blob: a23b591eeac3d7432a73e78990342ef0ce65c15d [file] [log] [blame]
/*
* Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* File: bssdb.c
*
* Purpose: Handles the Basic Service Set & Node Database functions
*
* Functions:
* BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
* BSSvClearBSSList - Clear BSS List
* BSSbInsertToBSSList - Insert a BSS set into known BSS list
* BSSbUpdateToBSSList - Update BSS set in known BSS list
* BSSDBbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
* BSSvCreateOneNode - Allocate an Node for Node DB
* BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
* BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
* BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control
*
* Revision History:
*
* Author: Lyndon Chen
*
* Date: July 17, 2002
*
*/
#include "ttype.h"
#include "tmacro.h"
#include "tether.h"
#include "device.h"
#include "80211hdr.h"
#include "bssdb.h"
#include "wmgr.h"
#include "datarate.h"
#include "desc.h"
#include "wcmd.h"
#include "wpa.h"
#include "baseband.h"
#include "rf.h"
#include "card.h"
#include "channel.h"
#include "mac.h"
#include "wpa2.h"
#include "iowpa.h"
/*--------------------- Static Definitions -------------------------*/
/*--------------------- Static Classes ----------------------------*/
/*--------------------- Static Variables --------------------------*/
static int msglevel = MSG_LEVEL_INFO;
//static int msglevel =MSG_LEVEL_DEBUG;
const unsigned short awHWRetry0[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
{RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
{RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
{RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
{RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
};
const unsigned short awHWRetry1[5][5] = {
{RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
{RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
{RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
{RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
{RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
};
/*--------------------- Static Functions --------------------------*/
void s_vCheckSensitivity(
void *hDeviceContext
);
#ifdef Calcu_LinkQual
void s_uCalculateLinkQual(
void *hDeviceContext
);
#endif
void s_vCheckPreEDThreshold(
void *hDeviceContext
);
/*--------------------- Export Variables --------------------------*/
/*--------------------- Export Functions --------------------------*/
/*+
*
* Routine Description:
* Search known BSS list for Desire SSID or BSSID.
*
* Return Value:
* PTR to KnownBSS or NULL
*
-*/
PKnownBSS
BSSpSearchBSSList(
void *hDeviceContext,
unsigned char *pbyDesireBSSID,
unsigned char *pbyDesireSSID,
CARD_PHY_TYPE ePhyType
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned char *pbyBSSID = NULL;
PWLAN_IE_SSID pSSID = NULL;
PKnownBSS pCurrBSS = NULL;
PKnownBSS pSelect = NULL;
unsigned char ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned int ii = 0;
if (pbyDesireBSSID != NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
if ((!is_broadcast_ether_addr(pbyDesireBSSID)) &&
(memcmp(pbyDesireBSSID, ZeroBSSID, 6) != 0)) {
pbyBSSID = pbyDesireBSSID;
}
}
if (pbyDesireSSID != NULL) {
if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
}
}
if (pbyBSSID != NULL) {
// match BSSID first
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]);
if (pDevice->bLinkPass == false) pCurrBSS->bSelected = false;
if ((pCurrBSS->bActive) &&
(pCurrBSS->bSelected == false)) {
if (ether_addr_equal(pCurrBSS->abyBSSID,
pbyBSSID)) {
if (pSSID != NULL) {
// compare ssid
if (!memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
pSSID->len)) {
if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
) {
pCurrBSS->bSelected = true;
return pCurrBSS;
}
}
} else {
if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
) {
pCurrBSS->bSelected = true;
return pCurrBSS;
}
}
}
}
}
} else {
// ignore BSSID
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pCurrBSS = &(pMgmt->sBSSList[ii]);
//2007-0721-01<Add>by MikeLiu
pCurrBSS->bSelected = false;
if (pCurrBSS->bActive) {
if (pSSID != NULL) {
// matched SSID
if (!!memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
pSSID->len) ||
(pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
// SSID not match skip this BSS
continue;
}
}
if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
) {
// Type not match skip this BSS
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
continue;
}
if (ePhyType != PHY_TYPE_AUTO) {
if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
// PhyType not match skip this BSS
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
continue;
}
}
/*
if (pMgmt->eAuthenMode < WMAC_AUTH_WPA) {
if (pCurrBSS->bWPAValid == true) {
// WPA AP will reject connection of station without WPA enable.
continue;
}
} else if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK)) {
if (pCurrBSS->bWPAValid == false) {
// station with WPA enable can't join NonWPA AP.
continue;
}
} else if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
(pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
if (pCurrBSS->bWPA2Valid == false) {
// station with WPA2 enable can't join NonWPA2 AP.
continue;
}
}
*/
if (pSelect == NULL) {
pSelect = pCurrBSS;
} else {
// compare RSSI, select signal strong one
if (pCurrBSS->uRSSI < pSelect->uRSSI) {
pSelect = pCurrBSS;
}
}
}
}
if (pSelect != NULL) {
pSelect->bSelected = true;
/*
if (pDevice->bRoaming == false) {
// Einsn Add @20070907
memset(pbyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
}*/
return pSelect;
}
}
return NULL;
}
/*+
*
* Routine Description:
* Clear BSS List
*
* Return Value:
* None.
*
-*/
void
BSSvClearBSSList(
void *hDeviceContext,
bool bKeepCurrBSSID
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
if (bKeepCurrBSSID) {
if (pMgmt->sBSSList[ii].bActive &&
ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
pMgmt->abyCurrBSSID)) {
// bKeepCurrBSSID = false;
continue;
}
}
if ((pMgmt->sBSSList[ii].bActive) && (pMgmt->sBSSList[ii].uClearCount < BSS_CLEAR_COUNT)) {
pMgmt->sBSSList[ii].uClearCount++;
continue;
}
pMgmt->sBSSList[ii].bActive = false;
memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
}
BSSvClearAnyBSSJoinRecord(pDevice);
return;
}
/*+
*
* Routine Description:
* search BSS list by BSSID & SSID if matched
*
* Return Value:
* true if found.
*
-*/
PKnownBSS
BSSpAddrIsInBSSList(
void *hDeviceContext,
unsigned char *abyBSSID,
PWLAN_IE_SSID pSSID
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
PKnownBSS pBSSList = NULL;
unsigned int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = &(pMgmt->sBSSList[ii]);
if (pBSSList->bActive) {
if (ether_addr_equal(pBSSList->abyBSSID, abyBSSID)) {
if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len) {
if (memcmp(pSSID->abySSID,
((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
pSSID->len) == 0)
return pBSSList;
}
}
}
}
return NULL;
};
/*+
*
* Routine Description:
* Insert a BSS set into known BSS list
*
* Return Value:
* true if success.
*
-*/
bool
BSSbInsertToBSSList(
void *hDeviceContext,
unsigned char *abyBSSIDAddr,
QWORD qwTimestamp,
unsigned short wBeaconInterval,
unsigned short wCapInfo,
unsigned char byCurrChannel,
PWLAN_IE_SSID pSSID,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates,
PERPObject psERP,
PWLAN_IE_RSN pRSN,
PWLAN_IE_RSN_EXT pRSNWPA,
PWLAN_IE_COUNTRY pIE_Country,
PWLAN_IE_QUIET pIE_Quiet,
unsigned int uIELength,
unsigned char *pbyIEs,
void *pRxPacketContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
PKnownBSS pBSSList = NULL;
unsigned int ii;
bool bParsingQuiet = false;
PWLAN_IE_QUIET pQuiet = NULL;
pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
if (!pBSSList->bActive)
break;
}
if (ii == MAX_BSS_NUM) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
return false;
}
// save the BSS info
pBSSList->bActive = true;
memcpy(pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0;
if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN;
memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
pBSSList->uChannel = byCurrChannel;
if (pSuppRates->len > WLAN_RATES_MAXLEN)
pSuppRates->len = WLAN_RATES_MAXLEN;
memcpy(pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates != NULL) {
if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
pExtSuppRates->len = WLAN_RATES_MAXLEN;
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
} else {
memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
// Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == true) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = true;
}
}
WPA_ClearRSN(pBSSList);
if (pRSNWPA != NULL) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength - (unsigned int)((unsigned char *)pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
}
}
WPA2_ClearRSN(pBSSList);
if (pRSN != NULL) {
unsigned int uLen = pRSN->len + 2;
if (uLen <= (uIELength - (unsigned int)((unsigned char *)pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == true)) {
PSKeyItem pTransmitKey = NULL;
bool bIs802_1x = false;
for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii++) {
if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
bIs802_1x = true;
break;
}
}
if ((bIs802_1x == true) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
(!memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
bAdd_PMKID_Candidate((void *)pDevice, pBSSList->abyBSSID, &pBSSList->sRSNCapObj);
if ((pDevice->bLinkPass == true) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == true) ||
(KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == true)) {
pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList;
pDevice->gsPMKIDCandidate.Version = 1;
}
}
}
}
if (pDevice->bUpdateBBVGA) {
// Moniter if RSSI is too strong.
pBSSList->byRSSIStatCnt = 0;
RFvRSSITodBm(pDevice, (unsigned char)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
pBSSList->ldBmAverage[ii] = 0;
}
if ((pIE_Country != NULL) &&
(pMgmt->b11hEnable == true)) {
set_country_info(pMgmt->pAdapter, pBSSList->eNetworkTypeInUse,
pIE_Country);
}
if ((bParsingQuiet == true) && (pIE_Quiet != NULL)) {
if ((((PWLAN_IE_QUIET)pIE_Quiet)->len == 8) &&
(((PWLAN_IE_QUIET)pIE_Quiet)->byQuietCount != 0)) {
// valid EID
if (pQuiet == NULL) {
pQuiet = (PWLAN_IE_QUIET)pIE_Quiet;
CARDbSetQuiet(pMgmt->pAdapter,
true,
pQuiet->byQuietCount,
pQuiet->byQuietPeriod,
*((unsigned short *)pQuiet->abyQuietDuration),
*((unsigned short *)pQuiet->abyQuietOffset)
);
} else {
pQuiet = (PWLAN_IE_QUIET)pIE_Quiet;
CARDbSetQuiet(pMgmt->pAdapter,
false,
pQuiet->byQuietCount,
pQuiet->byQuietPeriod,
*((unsigned short *)pQuiet->abyQuietDuration),
*((unsigned short *)pQuiet->abyQuietOffset)
);
}
}
}
if ((bParsingQuiet == true) &&
(pQuiet != NULL)) {
CARDbStartQuiet(pMgmt->pAdapter);
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return true;
}
/*+
*
* Routine Description:
* Update BSS set in known BSS list
*
* Return Value:
* true if success.
*
-*/
// TODO: input structure modify
bool
BSSbUpdateToBSSList(
void *hDeviceContext,
QWORD qwTimestamp,
unsigned short wBeaconInterval,
unsigned short wCapInfo,
unsigned char byCurrChannel,
bool bChannelHit,
PWLAN_IE_SSID pSSID,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates,
PERPObject psERP,
PWLAN_IE_RSN pRSN,
PWLAN_IE_RSN_EXT pRSNWPA,
PWLAN_IE_COUNTRY pIE_Country,
PWLAN_IE_QUIET pIE_Quiet,
PKnownBSS pBSSList,
unsigned int uIELength,
unsigned char *pbyIEs,
void *pRxPacketContext
)
{
int ii;
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
long ldBm;
bool bParsingQuiet = false;
PWLAN_IE_QUIET pQuiet = NULL;
if (pBSSList == NULL)
return false;
HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
pBSSList->uClearCount = 0;
pBSSList->uChannel = byCurrChannel;
// DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSbUpdateToBSSList: pBSSList->uChannel: %d\n", pBSSList->uChannel);
if (pSSID->len > WLAN_SSID_MAXLEN)
pSSID->len = WLAN_SSID_MAXLEN;
if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
memcpy(pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
if (pExtSuppRates != NULL) {
memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
} else {
memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
}
pBSSList->sERP.byERP = psERP->byERP;
pBSSList->sERP.bERPExist = psERP->bERPExist;
// Check if BSS is 802.11a/b/g
if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
} else {
if (pBSSList->sERP.bERPExist == true) {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
} else {
pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
}
}
pBSSList->byRxRate = pRxPacket->byRxRate;
pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
if (bChannelHit)
pBSSList->uRSSI = pRxPacket->uRSSI;
pBSSList->bySQ = pRxPacket->bySQ;
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
(pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
// assoc with BSS
if (pBSSList == pMgmt->pCurrBSS) {
bParsingQuiet = true;
}
}
WPA_ClearRSN(pBSSList); //mike update
if (pRSNWPA != NULL) {
unsigned int uLen = pRSNWPA->len + 2;
if (uLen <= (uIELength - (unsigned int)((unsigned char *)pRSNWPA - pbyIEs))) {
pBSSList->wWPALen = uLen;
memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
WPA_ParseRSN(pBSSList, pRSNWPA);
}
}
WPA2_ClearRSN(pBSSList); //mike update
if (pRSN != NULL) {
unsigned int uLen = pRSN->len + 2;
if (uLen <= (uIELength - (unsigned int)((unsigned char *)pRSN - pbyIEs))) {
pBSSList->wRSNLen = uLen;
memcpy(pBSSList->byRSNIE, pRSN, uLen);
WPA2vParseRSN(pBSSList, pRSN);
}
}
if (pRxPacket->uRSSI != 0) {
RFvRSSITodBm(pDevice, (unsigned char)(pRxPacket->uRSSI), &ldBm);
// Moniter if RSSI is too strong.
pBSSList->byRSSIStatCnt++;
pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
pBSSList->ldBmMAX = max(pBSSList->ldBmAverage[ii], ldBm);
}
}
}
if ((pIE_Country != NULL) &&
(pMgmt->b11hEnable == true)) {
set_country_info(pMgmt->pAdapter, pBSSList->eNetworkTypeInUse,
pIE_Country);
}
if ((bParsingQuiet == true) && (pIE_Quiet != NULL)) {
if ((((PWLAN_IE_QUIET)pIE_Quiet)->len == 8) &&
(((PWLAN_IE_QUIET)pIE_Quiet)->byQuietCount != 0)) {
// valid EID
if (pQuiet == NULL) {
pQuiet = (PWLAN_IE_QUIET)pIE_Quiet;
CARDbSetQuiet(pMgmt->pAdapter,
true,
pQuiet->byQuietCount,
pQuiet->byQuietPeriod,
*((unsigned short *)pQuiet->abyQuietDuration),
*((unsigned short *)pQuiet->abyQuietOffset)
);
} else {
pQuiet = (PWLAN_IE_QUIET)pIE_Quiet;
CARDbSetQuiet(pMgmt->pAdapter,
false,
pQuiet->byQuietCount,
pQuiet->byQuietPeriod,
*((unsigned short *)pQuiet->abyQuietDuration),
*((unsigned short *)pQuiet->abyQuietOffset)
);
}
}
}
if ((bParsingQuiet == true) &&
(pQuiet != NULL)) {
CARDbStartQuiet(pMgmt->pAdapter);
}
pBSSList->uIELength = uIELength;
if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
return true;
}
/*+
*
* Routine Description:
* Search Node DB table to find the index of matched DstAddr
*
* Return Value:
* None
*
-*/
bool
BSSDBbIsSTAInNodeDB(void *pMgmtObject, unsigned char *abyDstAddr,
unsigned int *puNodeIndex)
{
PSMgmtObject pMgmt = (PSMgmtObject) pMgmtObject;
unsigned int ii;
// Index = 0 reserved for AP Node
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
if (ether_addr_equal(abyDstAddr,
pMgmt->sNodeDBTable[ii].abyMACAddr)) {
*puNodeIndex = ii;
return true;
}
}
}
return false;
};
/*+
*
* Routine Description:
* Find an empty node and allocat it; if there is no empty node,
* then use the most inactive one.
*
* Return Value:
* None
*
-*/
void
BSSvCreateOneNode(void *hDeviceContext, unsigned int *puNodeIndex)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned int ii;
unsigned int BigestCount = 0;
unsigned int SelectIndex;
struct sk_buff *skb;
// Index = 0 reserved for AP Node (In STA mode)
// Index = 0 reserved for Broadcast/MultiCast (In AP mode)
SelectIndex = 1;
for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
SelectIndex = ii;
}
} else {
break;
}
}
// if not found replace uInActiveCount is largest one.
if (ii == (MAX_NODE_NUM + 1)) {
*puNodeIndex = SelectIndex;
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
// clear ps buffer
if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
dev_kfree_skb(skb);
}
} else {
*puNodeIndex = ii;
}
memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
// for AP mode PS queue
skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
return;
};
/*+
*
* Routine Description:
* Remove Node by NodeIndex
*
*
* Return Value:
* None
*
-*/
void
BSSvRemoveOneNode(
void *hDeviceContext,
unsigned int uNodeIndex
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned char byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
struct sk_buff *skb;
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
dev_kfree_skb(skb);
// clear context
memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
// clear tx bit map
pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
return;
};
/*+
*
* Routine Description:
* Update AP Node content in Index 0 of KnownNodeDB
*
*
* Return Value:
* None
*
-*/
void
BSSvUpdateAPNode(
void *hDeviceContext,
unsigned short *pwCapInfo,
PWLAN_IE_SUPP_RATES pSuppRates,
PWLAN_IE_SUPP_RATES pExtSuppRates
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned int uRateLen = WLAN_RATES_MAXLEN;
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
pMgmt->sNodeDBTable[0].bActive = true;
if (pDevice->eCurrentPHYType == PHY_TYPE_11B) {
uRateLen = WLAN_RATES_MAXLEN_11B;
}
pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
uRateLen);
pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
uRateLen);
RATEvParseMaxRate((void *)pDevice,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
true,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
);
memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
#ifdef PLICE_DEBUG
printk("BSSvUpdateAPNode:MaxSuppRate is %d\n", pMgmt->sNodeDBTable[0].wMaxSuppRate);
#endif
// Auto rate fallback function initiation.
// RATEbInit(pDevice);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
};
/*+
*
* Routine Description:
* Add Multicast Node content in Index 0 of KnownNodeDB
*
*
* Return Value:
* None
*
-*/
void
BSSvAddMulticastNode(
void *hDeviceContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
if (!pDevice->bEnableHostWEP)
memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
pMgmt->sNodeDBTable[0].bActive = true;
pMgmt->sNodeDBTable[0].bPSEnable = false;
skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
RATEvParseMaxRate((void *)pDevice,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
(PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
true,
&(pMgmt->sNodeDBTable[0].wMaxBasicRate),
&(pMgmt->sNodeDBTable[0].wMaxSuppRate),
&(pMgmt->sNodeDBTable[0].wSuppRate),
&(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
&(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
);
pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
#ifdef PLICE_DEBUG
printk("BSSvAddMultiCastNode:pMgmt->sNodeDBTable[0].wTxDataRate is %d\n", pMgmt->sNodeDBTable[0].wTxDataRate);
#endif
pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
};
/*+
*
* Routine Description:
*
*
* Second call back function to update Node DB info & AP link status
*
*
* Return Value:
* none.
*
-*/
//2008-4-14 <add> by chester for led issue
#ifdef FOR_LED_ON_NOTEBOOK
bool cc = false;
unsigned int status;
#endif
void
BSSvSecondCallBack(
void *hDeviceContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned int ii;
PWLAN_IE_SSID pItemSSID, pCurrSSID;
unsigned int uSleepySTACnt = 0;
unsigned int uNonShortSlotSTACnt = 0;
unsigned int uLongPreambleSTACnt = 0;
viawget_wpa_header *wpahdr; //DavidWang
spin_lock_irq(&pDevice->lock);
pDevice->uAssocCount = 0;
pDevice->byERPFlag &=
~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
//2008-4-14 <add> by chester for led issue
#ifdef FOR_LED_ON_NOTEBOOK
MACvGPIOIn(pDevice->PortOffset, &pDevice->byGPIO);
if (((!(pDevice->byGPIO & GPIO0_DATA) && (pDevice->bHWRadioOff == false)) || ((pDevice->byGPIO & GPIO0_DATA) && (pDevice->bHWRadioOff == true))) && (cc == false)) {
cc = true;
} else if (cc == true) {
if (pDevice->bHWRadioOff == true) {
if (!(pDevice->byGPIO & GPIO0_DATA))
//||(!(pDevice->byGPIO & GPIO0_DATA) && (pDevice->byRadioCtl & EEP_RADIOCTL_INV)))
{
if (status == 1) goto start;
status = 1;
CARDbRadioPowerOff(pDevice);
pMgmt->sNodeDBTable[0].bActive = false;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
//netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
}
if (pDevice->byGPIO & GPIO0_DATA)
//||(!(pDevice->byGPIO & GPIO0_DATA) && (pDevice->byRadioCtl & EEP_RADIOCTL_INV)))
{
if (status == 2) goto start;
status = 2;
CARDbRadioPowerOn(pDevice);
}
} else {
if (pDevice->byGPIO & GPIO0_DATA)
//||(!(pDevice->byGPIO & GPIO0_DATA) && (pDevice->byRadioCtl & EEP_RADIOCTL_INV)))
{
if (status == 3) goto start;
status = 3;
CARDbRadioPowerOff(pDevice);
pMgmt->sNodeDBTable[0].bActive = false;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
//netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
}
if (!(pDevice->byGPIO & GPIO0_DATA))
//||(!(pDevice->byGPIO & GPIO0_DATA) && (pDevice->byRadioCtl & EEP_RADIOCTL_INV)))
{
if (status == 4) goto start;
status = 4;
CARDbRadioPowerOn(pDevice);
}
}
}
start:
#endif
if (pDevice->wUseProtectCntDown > 0) {
pDevice->wUseProtectCntDown--;
} else {
// disable protect mode
pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
}
{
pDevice->byReAssocCount++;
if ((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != true)) { //10 sec timeout
printk("Re-association timeout!!!\n");
pDevice->byReAssocCount = 0;
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof(wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
#endif
} else if (pDevice->bLinkPass == true)
pDevice->byReAssocCount = 0;
}
#ifdef Calcu_LinkQual
s_uCalculateLinkQual((void *)pDevice);
#endif
for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
// Increase in-activity counter
pMgmt->sNodeDBTable[ii].uInActiveCount++;
if (ii > 0) {
if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) {
BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
"Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
continue;
}
if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
pDevice->uAssocCount++;
// check if Non ERP exist
if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
uLongPreambleSTACnt++;
}
if (!pMgmt->sNodeDBTable[ii].bERPExist) {
pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
}
if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
uNonShortSlotSTACnt++;
}
}
// check if any STA in PS mode
if (pMgmt->sNodeDBTable[ii].bPSEnable)
uSleepySTACnt++;
}
// Rate fallback check
if (!pDevice->bFixRate) {
/*
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) && (ii == 0))
RATEvTxRateFallBack(pDevice, &(pMgmt->sNodeDBTable[ii]));
*/
if (ii > 0) {
// ii = 0 for multicast node (AP & Adhoc)
RATEvTxRateFallBack((void *)pDevice, &(pMgmt->sNodeDBTable[ii]));
} else {
// ii = 0 reserved for unicast AP node (Infra STA)
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
#ifdef PLICE_DEBUG
printk("SecondCallback:Before:TxDataRate is %d\n", pMgmt->sNodeDBTable[0].wTxDataRate);
#endif
RATEvTxRateFallBack((void *)pDevice, &(pMgmt->sNodeDBTable[ii]));
#ifdef PLICE_DEBUG
printk("SecondCallback:After:TxDataRate is %d\n", pMgmt->sNodeDBTable[0].wTxDataRate);
#endif
}
}
// check if pending PS queue
if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
if ((ii > 0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
BSSvRemoveOneNode(pDevice, ii);
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
continue;
}
}
}
}
if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->eCurrentPHYType == PHY_TYPE_11G)) {
// on/off protect mode
if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
if (!pDevice->bProtectMode) {
MACvEnableProtectMD(pDevice->PortOffset);
pDevice->bProtectMode = true;
}
} else {
if (pDevice->bProtectMode) {
MACvDisableProtectMD(pDevice->PortOffset);
pDevice->bProtectMode = false;
}
}
// on/off short slot time
if (uNonShortSlotSTACnt > 0) {
if (pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = false;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
} else {
if (!pDevice->bShortSlotTime) {
pDevice->bShortSlotTime = true;
BBvSetShortSlotTime(pDevice);
vUpdateIFS((void *)pDevice);
}
}
// on/off barker long preamble mode
if (uLongPreambleSTACnt > 0) {
if (!pDevice->bBarkerPreambleMd) {
MACvEnableBarkerPreambleMd(pDevice->PortOffset);
pDevice->bBarkerPreambleMd = true;
}
} else {
if (pDevice->bBarkerPreambleMd) {
MACvDisableBarkerPreambleMd(pDevice->PortOffset);
pDevice->bBarkerPreambleMd = false;
}
}
}
// Check if any STA in PS mode, enable DTIM multicast deliver
if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
if (uSleepySTACnt > 0)
pMgmt->sNodeDBTable[0].bPSEnable = true;
else
pMgmt->sNodeDBTable[0].bPSEnable = false;
}
pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
if (pDevice->bUpdateBBVGA) {
// s_vCheckSensitivity((void *) pDevice);
s_vCheckPreEDThreshold((void *)pDevice);
}
if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
(pDevice->byBBVGACurrent != pDevice->abyBBVGA[0])) {
pDevice->byBBVGANew = pDevice->abyBBVGA[0];
bScheduleCommand((void *)pDevice, WLAN_CMD_CHANGE_BBSENSITIVITY, NULL);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
pMgmt->sNodeDBTable[0].bActive = false;
pMgmt->eCurrMode = WMAC_MODE_STANDBY;
pMgmt->eCurrState = WMAC_STATE_IDLE;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
pDevice->bRoaming = true;
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
wpahdr = (viawget_wpa_header *)pDevice->skb->data;
wpahdr->type = VIAWGET_DISASSOC_MSG;
wpahdr->resp_ie_len = 0;
wpahdr->req_ie_len = 0;
skb_put(pDevice->skb, sizeof(viawget_wpa_header));
pDevice->skb->dev = pDevice->wpadev;
skb_reset_mac_header(pDevice->skb);
pDevice->skb->pkt_type = PACKET_HOST;
pDevice->skb->protocol = htons(ETH_P_802_2);
memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
netif_rx(pDevice->skb);
pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
}
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
{
union iwreq_data wrqu;
memset(&wrqu, 0, sizeof(wrqu));
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
}
#endif
}
} else if (pItemSSID->len != 0) {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
#ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
//network manager support need not do Roaming scan???
if (pDevice->bWPASuppWextEnabled == true)
pDevice->uAutoReConnectTime = 0;
#endif
} else {
//mike use old encryption status for wpa reauthen
if (pDevice->bWPADEVUp)
pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
BSSvClearBSSList((void *)pDevice, pDevice->bLinkPass);
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, pMgmt->abyDesireSSID);
bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, pMgmt->abyDesireSSID);
pDevice->uAutoReConnectTime = 0;
}
}
}
if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
// if adhoc started which essid is NULL string, rescanning.
if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
if (pDevice->uAutoReConnectTime < 10) {
pDevice->uAutoReConnectTime++;
} else {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n");
pMgmt->eScanType = WMAC_SCAN_ACTIVE;
bScheduleCommand((void *)pDevice, WLAN_CMD_BSSID_SCAN, NULL);
bScheduleCommand((void *)pDevice, WLAN_CMD_SSID, NULL);
pDevice->uAutoReConnectTime = 0;
};
}
if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
if (pDevice->bUpdateBBVGA) {
//s_vCheckSensitivity((void *) pDevice);
s_vCheckPreEDThreshold((void *)pDevice);
}
if (pMgmt->sNodeDBTable[0].uInActiveCount >= ADHOC_LOST_BEACON_COUNT) {
DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
pMgmt->sNodeDBTable[0].uInActiveCount = 0;
pMgmt->eCurrState = WMAC_STATE_STARTED;
netif_stop_queue(pDevice->dev);
pDevice->bLinkPass = false;
}
}
}
spin_unlock_irq(&pDevice->lock);
pMgmt->sTimerSecondCallback.expires = RUN_AT(HZ);
add_timer(&pMgmt->sTimerSecondCallback);
return;
}
/*+
*
* Routine Description:
*
*
* Update Tx attemps, Tx failure counter in Node DB
*
*
* Return Value:
* none.
*
-*/
void
BSSvUpdateNodeTxCounter(
void *hDeviceContext,
unsigned char byTsr0,
unsigned char byTsr1,
unsigned char *pbyBuffer,
unsigned int uFIFOHeaderSize
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned int uNodeIndex = 0;
unsigned char byTxRetry = (byTsr0 & TSR0_NCR);
PSTxBufHead pTxBufHead;
PS802_11Header pMACHeader;
unsigned short wRate;
unsigned short wFallBackRate = RATE_1M;
unsigned char byFallBack;
unsigned int ii;
// unsigned int txRetryTemp;
//PLICE_DEBUG->
//txRetryTemp = byTxRetry;
//PLICE_DEBUG <-
pTxBufHead = (PSTxBufHead) pbyBuffer;
if (pTxBufHead->wFIFOCtl & FIFOCTL_AUTO_FB_0) {
byFallBack = AUTO_FB_0;
} else if (pTxBufHead->wFIFOCtl & FIFOCTL_AUTO_FB_1) {
byFallBack = AUTO_FB_1;
} else {
byFallBack = AUTO_FB_NONE;
}
wRate = pTxBufHead->wReserved; //?wRate
// Only Unicast using support rates
if (pTxBufHead->wFIFOCtl & FIFOCTL_NEEDACK) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "wRate %04X, byTsr0 %02X, byTsr1 %02X\n", wRate, byTsr0, byTsr1);
if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
pMgmt->sNodeDBTable[0].uTxAttempts += 1;
if ((byTsr1 & TSR1_TERR) == 0) {
// transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
//PLICE_DEBUG
if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
//wFallBackRate = awHWRetry0[wRate-RATE_12M][byTxRetry];
//wFallBackRate = awHWRetry0[wRate-RATE_18M][txRetryTemp] +1;
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
//wFallBackRate = awHWRetry0[wRate-RATE_12M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[0].uTxFailures++;
}
pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE] += byTxRetry;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
pMgmt->sNodeDBTable[0].uTxFail[wRate] += byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
//PLICE_DEBUG
for (ii = 0; ii < byTxRetry; ii++)
//for (ii=0;ii<txRetryTemp;ii++)
{
if (ii < 5) {
//PLICE_DEBUG
wFallBackRate = awHWRetry0[wRate-RATE_18M][ii];
//wFallBackRate = awHWRetry0[wRate-RATE_12M][ii];
} else {
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
//wFallBackRate = awHWRetry0[wRate-RATE_12M][4];
}
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
}
}
}
}
if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
(pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
pMACHeader = (PS802_11Header)(pbyBuffer + uFIFOHeaderSize);
if (BSSDBbIsSTAInNodeDB((void *)pMgmt, &(pMACHeader->abyAddr1[0]), &uNodeIndex)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
if ((byTsr1 & TSR1_TERR) == 0) {
// transmit success, TxAttempts at least plus one
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
wFallBackRate = wRate;
} else if (byFallBack == AUTO_FB_0) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
} else if (byFallBack == AUTO_FB_1) {
if (byTxRetry < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
}
pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
} else {
pMgmt->sNodeDBTable[uNodeIndex].uTxFailures++;
}
pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
if (byTxRetry != 0) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE] += byTxRetry;
if ((byFallBack == AUTO_FB_NONE) ||
(wRate < RATE_18M)) {
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate] += byTxRetry;
} else if (byFallBack == AUTO_FB_0) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate = awHWRetry0[wRate - RATE_18M][ii];
else
wFallBackRate = awHWRetry0[wRate - RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
} else if (byFallBack == AUTO_FB_1) {
for (ii = 0; ii < byTxRetry; ii++) {
if (ii < 5)
wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
else
wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
}
}
}
}
}
}
return;
}
/*+
*
* Routine Description:
* Clear Nodes & skb in DB Table
*
*
* Parameters:
* In:
* hDeviceContext - The adapter context.
* uStartIndex - starting index
* Out:
* none
*
* Return Value:
* None.
*
-*/
void
BSSvClearNodeDBTable(
void *hDeviceContext,
unsigned int uStartIndex
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
struct sk_buff *skb;
unsigned int ii;
for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
if (pMgmt->sNodeDBTable[ii].bActive) {
// check if sTxPSQueue has been initial
if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
dev_kfree_skb(skb);
}
}
memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
}
}
return;
};
void s_vCheckSensitivity(
void *hDeviceContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PKnownBSS pBSSList = NULL;
PSMgmtObject pMgmt = pDevice->pMgmt;
int ii;
if ((pDevice->byLocalID <= REV_ID_VT3253_A1) && (pDevice->byRFType == RF_RFMD2959) &&
(pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
return;
}
if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
if (pBSSList != NULL) {
// Updata BB Reg if RSSI is too strong.
long LocalldBmAverage = 0;
long uNumofdBm = 0;
for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
if (pBSSList->ldBmAverage[ii] != 0) {
uNumofdBm++;
LocalldBmAverage += pBSSList->ldBmAverage[ii];
}
}
if (uNumofdBm > 0) {
LocalldBmAverage = LocalldBmAverage/uNumofdBm;
for (ii = 0; ii < BB_VGA_LEVEL; ii++) {
DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
break;
}
}
if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
pDevice->uBBVGADiffCount++;
if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
bScheduleCommand((void *)pDevice, WLAN_CMD_CHANGE_BBSENSITIVITY, NULL);
} else {
pDevice->uBBVGADiffCount = 0;
}
}
}
}
}
void
BSSvClearAnyBSSJoinRecord(
void *hDeviceContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PSMgmtObject pMgmt = pDevice->pMgmt;
unsigned int ii;
for (ii = 0; ii < MAX_BSS_NUM; ii++) {
pMgmt->sBSSList[ii].bSelected = false;
}
return;
}
#ifdef Calcu_LinkQual
void s_uCalculateLinkQual(
void *hDeviceContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
unsigned long TxOkRatio, TxCnt;
unsigned long RxOkRatio, RxCnt;
unsigned long RssiRatio;
long ldBm;
TxCnt = pDevice->scStatistic.TxNoRetryOkCount +
pDevice->scStatistic.TxRetryOkCount +
pDevice->scStatistic.TxFailCount;
RxCnt = pDevice->scStatistic.RxFcsErrCnt +
pDevice->scStatistic.RxOkCnt;
TxOkRatio = (TxCnt < 6) ? 4000 : ((pDevice->scStatistic.TxNoRetryOkCount * 4000) / TxCnt);
RxOkRatio = (RxCnt < 6) ? 2000 : ((pDevice->scStatistic.RxOkCnt * 2000) / RxCnt);
//decide link quality
if (pDevice->bLinkPass != true) {
pDevice->scStatistic.LinkQuality = 0;
pDevice->scStatistic.SignalStren = 0;
} else {
RFvRSSITodBm(pDevice, (unsigned char)(pDevice->uCurrRSSI), &ldBm);
if (-ldBm < 50) {
RssiRatio = 4000;
} else if (-ldBm > 90) {
RssiRatio = 0;
} else {
RssiRatio = (40-(-ldBm-50))*4000/40;
}
pDevice->scStatistic.SignalStren = RssiRatio/40;
pDevice->scStatistic.LinkQuality = (RssiRatio+TxOkRatio+RxOkRatio)/100;
}
pDevice->scStatistic.RxFcsErrCnt = 0;
pDevice->scStatistic.RxOkCnt = 0;
pDevice->scStatistic.TxFailCount = 0;
pDevice->scStatistic.TxNoRetryOkCount = 0;
pDevice->scStatistic.TxRetryOkCount = 0;
return;
}
#endif
void s_vCheckPreEDThreshold(
void *hDeviceContext
)
{
PSDevice pDevice = (PSDevice)hDeviceContext;
PKnownBSS pBSSList = NULL;
PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
if (pBSSList != NULL) {
pDevice->byBBPreEDRSSI = (unsigned char) (~(pBSSList->ldBmAverRange) + 1);
//BBvUpdatePreEDThreshold(pDevice, false);
}
}
return;
}