} else {
TRANSAREA *pTA = &pdx->rTransDef[nArea]; /* to save typing */
if (!pTA->bUsed) /* if not used... */
iReturn = U14ERR_NOTSET; /* ...nothing to be done */
else {
/* We must save the memory we return as we shouldn't mess with memory while */
/* holding a spin lock. */
struct page **pPages = NULL; /*save page address list*/
int nPages = 0; /* and number of pages */
int np;
dev_dbg(&pdx->interface->dev, "%s area %d", __func__,
nArea);
spin_lock_irq(&pdx->stagedLock);
if ((pdx->StagedId == nArea)
&& (pdx->dwDMAFlag > MODE_CHAR)) {
iReturn = U14ERR_UNLOCKFAIL; /* cannot delete as in use */
dev_err(&pdx->interface->dev,
"%s call on area %d while active",
__func__, nArea);
} else {
pPages = pTA->pPages; /* save page address list */
nPages = pTA->nPages; /* and page count */
if (pTA->dwEventSz) /* if events flagging in use */
wake_up_interruptible(&pTA->wqEvent); /* release anything that was waiting */
if (pdx->bXFerWaiting
&& (pdx->rDMAInfo.wIdent == nArea))
pdx->bXFerWaiting = false; /* Cannot have pending xfer if area cleared */
/* Clean out the TRANSAREA except for the wait queue, which is at the end */
/* This sets bUsed to false and dwEventSz to 0 to say area not used and no events. */
memset(pTA, 0,
sizeof(TRANSAREA) -
sizeof(wait_queue_head_t));
}
spin_unlock_irq(&pdx->stagedLock);
if (pPages) { /* if we decided to release the memory */
/* Now we must undo the pinning down of the pages. We will assume the worst and mark */
/* all the pages as dirty. Don't be tempted to move this up above as you must not be */
/* holding a spin lock to do this stuff as it is not atomic. */
dev_dbg(&pdx->interface->dev, "%s nPages=%d",
__func__, nPages);
for (np = 0; np < nPages; ++np) {
if (pPages[np]) {
SetPageDirty(pPages[np]);
page_cache_release(pPages[np]);
}
}
kfree(pPages);
dev_dbg(&pdx->interface->dev,
"%s kfree(pPages) done", __func__);
}
}
}
return iReturn;
}
/****************************************************************************
** SetArea
**
** Sets up a transfer area - the functional part. Called by both
** SetTransfer and SetCircular.
****************************************************************************/
static int SetArea(DEVICE_EXTENSION *pdx, int nArea, char __user *puBuf,
unsigned int dwLength, bool bCircular, bool bCircToHost)
{
/* Start by working out the page aligned start of the area and the size */
/* of the area in pages, allowing for the start not being aligned and the */
/* end needing to be rounded up to a page boundary. */
unsigned long ulStart = ((unsigned long)puBuf) & PAGE_MASK;
unsigned int ulOffset = ((unsigned long)puBuf) & (PAGE_SIZE - 1);
int len = (dwLength + ulOffset + PAGE_SIZE - 1) >> PAGE_SHIFT;
TRANSAREA *pTA = &pdx->rTransDef[nArea]; /* to save typing */
struct page **pPages = NULL; /* space for page tables */
int nPages = 0; /* and number of pages */
int iReturn = ClearArea(pdx, nArea); /* see if OK to use this area */
if ((iReturn != U14ERR_NOTSET) && /* if not area unused and... */
(iReturn != U14ERR_NOERROR)) /* ...not all OK, then... */
return iReturn; /* ...we cannot use this area */
if (!access_ok(VERIFY_WRITE, puBuf, dwLength)) /* if we cannot access the memory... */
return -EFAULT; /* ...then we are done */
/* Now allocate space to hold the page pointer and virtual address pointer tables */
pPages = kmalloc(len * sizeof(struct page *), GFP_KERNEL);
if (!pPages) {
iReturn = U14ERR_NOMEMORY;
goto error;
}
dev_dbg(&pdx->interface->dev, "%s %p, length=%06x, circular %d",
__func__, puBuf, dwLength, bCircular);
/* To pin down user pages we must first acquire the mapping semaphore. */
nPages = get_user_pages_fast(ulStart, len, 1, pPages);
dev_dbg(&pdx->interface->dev, "%s nPages = %d", __func__, nPages);
if (nPages > 0) { /* if we succeeded */
/* If you are tempted to use page_address (form LDD3), forget it. You MUST use */
/* kmap() or kmap_atomic() to get a virtual address. page_address will give you */
/* (null) or at least it does in this context with an x86 machine. */
spin_lock_irq(&pdx->stagedLock);
pTA->lpvBuff = puBuf; /* keep start of region (user address) */
pTA->dwBaseOffset = ulOffset; /* save offset in first page to start of xfer */
pTA->dwLength = dwLength; /* Size if the region in bytes */
pTA->pPages = pPages; /* list of pages that are used by buffer */
pTA->nPages = nPages; /* number of pages */
pTA->bCircular = bCircular;
pTA->bCircToHost = bCircToHost;
pTA->aBlocks[0].dwOffset = 0;
pTA->aBlocks[0].dwSize = 0;
pTA->aBlocks[1].dwOffset = 0;
pTA->aBlocks[1].dwSize = 0;
pTA->bUsed = true; /* This is now a used block */
spin_unlock_irq(&pdx->stagedLock);
iReturn = U14ERR_NOERROR; /* say all was well */
} else {
iReturn = U14ERR_LOCKFAIL;
goto error;
}
return iReturn;
error:
kfree(pPages);
return iReturn;
}
/****************************************************************************
** SetTransfer
**
** Sets up a transfer area record. If the area is already set, we attempt to
** unset it. Unsetting will fail if the area is booked, and a transfer to that
** area is in progress. Otherwise, we will release the area and re-assign it.
****************************************************************************/
int SetTransfer(DEVICE_EXTENSION *pdx, TRANSFERDESC __user *pTD)
{
int iReturn;
TRANSFERDESC td;
if (copy_from_user(&td, pTD, sizeof(td)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s area:%d, size:%08x", __func__,
td.wAreaNum, td.dwLength);
/* The strange cast is done so that we don't get warnings in 32-bit linux about the size of the */
/* pointer. The pointer is always passed as a 64-bit object so that we don't have problems using */
/* a 32-bit program on a 64-bit system. unsigned long is 64-bits on a 64-bit system. */
iReturn =
SetArea(pdx, td.wAreaNum,
(char __user *)((unsigned long)td.lpvBuff), td.dwLength,
false, false);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** UnSetTransfer
** Erases a transfer area record
****************************************************************************/
int UnsetTransfer(DEVICE_EXTENSION *pdx, int nArea)
{
int iReturn;
mutex_lock(&pdx->io_mutex);
iReturn = ClearArea(pdx, nArea);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** SetEvent
** Creates an event that we can test for based on a transfer to/from an area.
** The area must be setup for a transfer. We attempt to simulate the Windows
** driver behavior for events (as we don't actually use them), which is to
** pretend that whatever the user asked for was achieved, so we return 1 if
** try to create one, and 0 if they ask to remove (assuming all else was OK).
****************************************************************************/
int SetEvent(DEVICE_EXTENSION *pdx, TRANSFEREVENT __user *pTE)
{
int iReturn = U14ERR_NOERROR;
TRANSFEREVENT te;
/* get a local copy of the data */
if (copy_from_user(&te, pTE, sizeof(te)))
return -EFAULT;
if (te.wAreaNum >= MAX_TRANSAREAS) /* the area must exist */
return U14ERR_BADAREA;
else {
TRANSAREA *pTA = &pdx->rTransDef[te.wAreaNum];
mutex_lock(&pdx->io_mutex); /* make sure we have no competitor */
spin_lock_irq(&pdx->stagedLock);
if (pTA->bUsed) { /* area must be in use */
pTA->dwEventSt = te.dwStart; /* set area regions */
pTA->dwEventSz = te.dwLength; /* set size (0 cancels it) */
pTA->bEventToHost = te.wFlags & 1; /* set the direction */
pTA->iWakeUp = 0; /* zero the wake up count */
} else
iReturn = U14ERR_NOTSET;
spin_unlock_irq(&pdx->stagedLock);
mutex_unlock(&pdx->io_mutex);
}
return iReturn ==
U14ERR_NOERROR ? (te.iSetEvent ? 1 : U14ERR_NOERROR) : iReturn;
}
/****************************************************************************
** WaitEvent
** Sleep the process with a timeout waiting for an event. Returns the number
** of times that a block met the event condition since we last cleared it or
** 0 if timed out, or -ve error (bad area or not set, or signal).
****************************************************************************/
int WaitEvent(DEVICE_EXTENSION *pdx, int nArea, int msTimeOut)
{
int iReturn;
if ((unsigned)nArea >= MAX_TRANSAREAS)
return U14ERR_BADAREA;
else {
int iWait;
TRANSAREA *pTA = &pdx->rTransDef[nArea];
msTimeOut = (msTimeOut * HZ + 999) / 1000; /* convert timeout to jiffies */
/* We cannot wait holding the mutex, but we check the flags while holding */
/* it. This may well be pointless as another thread could get in between */
/* releasing it and the wait call. However, this would have to clear the */
/* iWakeUp flag. However, the !pTA-bUsed may help us in this case. */
mutex_lock(&pdx->io_mutex); /* make sure we have no competitor */
if (!pTA->bUsed || !pTA->dwEventSz) /* check something to wait for... */
return U14ERR_NOTSET; /* ...else we do nothing */
mutex_unlock(&pdx->io_mutex);
if (msTimeOut)
iWait =
wait_event_interruptible_timeout(pTA->wqEvent,
pTA->iWakeUp
|| !pTA->bUsed,
msTimeOut);
else
iWait =
wait_event_interruptible(pTA->wqEvent, pTA->iWakeUp
|| !pTA->bUsed);
if (iWait)
iReturn = -ERESTARTSYS; /* oops - we have had a SIGNAL */
else
iReturn = pTA->iWakeUp; /* else the wakeup count */
spin_lock_irq(&pdx->stagedLock);
pTA->iWakeUp = 0; /* clear the flag */
spin_unlock_irq(&pdx->stagedLock);
}
return iReturn;
}
/****************************************************************************
** TestEvent
** Test the event to see if a WaitEvent would return immediately. Returns the
** number of times a block completed since the last call, or 0 if none or a
** negative error.
****************************************************************************/
int TestEvent(DEVICE_EXTENSION *pdx, int nArea)
{
int iReturn;
if ((unsigned)nArea >= MAX_TRANSAREAS)
iReturn = U14ERR_BADAREA;
else {
TRANSAREA *pTA = &pdx->rTransDef[nArea];
mutex_lock(&pdx->io_mutex); /* make sure we have no competitor */
spin_lock_irq(&pdx->stagedLock);
iReturn = pTA->iWakeUp; /* get wakeup count since last call */
pTA->iWakeUp = 0; /* clear the count */
spin_unlock_irq(&pdx->stagedLock);
mutex_unlock(&pdx->io_mutex);
}
return iReturn;
}
/****************************************************************************
** GetTransferInfo
** Puts the current state of the 1401 in a TGET_TX_BLOCK.
*****************************************************************************/
int GetTransfer(DEVICE_EXTENSION *pdx, TGET_TX_BLOCK __user *pTX)
{
int iReturn = U14ERR_NOERROR;
unsigned int dwIdent;
mutex_lock(&pdx->io_mutex);
dwIdent = pdx->StagedId; /* area ident for last xfer */
if (dwIdent >= MAX_TRANSAREAS)
iReturn = U14ERR_BADAREA;
else {
/* Return the best information we have - we don't have physical addresses */
TGET_TX_BLOCK *tx;
tx = kzalloc(sizeof(*tx), GFP_KERNEL);
if (!tx) {
mutex_unlock(&pdx->io_mutex);
return -ENOMEM;
}
tx->size = pdx->rTransDef[dwIdent].dwLength;
tx->linear = (long long)((long)pdx->rTransDef[dwIdent].lpvBuff);
tx->avail = GET_TX_MAXENTRIES; /* how many blocks we could return */
tx->used = 1; /* number we actually return */
tx->entries[0].physical =
(long long)(tx->linear + pdx->StagedOffset);
tx->entries[0].size = tx->size;
if (copy_to_user(pTX, tx, sizeof(*tx)))
iReturn = -EFAULT;
kfree(tx);
}
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** KillIO1401
**
** Empties the host i/o buffers
****************************************************************************/
int KillIO1401(DEVICE_EXTENSION *pdx)
{
dev_dbg(&pdx->interface->dev, "%s", __func__);
mutex_lock(&pdx->io_mutex);
FlushOutBuff(pdx);
FlushInBuff(pdx);
mutex_unlock(&pdx->io_mutex);
return U14ERR_NOERROR;
}
/****************************************************************************
** BlkTransState
** Returns a 0 or a 1 for whether DMA is happening. No point holding a mutex
** for this as it only does one read.
*****************************************************************************/
int BlkTransState(DEVICE_EXTENSION *pdx)
{
int iReturn = pdx->dwDMAFlag != MODE_CHAR;
dev_dbg(&pdx->interface->dev, "%s = %d", __func__, iReturn);
return iReturn;
}
/****************************************************************************
** StateOf1401
**
** Puts the current state of the 1401 in the Irp return buffer.
*****************************************************************************/
int StateOf1401(DEVICE_EXTENSION *pdx)
{
int iReturn;
mutex_lock(&pdx->io_mutex);
QuickCheck(pdx, false, false); /* get state up to date, no reset */
iReturn = pdx->sCurrentState;
mutex_unlock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s = %d", __func__, iReturn);
return iReturn;
}
/****************************************************************************
** StartSelfTest
**
** Initiates a self-test cycle. The assumption is that we have no interrupts
** active, so we should make sure that this is the case.
*****************************************************************************/
int StartSelfTest(DEVICE_EXTENSION *pdx)
{
int nGot;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s", __func__);
ced_draw_down(pdx); /* wait for, then kill outstanding Urbs */
FlushInBuff(pdx); /* Clear out input buffer & pipe */
FlushOutBuff(pdx); /* Clear output buffer & pipe */
/* so things stay tidy */
/* ReadWrite_Cancel(pDeviceObject); */
pdx->dwDMAFlag = MODE_CHAR; /* Clear DMA mode flags here */
nGot = usb_control_msg(pdx->udev, usb_rcvctrlpipe(pdx->udev, 0),
DB_SELFTEST, (H_TO_D | VENDOR | DEVREQ),
0, 0, NULL, 0, HZ); /* allow 1 second timeout */
pdx->ulSelfTestTime = jiffies + HZ * 30; /* 30 seconds into the future */
mutex_unlock(&pdx->io_mutex);
if (nGot < 0)
dev_err(&pdx->interface->dev, "%s err=%d", __func__, nGot);
return nGot < 0 ? U14ERR_FAIL : U14ERR_NOERROR;
}
/****************************************************************************
** CheckSelfTest
**
** Check progress of a self-test cycle
****************************************************************************/
int CheckSelfTest(DEVICE_EXTENSION *pdx, TGET_SELFTEST __user *pGST)
{
unsigned int state, error;
int iReturn;
TGET_SELFTEST gst; /* local work space */
memset(&gst, 0, sizeof(gst)); /* clear out the space (sets code 0) */
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s", __func__);
iReturn = Get1401State(pdx, &state, &error);
if (iReturn == U14ERR_NOERROR) /* Only accept zero if it happens twice */
iReturn = Get1401State(pdx, &state, &error);
if (iReturn != U14ERR_NOERROR) { /* Self-test can cause comms errors */
/* so we assume still testing */
dev_err(&pdx->interface->dev,
"%s Get1401State=%d, assuming still testing", __func__,
iReturn);
state = 0x80; /* Force still-testing, no error */
error = 0;
iReturn = U14ERR_NOERROR;
}
if ((state == -1) && (error == -1)) { /* If Get1401State had problems */
dev_err(&pdx->interface->dev,
"%s Get1401State failed, assuming still testing",
__func__);
state = 0x80; /* Force still-testing, no error */
error = 0;
}
if ((state & 0xFF) == 0x80) { /* If we are still in self-test */
if (state & 0x00FF0000) { /* Have we got an error? */
gst.code = (state & 0x00FF0000) >> 16; /* read the error code */
gst.x = error & 0x0000FFFF; /* Error data X */
gst.y = (error & 0xFFFF0000) >> 16; /* and data Y */
dev_dbg(&pdx->interface->dev, "Self-test error code %d",
gst.code);
} else { /* No error, check for timeout */
unsigned long ulNow = jiffies; /* get current time */
if (time_after(ulNow, pdx->ulSelfTestTime)) {
gst.code = -2; /* Flag the timeout */
dev_dbg(&pdx->interface->dev,
"Self-test timed-out");
} else
dev_dbg(&pdx->interface->dev,
"Self-test on-going");
}
} else {
gst.code = -1; /* Flag the test is done */
dev_dbg(&pdx->interface->dev, "Self-test done");
}
if (gst.code < 0) { /* If we have a problem or finished */
/* If using the 2890 we should reset properly */
if ((pdx->nPipes == 4) && (pdx->s1401Type <= TYPEPOWER))
Is1401(pdx); /* Get 1401 reset and OK */
else
QuickCheck(pdx, true, true); /* Otherwise check without reset unless problems */
}
mutex_unlock(&pdx->io_mutex);
if (copy_to_user(pGST, &gst, sizeof(gst)))
return -EFAULT;
return iReturn;
}
/****************************************************************************
** TypeOf1401
**
** Returns code for standard, plus, micro1401, power1401 or none
****************************************************************************/
int TypeOf1401(DEVICE_EXTENSION *pdx)
{
int iReturn = TYPEUNKNOWN;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s", __func__);
switch (pdx->s1401Type) {
case TYPE1401:
iReturn = U14ERR_STD;
break; /* Handle these types directly */
case TYPEPLUS:
iReturn = U14ERR_PLUS;
break;
case TYPEU1401:
iReturn = U14ERR_U1401;
break;
default:
if ((pdx->s1401Type >= TYPEPOWER) && (pdx->s1401Type <= 25))
iReturn = pdx->s1401Type + 4; /* We can calculate types */
else /* for up-coming 1401 designs */
iReturn = TYPEUNKNOWN; /* Don't know or not there */
}
dev_dbg(&pdx->interface->dev, "%s %d", __func__, iReturn);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** TransferFlags
**
** Returns flags on block transfer abilities
****************************************************************************/
int TransferFlags(DEVICE_EXTENSION *pdx)
{
int iReturn = U14TF_MULTIA | U14TF_DIAG | /* we always have multiple DMA area */
U14TF_NOTIFY | U14TF_CIRCTH; /* diagnostics, notify and circular */
dev_dbg(&pdx->interface->dev, "%s", __func__);
mutex_lock(&pdx->io_mutex);
if (pdx->bIsUSB2) /* Set flag for USB2 if appropriate */
iReturn |= U14TF_USB2;
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/***************************************************************************
** DbgCmd1401
** Issues a debug\diagnostic command to the 1401 along with a 32-bit datum
** This is a utility command used for dbg operations.
*/
static int DbgCmd1401(DEVICE_EXTENSION *pdx, unsigned char cmd,
unsigned int data)
{
int iReturn;
dev_dbg(&pdx->interface->dev, "%s entry", __func__);
iReturn = usb_control_msg(pdx->udev, usb_sndctrlpipe(pdx->udev, 0), cmd,
(H_TO_D | VENDOR | DEVREQ),
(unsigned short)data,
(unsigned short)(data >> 16), NULL, 0, HZ);
/* allow 1 second timeout */
if (iReturn < 0)
dev_err(&pdx->interface->dev, "%s fail code=%d", __func__,
iReturn);
return iReturn;
}
/****************************************************************************
** DbgPeek
**
** Execute the diagnostic peek operation. Uses address, width and repeats.
****************************************************************************/
int DbgPeek(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s @ %08x", __func__, db.iAddr);
iReturn = DbgCmd1401(pdx, DB_SETADD, db.iAddr);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_PEEK, 0);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** DbgPoke
**
** Execute the diagnostic poke operation. Parameters are in the CSBLOCK struct
** in order address, size, repeats and value to poke.
****************************************************************************/
int DbgPoke(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s @ %08x", __func__, db.iAddr);
iReturn = DbgCmd1401(pdx, DB_SETADD, db.iAddr);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_POKE, db.iData);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** DbgRampData
**
** Execute the diagnostic ramp data operation. Parameters are in the CSBLOCK struct
** in order address, default, enable mask, size and repeats.
****************************************************************************/
int DbgRampData(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s @ %08x", __func__, db.iAddr);
iReturn = DbgCmd1401(pdx, DB_SETADD, db.iAddr);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_SETDEF, db.iDefault);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_SETMASK, db.iMask);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_RAMPD, 0);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** DbgRampAddr
**
** Execute the diagnostic ramp address operation
****************************************************************************/
int DbgRampAddr(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
if (copy_from_user(&db, pDB, sizeof(db)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s", __func__);
iReturn = DbgCmd1401(pdx, DB_SETDEF, db.iDefault);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_SETMASK, db.iMask);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats);
if (iReturn == U14ERR_NOERROR)
iReturn = DbgCmd1401(pdx, DB_RAMPA, 0);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** DbgGetData
**
** Retrieve the data resulting from the last debug Peek operation
****************************************************************************/
int DbgGetData(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB)
{
int iReturn;
TDBGBLOCK db;
memset(&db, 0, sizeof(db)); /* fill returned block with 0s */
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s", __func__);
/* Read back the last peeked value from the 1401. */
iReturn = usb_control_msg(pdx->udev, usb_rcvctrlpipe(pdx->udev, 0),
DB_DATA, (D_TO_H | VENDOR | DEVREQ), 0, 0,
&db.iData, sizeof(db.iData), HZ);
if (iReturn == sizeof(db.iData)) {
if (copy_to_user(pDB, &db, sizeof(db)))
iReturn = -EFAULT;
else
iReturn = U14ERR_NOERROR;
} else
dev_err(&pdx->interface->dev, "%s failed, code %d", __func__,
iReturn);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** DbgStopLoop
**
** Stop any never-ending debug loop, we just call Get1401State for USB
**
****************************************************************************/
int DbgStopLoop(DEVICE_EXTENSION *pdx)
{
int iReturn;
unsigned int uState, uErr;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s", __func__);
iReturn = Get1401State(pdx, &uState, &uErr);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** SetCircular
**
** Sets up a transfer area record for circular transfers. If the area is
** already set, we attempt to unset it. Unsetting will fail if the area is
** booked and a transfer to that area is in progress. Otherwise, we will
** release the area and re-assign it.
****************************************************************************/
int SetCircular(DEVICE_EXTENSION *pdx, TRANSFERDESC __user *pTD)
{
int iReturn;
bool bToHost;
TRANSFERDESC td;
if (copy_from_user(&td, pTD, sizeof(td)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
dev_dbg(&pdx->interface->dev, "%s area:%d, size:%08x", __func__,
td.wAreaNum, td.dwLength);
bToHost = td.eSize != 0; /* this is used as the tohost flag */
/* The strange cast is done so that we don't get warnings in 32-bit linux about the size of the */
/* pointer. The pointer is always passed as a 64-bit object so that we don't have problems using */
/* a 32-bit program on a 64-bit system. unsigned long is 64-bits on a 64-bit system. */
iReturn =
SetArea(pdx, td.wAreaNum,
(char __user *)((unsigned long)td.lpvBuff), td.dwLength,
true, bToHost);
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** GetCircBlock
**
** Return the next available block of circularly-transferred data.
****************************************************************************/
int GetCircBlock(DEVICE_EXTENSION *pdx, TCIRCBLOCK __user *pCB)
{
int iReturn = U14ERR_NOERROR;
unsigned int nArea;
TCIRCBLOCK cb;
dev_dbg(&pdx->interface->dev, "%s", __func__);
if (copy_from_user(&cb, pCB, sizeof(cb)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
nArea = cb.nArea; /* Retrieve parameters first */
cb.dwOffset = 0; /* set default result (nothing) */
cb.dwSize = 0;
if (nArea < MAX_TRANSAREAS) { /* The area number must be OK */
TRANSAREA *pArea = &pdx->rTransDef[nArea]; /* Pointer to relevant info */
spin_lock_irq(&pdx->stagedLock); /* Lock others out */
if ((pArea->bUsed) && (pArea->bCircular) && /* Must be circular area */
(pArea->bCircToHost)) { /* For now at least must be to host */
if (pArea->aBlocks[0].dwSize > 0) { /* Got anything? */
cb.dwOffset = pArea->aBlocks[0].dwOffset;
cb.dwSize = pArea->aBlocks[0].dwSize;
dev_dbg(&pdx->interface->dev,
"%s return block 0: %d bytes at %d",
__func__, cb.dwSize, cb.dwOffset);
}
} else
iReturn = U14ERR_NOTSET;
spin_unlock_irq(&pdx->stagedLock);
} else
iReturn = U14ERR_BADAREA;
if (copy_to_user(pCB, &cb, sizeof(cb)))
iReturn = -EFAULT;
mutex_unlock(&pdx->io_mutex);
return iReturn;
}
/****************************************************************************
** FreeCircBlock
**
** Frees a block of circularly-transferred data and returns the next one.
****************************************************************************/
int FreeCircBlock(DEVICE_EXTENSION *pdx, TCIRCBLOCK __user *pCB)
{
int iReturn = U14ERR_NOERROR;
unsigned int nArea, uStart, uSize;
TCIRCBLOCK cb;
dev_dbg(&pdx->interface->dev, "%s", __func__);
if (copy_from_user(&cb, pCB, sizeof(cb)))
return -EFAULT;
mutex_lock(&pdx->io_mutex);
nArea = cb.nArea; /* Retrieve parameters first */
uStart = cb.dwOffset;
uSize = cb.dwSize;
cb.dwOffset = 0; /* then set default result (nothing) */
cb.dwSize = 0;
if (nArea < MAX_TRANSAREAS) { /* The area number must be OK */
TRANSAREA *pArea = &pdx->rTransDef[nArea]; /* Pointer to relevant info */
spin_lock_irq(&pdx->stagedLock); /* Lock others out */
if ((pArea->bUsed) && (pArea->bCircular) && /* Must be circular area */
(pArea->bCircToHost)) { /* For now at least must be to host */
bool bWaiting = false;
if ((pArea->aBlocks[0].dwSize >= uSize) && /* Got anything? */
(pArea->aBlocks[0].dwOffset == uStart)) { /* Must be legal data */
pArea->aBlocks[0].dwSize -= uSize;
pArea->aBlocks[0].dwOffset += uSize;
if (pArea->aBlocks[0].dwSize == 0) { /* Have we emptied this block? */
if (pArea->aBlocks[1].dwSize) { /* Is there a second block? */
pArea->aBlocks[0] = pArea->aBlocks[1]; /* Copy down block 2 data */
pArea->aBlocks[1].dwSize = 0; /* and mark the second block as unused */
pArea->aBlocks[1].dwOffset = 0;
} else
pArea->aBlocks[0].dwOffset = 0;
}
dev_dbg(&pdx->interface->dev,
"%s free %d bytes at %d, return %d bytes at %d, wait=%d",
__func__, uSize, uStart,
pArea->aBlocks[0].dwSize,
pArea->aBlocks[0].dwOffset,
pdx->bXFerWaiting);
/* Return the next available block of memory as well */
if (pArea->aBlocks[0].dwSize > 0) { /* Got anything? */
cb.dwOffset =
pArea->aBlocks[0].dwOffset;
cb.dwSize = pArea->aBlocks[0].dwSize;
}
bWaiting = pdx->bXFerWaiting;
if (bWaiting && pdx->bStagedUrbPending) {
dev_err(&pdx->interface->dev,
"%s ERROR: waiting xfer and staged Urb pending!",
__func__);
bWaiting = false;
}
} else {
dev_err(&pdx->interface->dev,
"%s ERROR: freeing %d bytes at %d, block 0 is %d bytes at %d",
__func__, uSize, uStart,
pArea->aBlocks[0].dwSize,
pArea->aBlocks[0].dwOffset);
iReturn = U14ERR_NOMEMORY;
}
/* If we have one, kick off pending transfer */
if (bWaiting) { /* Got a block xfer waiting? */
int RWMStat =
ReadWriteMem(pdx, !pdx->rDMAInfo.bOutWard,
pdx->rDMAInfo.wIdent,
pdx->rDMAInfo.dwOffset,
pdx->rDMAInfo.dwSize);
if (RWMStat != U14ERR_NOERROR)
dev_err(&pdx->interface->dev,
"%s rw setup failed %d",
__func__, RWMStat);
}
} else
iReturn = U14ERR_NOTSET;
spin_unlock_irq(&pdx->stagedLock);
} else
iReturn = U14ERR_BADAREA;
if (copy_to_user(pCB, &cb, sizeof(cb)))
iReturn = -EFAULT;
mutex_unlock(&pdx->io_mutex);
return iReturn;
}