blob: 2755ec5bcc258d695d534f3ca99d895218c49215 [file] [log] [blame]
/*
* Driver for C-Media CMI8338 and 8738 PCI soundcards.
* Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* Does not work. Warning may block system in capture mode */
/* #define USE_VAR48KRATE */
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/asoundef.h>
#include <sound/initval.h>
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
"{C-Media,CMI8738B},"
"{C-Media,CMI8338A},"
"{C-Media,CMI8338B}}");
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
static long mpu_port[SNDRV_CARDS];
static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
module_param_array(mpu_port, long, NULL, 0444);
MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
module_param_array(fm_port, long, NULL, 0444);
MODULE_PARM_DESC(fm_port, "FM port.");
module_param_array(soft_ac3, bool, NULL, 0444);
MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
#endif
/*
* CM8x38 registers definition
*/
#define CM_REG_FUNCTRL0 0x00
#define CM_RST_CH1 0x00080000
#define CM_RST_CH0 0x00040000
#define CM_CHEN1 0x00020000 /* ch1: enable */
#define CM_CHEN0 0x00010000 /* ch0: enable */
#define CM_PAUSE1 0x00000008 /* ch1: pause */
#define CM_PAUSE0 0x00000004 /* ch0: pause */
#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
#define CM_REG_FUNCTRL1 0x04
#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
#define CM_DSFC_SHIFT 13
#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
#define CM_ASFC_SHIFT 10
#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
#define CM_BREQ 0x00000010 /* bus master enabled */
#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
#define CM_UART_EN 0x00000004 /* legacy UART */
#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
#define CM_ZVPORT 0x00000001 /* ZVPORT */
#define CM_REG_CHFORMAT 0x08
#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
#define CM_CHB3D 0x20000000 /* 4 channels */
#define CM_CHIP_MASK1 0x1f000000
#define CM_CHIP_037 0x01000000
#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
#define CM_ADCBITLEN_MASK 0x0000C000
#define CM_ADCBITLEN_16 0x00000000
#define CM_ADCBITLEN_15 0x00004000
#define CM_ADCBITLEN_14 0x00008000
#define CM_ADCBITLEN_13 0x0000C000
#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
#define CM_ADCDACLEN_060 0x00000000
#define CM_ADCDACLEN_066 0x00001000
#define CM_ADCDACLEN_130 0x00002000
#define CM_ADCDACLEN_280 0x00003000
#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
#define CM_ADCDLEN_ORIGINAL 0x00000000
#define CM_ADCDLEN_EXTRA 0x00001000
#define CM_ADCDLEN_24K 0x00002000
#define CM_ADCDLEN_WEIGHT 0x00003000
#define CM_CH1_SRATE_176K 0x00000800
#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
#define CM_CH1_SRATE_88K 0x00000400
#define CM_CH0_SRATE_176K 0x00000200
#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
#define CM_CH0_SRATE_88K 0x00000100
#define CM_CH0_SRATE_128K 0x00000300
#define CM_CH0_SRATE_MASK 0x00000300
#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
#define CM_SPDLOCKED 0x00000010
#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
#define CM_CH1FMT_SHIFT 2
#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
#define CM_CH0FMT_SHIFT 0
#define CM_REG_INT_HLDCLR 0x0C
#define CM_CHIP_MASK2 0xff000000
#define CM_CHIP_8768 0x20000000
#define CM_CHIP_055 0x08000000
#define CM_CHIP_039 0x04000000
#define CM_CHIP_039_6CH 0x01000000
#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
#define CM_TDMA_INT_EN 0x00040000
#define CM_CH1_INT_EN 0x00020000
#define CM_CH0_INT_EN 0x00010000
#define CM_REG_INT_STATUS 0x10
#define CM_INTR 0x80000000
#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
#define CM_UARTINT 0x00010000
#define CM_LTDMAINT 0x00008000
#define CM_HTDMAINT 0x00004000
#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
#define CM_CH1BUSY 0x00000008
#define CM_CH0BUSY 0x00000004
#define CM_CHINT1 0x00000002
#define CM_CHINT0 0x00000001
#define CM_REG_LEGACY_CTRL 0x14
#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
#define CM_VMPU_330 0x00000000
#define CM_VMPU_320 0x20000000
#define CM_VMPU_310 0x40000000
#define CM_VMPU_300 0x60000000
#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
#define CM_VSBSEL_220 0x00000000
#define CM_VSBSEL_240 0x04000000
#define CM_VSBSEL_260 0x08000000
#define CM_VSBSEL_280 0x0C000000
#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
#define CM_FMSEL_388 0x00000000
#define CM_FMSEL_3C8 0x01000000
#define CM_FMSEL_3E0 0x02000000
#define CM_FMSEL_3E8 0x03000000
#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
#define CM_C_EECS 0x00040000
#define CM_C_EEDI46 0x00020000
#define CM_C_EECK46 0x00010000
#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
#define CM_EXBASEN 0x00001000 /* external bass input enable */
#define CM_REG_MISC_CTRL 0x18
#define CM_PWD 0x80000000 /* power down */
#define CM_RESET 0x40000000
#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
#define CM_TXVX 0x08000000 /* model 037? */
#define CM_N4SPK3D 0x04000000 /* copy front to rear */
#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
#define CM_SPDIF48K 0x01000000 /* write */
#define CM_SPATUS48K 0x01000000 /* read */
#define CM_ENDBDAC 0x00800000 /* enable double dac */
#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
#define CM_FM_EN 0x00080000 /* enable legacy FM */
#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
#define CM_VIDWPDSB 0x00010000 /* model 037? */
#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
#define CM_VIDWPPRT 0x00002000 /* model 037? */
#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
#define CM_ENCENTER 0x00000080
#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
#define CM_UPDDMA_2048 0x00000000
#define CM_UPDDMA_1024 0x00000004
#define CM_UPDDMA_512 0x00000008
#define CM_UPDDMA_256 0x0000000C
#define CM_TWAIT_MASK 0x00000003 /* model 037 */
#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
#define CM_REG_TDMA_POSITION 0x1C
#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
/* byte */
#define CM_REG_MIXER0 0x20
#define CM_REG_SBVR 0x20 /* write: sb16 version */
#define CM_REG_DEV 0x20 /* read: hardware device version */
#define CM_REG_MIXER21 0x21
#define CM_UNKNOWN_21_MASK 0x78 /* ? */
#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
#define CM_PROINV 0x02 /* SBPro left/right channel switching */
#define CM_X_SB16 0x01 /* SB16 compatible */
#define CM_REG_SB16_DATA 0x22
#define CM_REG_SB16_ADDR 0x23
#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
#define CM_REG_MIXER1 0x24
#define CM_FMMUTE 0x80 /* mute FM */
#define CM_FMMUTE_SHIFT 7
#define CM_WSMUTE 0x40 /* mute PCM */
#define CM_WSMUTE_SHIFT 6
#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
#define CM_REAR2LIN_SHIFT 5
#define CM_REAR2FRONT 0x10 /* exchange rear/front */
#define CM_REAR2FRONT_SHIFT 4
#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
#define CM_WAVEINL_SHIFT 3
#define CM_WAVEINR 0x04 /* digical wave rec. right */
#define CM_WAVEINR_SHIFT 2
#define CM_X3DEN 0x02 /* 3D surround enable */
#define CM_X3DEN_SHIFT 1
#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
#define CM_CDPLAY_SHIFT 0
#define CM_REG_MIXER2 0x25
#define CM_RAUXREN 0x80 /* AUX right capture */
#define CM_RAUXREN_SHIFT 7
#define CM_RAUXLEN 0x40 /* AUX left capture */
#define CM_RAUXLEN_SHIFT 6
#define CM_VAUXRM 0x20 /* AUX right mute */
#define CM_VAUXRM_SHIFT 5
#define CM_VAUXLM 0x10 /* AUX left mute */
#define CM_VAUXLM_SHIFT 4
#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
#define CM_VADMIC_SHIFT 1
#define CM_MICGAINZ 0x01 /* mic boost */
#define CM_MICGAINZ_SHIFT 0
#define CM_REG_MIXER3 0x24
#define CM_REG_AUX_VOL 0x26
#define CM_VAUXL_MASK 0xf0
#define CM_VAUXR_MASK 0x0f
#define CM_REG_MISC 0x27
#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
#define CM_XGPO1 0x20
// #define CM_XGPBIO 0x04
#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
#define CM_SPDVALID 0x02 /* spdif input valid check */
#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
/*
* For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
* or identical with AC97 codec?
*/
#define CM_REG_EXTERN_CODEC CM_REG_AC97
/*
* MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
*/
#define CM_REG_MPU_PCI 0x40
/*
* FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
*/
#define CM_REG_FM_PCI 0x50
/*
* access from SB-mixer port
*/
#define CM_REG_EXTENT_IND 0xf0
#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
#define CM_VPHONE_SHIFT 5
#define CM_VPHOM 0x10 /* Phone mute control */
#define CM_VSPKM 0x08 /* Speaker mute control, default high */
#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
#define CM_VADMIC3 0x01 /* Mic record boost */
/*
* CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
* the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
* unit (readonly?).
*/
#define CM_REG_PLL 0xf8
/*
* extended registers
*/
#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
#define CM_REG_EXT_MISC 0x90
#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
/*
* size of i/o region
*/
#define CM_EXTENT_CODEC 0x100
#define CM_EXTENT_MIDI 0x2
#define CM_EXTENT_SYNTH 0x4
/*
* channels for playback / capture
*/
#define CM_CH_PLAY 0
#define CM_CH_CAPT 1
/*
* flags to check device open/close
*/
#define CM_OPEN_NONE 0
#define CM_OPEN_CH_MASK 0x01
#define CM_OPEN_DAC 0x10
#define CM_OPEN_ADC 0x20
#define CM_OPEN_SPDIF 0x40
#define CM_OPEN_MCHAN 0x80
#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
#if CM_CH_PLAY == 1
#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
#define CM_PLAYBACK_SPDF CM_SPDF_1
#define CM_CAPTURE_SPDF CM_SPDF_0
#else
#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
#define CM_PLAYBACK_SPDF CM_SPDF_0
#define CM_CAPTURE_SPDF CM_SPDF_1
#endif
/*
* driver data
*/
struct cmipci_pcm {
struct snd_pcm_substream *substream;
u8 running; /* dac/adc running? */
u8 fmt; /* format bits */
u8 is_dac;
u8 needs_silencing;
unsigned int dma_size; /* in frames */
unsigned int shift;
unsigned int ch; /* channel (0/1) */
unsigned int offset; /* physical address of the buffer */
};
/* mixer elements toggled/resumed during ac3 playback */
struct cmipci_mixer_auto_switches {
const char *name; /* switch to toggle */
int toggle_on; /* value to change when ac3 mode */
};
static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
{"PCM Playback Switch", 0},
{"IEC958 Output Switch", 1},
{"IEC958 Mix Analog", 0},
// {"IEC958 Out To DAC", 1}, // no longer used
{"IEC958 Loop", 0},
};
#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
struct cmipci {
struct snd_card *card;
struct pci_dev *pci;
unsigned int device; /* device ID */
int irq;
unsigned long iobase;
unsigned int ctrl; /* FUNCTRL0 current value */
struct snd_pcm *pcm; /* DAC/ADC PCM */
struct snd_pcm *pcm2; /* 2nd DAC */
struct snd_pcm *pcm_spdif; /* SPDIF */
int chip_version;
int max_channels;
unsigned int can_ac3_sw: 1;
unsigned int can_ac3_hw: 1;
unsigned int can_multi_ch: 1;
unsigned int can_96k: 1; /* samplerate above 48k */
unsigned int do_soft_ac3: 1;
unsigned int spdif_playback_avail: 1; /* spdif ready? */
unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
int spdif_counter; /* for software AC3 */
unsigned int dig_status;
unsigned int dig_pcm_status;
struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
int opened[2]; /* open mode */
struct mutex open_mutex;
unsigned int mixer_insensitive: 1;
struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
int mixer_res_status[CM_SAVED_MIXERS];
struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
/* external MIDI */
struct snd_rawmidi *rmidi;
#ifdef SUPPORT_JOYSTICK
struct gameport *gameport;
#endif
spinlock_t reg_lock;
#ifdef CONFIG_PM_SLEEP
unsigned int saved_regs[0x20];
unsigned char saved_mixers[0x20];
#endif
};
/* read/write operations for dword register */
static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
{
outl(data, cm->iobase + cmd);
}
static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
{
return inl(cm->iobase + cmd);
}
/* read/write operations for word register */
static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
{
outw(data, cm->iobase + cmd);
}
static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
{
return inw(cm->iobase + cmd);
}
/* read/write operations for byte register */
static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
{
outb(data, cm->iobase + cmd);
}
static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
{
return inb(cm->iobase + cmd);
}
/* bit operations for dword register */
static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
unsigned int val, oval;
val = oval = inl(cm->iobase + cmd);
val |= flag;
if (val == oval)
return 0;
outl(val, cm->iobase + cmd);
return 1;
}
static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
unsigned int val, oval;
val = oval = inl(cm->iobase + cmd);
val &= ~flag;
if (val == oval)
return 0;
outl(val, cm->iobase + cmd);
return 1;
}
/* bit operations for byte register */
static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
unsigned char val, oval;
val = oval = inb(cm->iobase + cmd);
val |= flag;
if (val == oval)
return 0;
outb(val, cm->iobase + cmd);
return 1;
}
static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
unsigned char val, oval;
val = oval = inb(cm->iobase + cmd);
val &= ~flag;
if (val == oval)
return 0;
outb(val, cm->iobase + cmd);
return 1;
}
/*
* PCM interface
*/
/*
* calculate frequency
*/
static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
static unsigned int snd_cmipci_rate_freq(unsigned int rate)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(rates); i++) {
if (rates[i] == rate)
return i;
}
snd_BUG();
return 0;
}
#ifdef USE_VAR48KRATE
/*
* Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
* does it this way .. maybe not. Never get any information from C-Media about
* that <werner@suse.de>.
*/
static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
{
unsigned int delta, tolerance;
int xm, xn, xr;
for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
rate <<= 1;
*n = -1;
if (*r > 0xff)
goto out;
tolerance = rate*CM_TOLERANCE_RATE;
for (xn = (1+2); xn < (0x1f+2); xn++) {
for (xm = (1+2); xm < (0xff+2); xm++) {
xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
if (xr < rate)
delta = rate - xr;
else
delta = xr - rate;
/*
* If we found one, remember this,
* and try to find a closer one
*/
if (delta < tolerance) {
tolerance = delta;
*m = xm - 2;
*n = xn - 2;
}
}
}
out:
return (*n > -1);
}
/*
* Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
* are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
* at the register CM_REG_FUNCTRL1 (0x04).
* Problem: other ways are also possible (any information about that?)
*/
static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
{
unsigned int reg = CM_REG_PLL + slot;
/*
* Guess that this programs at reg. 0x04 the pos 15:13/12:10
* for DSFC/ASFC (000 up to 111).
*/
/* FIXME: Init (Do we've to set an other register first before programming?) */
/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
snd_cmipci_write_b(cm, reg, rate>>8);
snd_cmipci_write_b(cm, reg, rate&0xff);
/* FIXME: Setup (Do we've to set an other register first to enable this?) */
}
#endif /* USE_VAR48KRATE */
static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
if (params_channels(hw_params) > 2) {
mutex_lock(&cm->open_mutex);
if (cm->opened[CM_CH_PLAY]) {
mutex_unlock(&cm->open_mutex);
return -EBUSY;
}
/* reserve the channel A */
cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
mutex_unlock(&cm->open_mutex);
}
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
{
int reset = CM_RST_CH0 << (cm->channel[ch].ch);
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
udelay(10);
}
static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
/*
*/
static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
.count = 3,
.list = hw_channels,
.mask = 0,
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
.count = 4,
.list = hw_channels,
.mask = 0,
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
.count = 5,
.list = hw_channels,
.mask = 0,
};
static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
{
if (channels > 2) {
if (!cm->can_multi_ch || !rec->ch)
return -EINVAL;
if (rec->fmt != 0x03) /* stereo 16bit only */
return -EINVAL;
}
if (cm->can_multi_ch) {
spin_lock_irq(&cm->reg_lock);
if (channels > 2) {
snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
} else {
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
}
if (channels == 8)
snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
else
snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
if (channels == 6) {
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
} else {
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
}
if (channels == 4)
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
else
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
spin_unlock_irq(&cm->reg_lock);
}
return 0;
}
/*
* prepare playback/capture channel
* channel to be used must have been set in rec->ch.
*/
static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
struct snd_pcm_substream *substream)
{
unsigned int reg, freq, freq_ext, val;
unsigned int period_size;
struct snd_pcm_runtime *runtime = substream->runtime;
rec->fmt = 0;
rec->shift = 0;
if (snd_pcm_format_width(runtime->format) >= 16) {
rec->fmt |= 0x02;
if (snd_pcm_format_width(runtime->format) > 16)
rec->shift++; /* 24/32bit */
}
if (runtime->channels > 1)
rec->fmt |= 0x01;
if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
snd_printd("cannot set dac channels\n");
return -EINVAL;
}
rec->offset = runtime->dma_addr;
/* buffer and period sizes in frame */
rec->dma_size = runtime->buffer_size << rec->shift;
period_size = runtime->period_size << rec->shift;
if (runtime->channels > 2) {
/* multi-channels */
rec->dma_size = (rec->dma_size * runtime->channels) / 2;
period_size = (period_size * runtime->channels) / 2;
}
spin_lock_irq(&cm->reg_lock);
/* set buffer address */
reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
snd_cmipci_write(cm, reg, rec->offset);
/* program sample counts */
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
snd_cmipci_write_w(cm, reg + 2, period_size - 1);
/* set adc/dac flag */
val = rec->ch ? CM_CHADC1 : CM_CHADC0;
if (rec->is_dac)
cm->ctrl &= ~val;
else
cm->ctrl |= val;
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
/* set sample rate */
freq = 0;
freq_ext = 0;
if (runtime->rate > 48000)
switch (runtime->rate) {
case 88200: freq_ext = CM_CH0_SRATE_88K; break;
case 96000: freq_ext = CM_CH0_SRATE_96K; break;
case 128000: freq_ext = CM_CH0_SRATE_128K; break;
default: snd_BUG(); break;
}
else
freq = snd_cmipci_rate_freq(runtime->rate);
val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
if (rec->ch) {
val &= ~CM_DSFC_MASK;
val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
} else {
val &= ~CM_ASFC_MASK;
val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
}
snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
//snd_printd("cmipci: functrl1 = %08x\n", val);
/* set format */
val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
if (rec->ch) {
val &= ~CM_CH1FMT_MASK;
val |= rec->fmt << CM_CH1FMT_SHIFT;
} else {
val &= ~CM_CH0FMT_MASK;
val |= rec->fmt << CM_CH0FMT_SHIFT;
}
if (cm->can_96k) {
val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
val |= freq_ext << (rec->ch * 2);
}
snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
//snd_printd("cmipci: chformat = %08x\n", val);
if (!rec->is_dac && cm->chip_version) {
if (runtime->rate > 44100)
snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
else
snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
}
rec->running = 0;
spin_unlock_irq(&cm->reg_lock);
return 0;
}
/*
* PCM trigger/stop
*/
static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
int cmd)
{
unsigned int inthld, chen, reset, pause;
int result = 0;
inthld = CM_CH0_INT_EN << rec->ch;
chen = CM_CHEN0 << rec->ch;
reset = CM_RST_CH0 << rec->ch;
pause = CM_PAUSE0 << rec->ch;
spin_lock(&cm->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
rec->running = 1;
/* set interrupt */
snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
cm->ctrl |= chen;
/* enable channel */
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
break;
case SNDRV_PCM_TRIGGER_STOP:
rec->running = 0;
/* disable interrupt */
snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
/* reset */
cm->ctrl &= ~chen;
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
rec->needs_silencing = rec->is_dac;
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
cm->ctrl |= pause;
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
break;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
cm->ctrl &= ~pause;
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&cm->reg_lock);
return result;
}
/*
* return the current pointer
*/
static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
struct snd_pcm_substream *substream)
{
size_t ptr;
unsigned int reg, rem, tries;
if (!rec->running)
return 0;
#if 1 // this seems better..
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
for (tries = 0; tries < 3; tries++) {
rem = snd_cmipci_read_w(cm, reg);
if (rem < rec->dma_size)
goto ok;
}
printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
return SNDRV_PCM_POS_XRUN;
ok:
ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
#else
reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
ptr = snd_cmipci_read(cm, reg) - rec->offset;
ptr = bytes_to_frames(substream->runtime, ptr);
#endif
if (substream->runtime->channels > 2)
ptr = (ptr * 2) / substream->runtime->channels;
return ptr;
}
/*
* playback
*/
static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
}
static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
}
/*
* capture
*/
static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
}
static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
}
/*
* hw preparation for spdif
*/
static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
int i;
spin_lock_irq(&chip->reg_lock);
for (i = 0; i < 4; i++)
ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
int i, change;
unsigned int val;
val = 0;
spin_lock_irq(&chip->reg_lock);
for (i = 0; i < 4; i++)
val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
change = val != chip->dig_status;
chip->dig_status = val;
spin_unlock_irq(&chip->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_cmipci_spdif_default =
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_cmipci_spdif_default_info,
.get = snd_cmipci_spdif_default_get,
.put = snd_cmipci_spdif_default_put
};
static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static struct snd_kcontrol_new snd_cmipci_spdif_mask =
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_cmipci_spdif_mask_info,
.get = snd_cmipci_spdif_mask_get,
};
static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
int i;
spin_lock_irq(&chip->reg_lock);
for (i = 0; i < 4; i++)
ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
int i, change;
unsigned int val;
val = 0;
spin_lock_irq(&chip->reg_lock);
for (i = 0; i < 4; i++)
val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
change = val != chip->dig_pcm_status;
chip->dig_pcm_status = val;
spin_unlock_irq(&chip->reg_lock);
return change;
}
static struct snd_kcontrol_new snd_cmipci_spdif_stream =
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
.info = snd_cmipci_spdif_stream_info,
.get = snd_cmipci_spdif_stream_get,
.put = snd_cmipci_spdif_stream_put
};
/*
*/
/* save mixer setting and mute for AC3 playback */
static int save_mixer_state(struct cmipci *cm)
{
if (! cm->mixer_insensitive) {
struct snd_ctl_elem_value *val;
unsigned int i;
val = kmalloc(sizeof(*val), GFP_ATOMIC);
if (!val)
return -ENOMEM;
for (i = 0; i < CM_SAVED_MIXERS; i++) {
struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
if (ctl) {
int event;
memset(val, 0, sizeof(*val));
ctl->get(ctl, val);
cm->mixer_res_status[i] = val->value.integer.value[0];
val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
event = SNDRV_CTL_EVENT_MASK_INFO;
if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
ctl->put(ctl, val); /* toggle */
event |= SNDRV_CTL_EVENT_MASK_VALUE;
}
ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(cm->card, event, &ctl->id);
}
}
kfree(val);
cm->mixer_insensitive = 1;
}
return 0;
}
/* restore the previously saved mixer status */
static void restore_mixer_state(struct cmipci *cm)
{
if (cm->mixer_insensitive) {
struct snd_ctl_elem_value *val;
unsigned int i;
val = kmalloc(sizeof(*val), GFP_KERNEL);
if (!val)
return;
cm->mixer_insensitive = 0; /* at first clear this;
otherwise the changes will be ignored */
for (i = 0; i < CM_SAVED_MIXERS; i++) {
struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
if (ctl) {
int event;
memset(val, 0, sizeof(*val));
ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
ctl->get(ctl, val);
event = SNDRV_CTL_EVENT_MASK_INFO;
if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
val->value.integer.value[0] = cm->mixer_res_status[i];
ctl->put(ctl, val);
event |= SNDRV_CTL_EVENT_MASK_VALUE;
}
snd_ctl_notify(cm->card, event, &ctl->id);
}
}
kfree(val);
}
}
/* spinlock held! */
static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
{
if (do_ac3) {
/* AC3EN for 037 */
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
/* AC3EN for 039 */
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
if (cm->can_ac3_hw) {
/* SPD24SEL for 037, 0x02 */
/* SPD24SEL for 039, 0x20, but cannot be set */
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
} else { /* can_ac3_sw */
/* SPD32SEL for 037 & 039, 0x20 */
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
/* set 176K sample rate to fix 033 HW bug */
if (cm->chip_version == 33) {
if (rate >= 48000) {
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
} else {
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
}
}
}
} else {
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
if (cm->can_ac3_hw) {
/* chip model >= 37 */
if (snd_pcm_format_width(subs->runtime->format) > 16) {
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
} else {
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
}
} else {
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
}
}
}
static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
{
int rate, err;
rate = subs->runtime->rate;
if (up && do_ac3)
if ((err = save_mixer_state(cm)) < 0)
return err;
spin_lock_irq(&cm->reg_lock);
cm->spdif_playback_avail = up;
if (up) {
/* they are controlled via "IEC958 Output Switch" */
/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
if (cm->spdif_playback_enabled)
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
setup_ac3(cm, subs, do_ac3, rate);
if (rate == 48000 || rate == 96000)
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
else
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
if (rate > 48000)
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
else
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
} else {
/* they are controlled via "IEC958 Output Switch" */
/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
setup_ac3(cm, subs, 0, 0);
}
spin_unlock_irq(&cm->reg_lock);
return 0;
}
/*
* preparation
*/
/* playback - enable spdif only on the certain condition */
static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
int rate = substream->runtime->rate;
int err, do_spdif, do_ac3 = 0;
do_spdif = (rate >= 44100 && rate <= 96000 &&
substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
substream->runtime->channels == 2);
if (do_spdif && cm->can_ac3_hw)
do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
return err;
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}
/* playback (via device #2) - enable spdif always */
static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
int err, do_ac3;
if (cm->can_ac3_hw)
do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
else
do_ac3 = 1; /* doesn't matter */
if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
return err;
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}
/*
* Apparently, the samples last played on channel A stay in some buffer, even
* after the channel is reset, and get added to the data for the rear DACs when
* playing a multichannel stream on channel B. This is likely to generate
* wraparounds and thus distortions.
* To avoid this, we play at least one zero sample after the actual stream has
* stopped.
*/
static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
{
struct snd_pcm_runtime *runtime = rec->substream->runtime;
unsigned int reg, val;
if (rec->needs_silencing && runtime && runtime->dma_area) {
/* set up a small silence buffer */
memset(runtime->dma_area, 0, PAGE_SIZE);
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
snd_cmipci_write(cm, reg, val);
/* configure for 16 bits, 2 channels, 8 kHz */
if (runtime->channels > 2)
set_dac_channels(cm, rec, 2);
spin_lock_irq(&cm->reg_lock);
val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
val &= ~(CM_ASFC_MASK << (rec->ch * 3));
val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
if (cm->can_96k)
val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
/* start stream (we don't need interrupts) */
cm->ctrl |= CM_CHEN0 << rec->ch;
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
spin_unlock_irq(&cm->reg_lock);
msleep(1);
/* stop and reset stream */
spin_lock_irq(&cm->reg_lock);
cm->ctrl &= ~(CM_CHEN0 << rec->ch);
val = CM_RST_CH0 << rec->ch;
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
spin_unlock_irq(&cm->reg_lock);
rec->needs_silencing = 0;
}
}
static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
setup_spdif_playback(cm, substream, 0, 0);
restore_mixer_state(cm);
snd_cmipci_silence_hack(cm, &cm->channel[0]);
return snd_cmipci_hw_free(substream);
}
static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
snd_cmipci_silence_hack(cm, &cm->channel[1]);
return snd_cmipci_hw_free(substream);
}
/* capture */
static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}
/* capture with spdif (via device #2) */
static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
spin_lock_irq(&cm->reg_lock);
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
if (cm->can_96k) {
if (substream->runtime->rate > 48000)
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
else
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
}
if (snd_pcm_format_width(substream->runtime->format) > 16)
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
else
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
spin_unlock_irq(&cm->reg_lock);
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}
static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
{
struct cmipci *cm = snd_pcm_substream_chip(subs);
spin_lock_irq(&cm->reg_lock);
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
spin_unlock_irq(&cm->reg_lock);
return snd_cmipci_hw_free(subs);
}
/*
* interrupt handler
*/
static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
{
struct cmipci *cm = dev_id;
unsigned int status, mask = 0;
/* fastpath out, to ease interrupt sharing */
status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
if (!(status & CM_INTR))
return IRQ_NONE;
/* acknowledge interrupt */
spin_lock(&cm->reg_lock);
if (status & CM_CHINT0)
mask |= CM_CH0_INT_EN;
if (status & CM_CHINT1)
mask |= CM_CH1_INT_EN;
snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
spin_unlock(&cm->reg_lock);
if (cm->rmidi && (status & CM_UARTINT))
snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
if (cm->pcm) {
if ((status & CM_CHINT0) && cm->channel[0].running)
snd_pcm_period_elapsed(cm->channel[0].substream);
if ((status & CM_CHINT1) && cm->channel[1].running)
snd_pcm_period_elapsed(cm->channel[1].substream);
}
return IRQ_HANDLED;
}
/*
* h/w infos
*/
/* playback on channel A */
static struct snd_pcm_hardware snd_cmipci_playback =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5512,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/* capture on channel B */
static struct snd_pcm_hardware snd_cmipci_capture =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5512,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/* playback on channel B - stereo 16bit only? */
static struct snd_pcm_hardware snd_cmipci_playback2 =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
.rate_min = 5512,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/* spdif playback on channel A */
static struct snd_pcm_hardware snd_cmipci_playback_spdif =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/* spdif playback on channel A (32bit, IEC958 subframes) */
static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
/* spdif capture on channel B */
static struct snd_pcm_hardware snd_cmipci_capture_spdif =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0,
};
static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
32000, 44100, 48000, 88200, 96000, 128000 };
static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
.count = ARRAY_SIZE(rate_constraints),
.list = rate_constraints,
.mask = 0,
};
/*
* check device open/close
*/
static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
{
int ch = mode & CM_OPEN_CH_MASK;
/* FIXME: a file should wait until the device becomes free
* when it's opened on blocking mode. however, since the current
* pcm framework doesn't pass file pointer before actually opened,
* we can't know whether blocking mode or not in open callback..
*/
mutex_lock(&cm->open_mutex);
if (cm->opened[ch]) {
mutex_unlock(&cm->open_mutex);
return -EBUSY;
}
cm->opened[ch] = mode;
cm->channel[ch].substream = subs;
if (! (mode & CM_OPEN_DAC)) {
/* disable dual DAC mode */
cm->channel[ch].is_dac = 0;
spin_lock_irq(&cm->reg_lock);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
spin_unlock_irq(&cm->reg_lock);
}
mutex_unlock(&cm->open_mutex);
return 0;
}
static void close_device_check(struct cmipci *cm, int mode)
{
int ch = mode & CM_OPEN_CH_MASK;
mutex_lock(&cm->open_mutex);
if (cm->opened[ch] == mode) {
if (cm->channel[ch].substream) {
snd_cmipci_ch_reset(cm, ch);
cm->channel[ch].running = 0;
cm->channel[ch].substream = NULL;
}
cm->opened[ch] = 0;
if (! cm->channel[ch].is_dac) {
/* enable dual DAC mode again */
cm->channel[ch].is_dac = 1;
spin_lock_irq(&cm->reg_lock);
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
spin_unlock_irq(&cm->reg_lock);
}
}
mutex_unlock(&cm->open_mutex);
}
/*
*/
static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
return err;
runtime->hw = snd_cmipci_playback;
if (cm->chip_version == 68) {
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
} else if (cm->chip_version == 55) {
err = snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
if (err < 0)
return err;
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
runtime->hw.rate_max = 128000;
}
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
cm->dig_pcm_status = cm->dig_status;
return 0;
}
static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
return err;
runtime->hw = snd_cmipci_capture;
if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
runtime->hw.rate_min = 41000;
runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
} else if (cm->chip_version == 55) {
err = snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
if (err < 0)
return err;
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
runtime->hw.rate_max = 128000;
}
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
return 0;
}
static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
return err;
runtime->hw = snd_cmipci_playback2;
mutex_lock(&cm->open_mutex);
if (! cm->opened[CM_CH_PLAY]) {
if (cm->can_multi_ch) {
runtime->hw.channels_max = cm->max_channels;
if (cm->max_channels == 4)
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
else if (cm->max_channels == 6)
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
else if (cm->max_channels == 8)
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
}
}
mutex_unlock(&cm->open_mutex);
if (cm->chip_version == 68) {
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
} else if (cm->chip_version == 55) {
err = snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
if (err < 0)
return err;
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
runtime->hw.rate_max = 128000;
}
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
return 0;
}
static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
return err;
if (cm->can_ac3_hw) {
runtime->hw = snd_cmipci_playback_spdif;
if (cm->chip_version >= 37) {
runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
}
if (cm->can_96k) {
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
}
} else {
runtime->hw = snd_cmipci_playback_iec958_subframe;
}
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
cm->dig_pcm_status = cm->dig_status;
return 0;
}
static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
return err;
runtime->hw = snd_cmipci_capture_spdif;
if (cm->can_96k && !(cm->chip_version == 68)) {
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000;
runtime->hw.rate_max = 96000;
}
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
return 0;
}
/*
*/
static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
close_device_check(cm, CM_OPEN_PLAYBACK);
return 0;
}
static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
close_device_check(cm, CM_OPEN_CAPTURE);
return 0;
}
static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
close_device_check(cm, CM_OPEN_PLAYBACK2);
close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
return 0;
}
static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
return 0;
}
static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
{
struct cmipci *cm = snd_pcm_substream_chip(substream);
close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
return 0;
}
/*
*/
static struct snd_pcm_ops snd_cmipci_playback_ops = {
.open = snd_cmipci_playback_open,
.close = snd_cmipci_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cmipci_hw_params,
.hw_free = snd_cmipci_playback_hw_free,
.prepare = snd_cmipci_playback_prepare,
.trigger = snd_cmipci_playback_trigger,
.pointer = snd_cmipci_playback_pointer,
};
static struct snd_pcm_ops snd_cmipci_capture_ops = {
.open = snd_cmipci_capture_open,
.close = snd_cmipci_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cmipci_hw_params,
.hw_free = snd_cmipci_hw_free,
.prepare = snd_cmipci_capture_prepare,
.trigger = snd_cmipci_capture_trigger,
.pointer = snd_cmipci_capture_pointer,
};
static struct snd_pcm_ops snd_cmipci_playback2_ops = {
.open = snd_cmipci_playback2_open,
.close = snd_cmipci_playback2_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cmipci_playback2_hw_params,
.hw_free = snd_cmipci_playback2_hw_free,
.prepare = snd_cmipci_capture_prepare, /* channel B */
.trigger = snd_cmipci_capture_trigger, /* channel B */
.pointer = snd_cmipci_capture_pointer, /* channel B */
};
static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
.open = snd_cmipci_playback_spdif_open,
.close = snd_cmipci_playback_spdif_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cmipci_hw_params,
.hw_free = snd_cmipci_playback_hw_free,
.prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
.trigger = snd_cmipci_playback_trigger,
.pointer = snd_cmipci_playback_pointer,
};
static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
.open = snd_cmipci_capture_spdif_open,
.close = snd_cmipci_capture_spdif_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_cmipci_hw_params,
.hw_free = snd_cmipci_capture_spdif_hw_free,
.prepare = snd_cmipci_capture_spdif_prepare,
.trigger = snd_cmipci_capture_trigger,
.pointer = snd_cmipci_capture_pointer,
};
/*
*/
static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
pcm->private_data = cm;
pcm->info_flags = 0;
strcpy(pcm->name, "C-Media PCI DAC/ADC");
cm->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
return 0;
}
static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
pcm->private_data = cm;
pcm->info_flags = 0;
strcpy(pcm->name, "C-Media PCI 2nd DAC");
cm->pcm2 = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
return 0;
}
static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
{
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
pcm->private_data = cm;
pcm->info_flags = 0;
strcpy(pcm->name, "C-Media PCI IEC958");
cm->pcm_spdif = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
snd_pcm_alt_chmaps, cm->max_channels, 0,
NULL);
if (err < 0)
return err;
return 0;
}
/*
* mixer interface:
* - CM8338/8738 has a compatible mixer interface with SB16, but
* lack of some elements like tone control, i/o gain and AGC.
* - Access to native registers:
* - A 3D switch
* - Output mute switches
*/
static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
{
outb(idx, s->iobase + CM_REG_SB16_ADDR);
outb(data, s->iobase + CM_REG_SB16_DATA);
}
static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
{
unsigned char v;
outb(idx, s->iobase + CM_REG_SB16_ADDR);
v = inb(s->iobase + CM_REG_SB16_DATA);
return v;
}
/*
* general mixer element
*/
struct cmipci_sb_reg {
unsigned int left_reg, right_reg;
unsigned int left_shift, right_shift;
unsigned int mask;
unsigned int invert: 1;
unsigned int stereo: 1;
};
#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_cmipci_info_volume, \
.get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
.private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
}
#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
{
r->left_reg = val & 0xff;
r->right_reg = (val >> 8) & 0xff;
r->left_shift = (val >> 16) & 0x07;
r->right_shift = (val >> 19) & 0x07;
r->invert = (val >> 22) & 1;
r->stereo = (val >> 23) & 1;
r->mask = (val >> 24) & 0xff;
}
static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct cmipci_sb_reg reg;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = reg.stereo + 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = reg.mask;
return 0;
}
static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
struct cmipci_sb_reg reg;
int val;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
spin_lock_irq(&cm->reg_lock);
val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
if (reg.invert)
val = reg.mask - val;
ucontrol->value.integer.value[0] = val;
if (reg.stereo) {
val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
if (reg.invert)
val = reg.mask - val;
ucontrol->value.integer.value[1] = val;
}
spin_unlock_irq(&cm->reg_lock);
return 0;
}
static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
struct cmipci_sb_reg reg;
int change;
int left, right, oleft, oright;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
left = ucontrol->value.integer.value[0] & reg.mask;
if (reg.invert)
left = reg.mask - left;
left <<= reg.left_shift;
if (reg.stereo) {
right = ucontrol->value.integer.value[1] & reg.mask;
if (reg.invert)
right = reg.mask - right;
right <<= reg.right_shift;
} else
right = 0;
spin_lock_irq(&cm->reg_lock);
oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
left |= oleft & ~(reg.mask << reg.left_shift);
change = left != oleft;
if (reg.stereo) {
if (reg.left_reg != reg.right_reg) {
snd_cmipci_mixer_write(cm, reg.left_reg, left);
oright = snd_cmipci_mixer_read(cm, reg.right_reg);
} else
oright = left;
right |= oright & ~(reg.mask << reg.right_shift);
change |= right != oright;
snd_cmipci_mixer_write(cm, reg.right_reg, right);
} else
snd_cmipci_mixer_write(cm, reg.left_reg, left);
spin_unlock_irq(&cm->reg_lock);
return change;
}
/*
* input route (left,right) -> (left,right)
*/
#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_cmipci_info_input_sw, \
.get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
.private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
}
static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 4;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
struct cmipci_sb_reg reg;
int val1, val2;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
spin_lock_irq(&cm->reg_lock);
val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
spin_unlock_irq(&cm->reg_lock);
ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
return 0;
}
static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
struct cmipci_sb_reg reg;
int change;
int val1, val2, oval1, oval2;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
spin_lock_irq(&cm->reg_lock);
oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
change = val1 != oval1 || val2 != oval2;
snd_cmipci_mixer_write(cm, reg.left_reg, val1);
snd_cmipci_mixer_write(cm, reg.right_reg, val2);
spin_unlock_irq(&cm->reg_lock);
return change;
}
/*
* native mixer switches/volumes
*/
#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_cmipci_info_native_mixer, \
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
.private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
}
#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_cmipci_info_native_mixer, \
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
.private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
}
#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_cmipci_info_native_mixer, \
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
.private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
}
#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_cmipci_info_native_mixer, \
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
.private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
}
static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct cmipci_sb_reg reg;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = reg.stereo + 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = reg.mask;
return 0;
}
static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
struct cmipci_sb_reg reg;
unsigned char oreg, val;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
spin_lock_irq(&cm->reg_lock);
oreg = inb(cm->iobase + reg.left_reg);
val = (oreg >> reg.left_shift) & reg.mask;
if (reg.invert)
val = reg.mask - val;
ucontrol->value.integer.value[0] = val;
if (reg.stereo) {
val = (oreg >> reg.right_shift) & reg.mask;
if (reg.invert)
val = reg.mask - val;
ucontrol->value.integer.value[1] = val;
}
spin_unlock_irq(&cm->reg_lock);
return 0;
}
static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
struct cmipci_sb_reg reg;
unsigned char oreg, nreg, val;
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
spin_lock_irq(&cm->reg_lock);
oreg = inb(cm->iobase + reg.left_reg);
val = ucontrol->value.integer.value[0] & reg.mask;
if (reg.invert)
val = reg.mask - val;
nreg = oreg & ~(reg.mask << reg.left_shift);
nreg |= (val << reg.left_shift);
if (reg.stereo) {
val = ucontrol->value.integer.value[1] & reg.mask;
if (reg.invert)
val = reg.mask - val;
nreg &= ~(reg.mask << reg.right_shift);
nreg |= (val << reg.right_shift);
}
outb(nreg, cm->iobase + reg.left_reg);
spin_unlock_irq(&cm->reg_lock);
return (nreg != oreg);
}
/*
* special case - check mixer sensitivity
*/
static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
}
static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
if (cm->mixer_insensitive) {
/* ignored */
return 0;
}
return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
}
static struct snd_kcontrol_new snd_cmipci_mixers[] = {
CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
{ /* switch with sensitivity */
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Switch",
.info = snd_cmipci_info_native_mixer,
.get = snd_cmipci_get_native_mixer_sensitive,
.put = snd_cmipci_put_native_mixer_sensitive,
.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
},
CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
};
/*
* other switches
*/
struct cmipci_switch_args {
int reg; /* register index */
unsigned int mask; /* mask bits */
unsigned int mask_on; /* mask bits to turn on */
unsigned int is_byte: 1; /* byte access? */
unsigned int ac3_sensitive: 1; /* access forbidden during
* non-audio operation?
*/
};
#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
struct cmipci_switch_args *args)
{
unsigned int val;
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&cm->reg_lock);
if (args->ac3_sensitive && cm->mixer_insensitive) {
ucontrol->value.integer.value[0] = 0;
spin_unlock_irq(&cm->reg_lock);
return 0;
}
if (args->is_byte)
val = inb(cm->iobase + args->reg);
else
val = snd_cmipci_read(cm, args->reg);
ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
spin_unlock_irq(&cm->reg_lock);
return 0;
}
static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci_switch_args *args;
args = (struct cmipci_switch_args *)kcontrol->private_value;
if (snd_BUG_ON(!args))
return -EINVAL;
return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
}
static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
struct cmipci_switch_args *args)
{
unsigned int val;
int change;
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&cm->reg_lock);
if (args->ac3_sensitive && cm->mixer_insensitive) {
/* ignored */
spin_unlock_irq(&cm->reg_lock);
return 0;
}
if (args->is_byte)
val = inb(cm->iobase + args->reg);
else
val = snd_cmipci_read(cm, args->reg);
change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
args->mask_on : (args->mask & ~args->mask_on));
if (change) {
val &= ~args->mask;
if (ucontrol->value.integer.value[0])
val |= args->mask_on;
else
val |= (args->mask & ~args->mask_on);
if (args->is_byte)
outb((unsigned char)val, cm->iobase + args->reg);
else
snd_cmipci_write(cm, args->reg, val);
}
spin_unlock_irq(&cm->reg_lock);
return change;
}
static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci_switch_args *args;
args = (struct cmipci_switch_args *)kcontrol->private_value;
if (snd_BUG_ON(!args))
return -EINVAL;
return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
}
#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
.reg = xreg, \
.mask = xmask, \
.mask_on = xmask_on, \
.is_byte = xis_byte, \
.ac3_sensitive = xac3, \
}
#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
#if 0 /* these will be controlled in pcm device */
DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
#if CM_CH_PLAY == 1
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
#else
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
#define DEFINE_SWITCH(sname, stype, sarg) \
{ .name = sname, \
.iface = stype, \
.info = snd_cmipci_uswitch_info, \
.get = snd_cmipci_uswitch_get, \
.put = snd_cmipci_uswitch_put, \
.private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
}
#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
/*
* callbacks for spdif output switch
* needs toggle two registers..
*/
static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int changed;
changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
return changed;
}
static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
int changed;
changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
if (changed) {
if (ucontrol->value.integer.value[0]) {
if (chip->spdif_playback_avail)
snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
} else {
if (chip->spdif_playback_avail)
snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
}
}
chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
return changed;
}
static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
static const char *const texts[3] = {
"Line-In", "Rear Output", "Bass Output"
};
return snd_ctl_enum_info(uinfo, 1,
cm->chip_version >= 39 ? 3 : 2, texts);
}
static inline unsigned int get_line_in_mode(struct cmipci *cm)
{
unsigned int val;
if (cm->chip_version >= 39) {
val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
if (val & (CM_CENTR2LIN | CM_BASE2LIN))
return 2;
}
val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
if (val & CM_REAR2LIN)
return 1;
return 0;
}
static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&cm->reg_lock);
ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
spin_unlock_irq(&cm->reg_lock);
return 0;
}
static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
int change;
spin_lock_irq(&cm->reg_lock);
if (ucontrol->value.enumerated.item[0] == 2)
change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
else
change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
if (ucontrol->value.enumerated.item[0] == 1)
change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
else
change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
spin_unlock_irq(&cm->reg_lock);
return change;
}
static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
return snd_ctl_enum_info(uinfo, 1, 2, texts);
}
static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
/* same bit as spdi_phase */
spin_lock_irq(&cm->reg_lock);
ucontrol->value.enumerated.item[0] =
(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
spin_unlock_irq(&cm->reg_lock);
return 0;
}
static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
int change;
spin_lock_irq(&cm->reg_lock);
if (ucontrol->value.enumerated.item[0])
change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
else
change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
spin_unlock_irq(&cm->reg_lock);
return change;
}
/* both for CM8338/8738 */
static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
{
.name = "Line-In Mode",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.info = snd_cmipci_line_in_mode_info,
.get = snd_cmipci_line_in_mode_get,
.put = snd_cmipci_line_in_mode_put,
},
};
/* for non-multichannel chips */
static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
/* only for CM8738 */
static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
#if 0 /* controlled in pcm device */
DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
#endif
// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
{ .name = "IEC958 Output Switch",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.info = snd_cmipci_uswitch_info,
.get = snd_cmipci_spdout_enable_get,
.put = snd_cmipci_spdout_enable_put,
},
DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
};
/* only for model 033/037 */
static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
};
/* only for model 039 or later */
static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
{
.name = "Mic-In Mode",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.info = snd_cmipci_mic_in_mode_info,
.get = snd_cmipci_mic_in_mode_get,
.put = snd_cmipci_mic_in_mode_put,
}
};
/* card control switches */
static struct snd_kcontrol_new snd_cmipci_modem_switch =
DEFINE_CARD_SWITCH("Modem", modem);
static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
{
struct snd_card *card;
struct snd_kcontrol_new *sw;
struct snd_kcontrol *kctl;
unsigned int idx;
int err;
if (snd_BUG_ON(!cm || !cm->card))
return -EINVAL;
card = cm->card;
strcpy(card->mixername, "CMedia PCI");
spin_lock_irq(&cm->reg_lock);
snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
spin_unlock_irq(&cm->reg_lock);
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
if (cm->chip_version == 68) { // 8768 has no PCM volume
if (!strcmp(snd_cmipci_mixers[idx].name,
"PCM Playback Volume"))
continue;
}
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
return err;
}
/* mixer switches */
sw = snd_cmipci_mixer_switches;
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
if (err < 0)
return err;
}
if (! cm->can_multi_ch) {
err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
if (err < 0)
return err;
}
if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
sw = snd_cmipci_8738_mixer_switches;
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
if (err < 0)
return err;
}
if (cm->can_ac3_hw) {
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
return err;
kctl->id.device = pcm_spdif_device;
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
return err;
kctl->id.device = pcm_spdif_device;
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
return err;
kctl->id.device = pcm_spdif_device;
}
if (cm->chip_version <= 37) {
sw = snd_cmipci_old_mixer_switches;
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
if (err < 0)
return err;
}
}
}
if (cm->chip_version >= 39) {
sw = snd_cmipci_extra_mixer_switches;
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
if (err < 0)
return err;
}
}
/* card switches */
/*
* newer chips don't have the register bits to force modem link
* detection; the bit that was FLINKON now mutes CH1
*/
if (cm->chip_version < 39) {
err = snd_ctl_add(cm->card,
snd_ctl_new1(&snd_cmipci_modem_switch, cm));
if (err < 0)
return err;
}
for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
struct snd_ctl_elem_id elem_id;
struct snd_kcontrol *ctl;
memset(&elem_id, 0, sizeof(elem_id));
elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
strcpy(elem_id.name, cm_saved_mixer[idx].name);
ctl = snd_ctl_find_id(cm->card, &elem_id);
if (ctl)
cm->mixer_res_ctl[idx] = ctl;
}
return 0;
}
/*
* proc interface
*/
#ifdef CONFIG_PROC_FS
static void snd_cmipci_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct cmipci *cm = entry->private_data;
int i, v;
snd_iprintf(buffer, "%s\n", cm->card->longname);
for (i = 0; i < 0x94; i++) {
if (i == 0x28)
i = 0x90;
v = inb(cm->iobase + i);
if (i % 4 == 0)
snd_iprintf(buffer, "\n%02x:", i);
snd_iprintf(buffer, " %02x", v);
}
snd_iprintf(buffer, "\n");
}
static void snd_cmipci_proc_init(struct cmipci *cm)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(cm->card, "cmipci", &entry))
snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
}
#else /* !CONFIG_PROC_FS */
static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
#endif
static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
{0,},
};
/*
* check chip version and capabilities
* driver name is modified according to the chip model
*/
static void query_chip(struct cmipci *cm)
{
unsigned int detect;
/* check reg 0Ch, bit 24-31 */
detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
if (! detect) {
/* check reg 08h, bit 24-28 */
detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
switch (detect) {
case 0:
cm->chip_version = 33;
if (cm->do_soft_ac3)
cm->can_ac3_sw = 1;
else
cm->can_ac3_hw = 1;
break;
case CM_CHIP_037:
cm->chip_version = 37;
cm->can_ac3_hw = 1;
break;
default:
cm->chip_version = 39;
cm->can_ac3_hw = 1;
break;
}
cm->max_channels = 2;
} else {
if (detect & CM_CHIP_039) {
cm->chip_version = 39;
if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
cm->max_channels = 6;
else
cm->max_channels = 4;
} else if (detect & CM_CHIP_8768) {
cm->chip_version = 68;
cm->max_channels = 8;
cm->can_96k = 1;
} else {
cm->chip_version = 55;
cm->max_channels = 6;
cm->can_96k = 1;
}
cm->can_ac3_hw = 1;
cm->can_multi_ch = 1;
}
}
#ifdef SUPPORT_JOYSTICK
static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
{
static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
struct gameport *gp;
struct resource *r = NULL;
int i, io_port = 0;
if (joystick_port[dev] == 0)
return -ENODEV;
if (joystick_port[dev] == 1) { /* auto-detect */
for (i = 0; ports[i]; i++) {
io_port = ports[i];
r = request_region(io_port, 1, "CMIPCI gameport");
if (r)
break;
}
} else {
io_port = joystick_port[dev];
r = request_region(io_port, 1, "CMIPCI gameport");
}
if (!r) {
printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
return -EBUSY;
}
cm->gameport = gp = gameport_allocate_port();
if (!gp) {
printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
release_and_free_resource(r);
return -ENOMEM;
}
gameport_set_name(gp, "C-Media Gameport");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
gameport_set_dev_parent(gp, &cm->pci->dev);
gp->io = io_port;
gameport_set_port_data(gp, r);
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
gameport_register_port(cm->gameport);
return 0;
}
static void snd_cmipci_free_gameport(struct cmipci *cm)
{
if (cm->gameport) {
struct resource *r = gameport_get_port_data(cm->gameport);
gameport_unregister_port(cm->gameport);
cm->gameport = NULL;
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
release_and_free_resource(r);
}
}
#else
static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
#endif
static int snd_cmipci_free(struct cmipci *cm)
{
if (cm->irq >= 0) {
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
/* reset mixer */
snd_cmipci_mixer_write(cm, 0, 0);
free_irq(cm->irq, cm);
}
snd_cmipci_free_gameport(cm);
pci_release_regions(cm->pci);
pci_disable_device(cm->pci);
kfree(cm);
return 0;
}
static int snd_cmipci_dev_free(struct snd_device *device)
{
struct cmipci *cm = device->device_data;
return snd_cmipci_free(cm);
}
static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
{
long iosynth;
unsigned int val;
struct snd_opl3 *opl3;
int err;
if (!fm_port)
goto disable_fm;
if (cm->chip_version >= 39) {
/* first try FM regs in PCI port range */
iosynth = cm->iobase + CM_REG_FM_PCI;
err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
OPL3_HW_OPL3, 1, &opl3);
} else {
err = -EIO;
}
if (err < 0) {
/* then try legacy ports */
val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
iosynth = fm_port;
switch (iosynth) {
case 0x3E8: val |= CM_FMSEL_3E8; break;
case 0x3E0: val |= CM_FMSEL_3E0; break;
case 0x3C8: val |= CM_FMSEL_3C8; break;
case 0x388: val |= CM_FMSEL_388; break;
default:
goto disable_fm;
}
snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
/* enable FM */
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
OPL3_HW_OPL3, 0, &opl3) < 0) {
printk(KERN_ERR "cmipci: no OPL device at %#lx, "
"skipping...\n", iosynth);
goto disable_fm;
}
}
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
return err;
}
return 0;
disable_fm:
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
return 0;
}
static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
int dev, struct cmipci **rcmipci)
{
struct cmipci *cm;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_cmipci_dev_free,
};
unsigned int val;
long iomidi = 0;
int integrated_midi = 0;
char modelstr[16];
int pcm_index, pcm_spdif_index;
static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
{ },
};
*rcmipci = NULL;
if ((err = pci_enable_device(pci)) < 0)
return err;
cm = kzalloc(sizeof(*cm), GFP_KERNEL);
if (cm == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
spin_lock_init(&cm->reg_lock);
mutex_init(&cm->open_mutex);
cm->device = pci->device;
cm->card = card;
cm->pci = pci;
cm->irq = -1;
cm->channel[0].ch = 0;
cm->channel[1].ch = 1;
cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
if ((err = pci_request_regions(pci, card->driver)) < 0) {
kfree(cm);
pci_disable_device(pci);
return err;
}
cm->iobase = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_cmipci_interrupt,
IRQF_SHARED, KBUILD_MODNAME, cm)) {
snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
snd_cmipci_free(cm);
return -EBUSY;
}
cm->irq = pci->irq;
pci_set_master(cm->pci);
/*
* check chip version, max channels and capabilities
*/
cm->chip_version = 0;
cm->max_channels = 2;
cm->do_soft_ac3 = soft_ac3[dev];
if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
query_chip(cm);
/* added -MCx suffix for chip supporting multi-channels */
if (cm->can_multi_ch)
sprintf(cm->card->driver + strlen(cm->card->driver),
"-MC%d", cm->max_channels);
else if (cm->can_ac3_sw)
strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
#if CM_CH_PLAY == 1
cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
#else
cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
#endif
/* initialize codec registers */
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
#if CM_CH_PLAY == 1
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#else
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#endif
if (cm->chip_version) {
snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
}
/* Set Bus Master Request */
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
switch (pci->device) {
case PCI_DEVICE_ID_CMEDIA_CM8738:
case PCI_DEVICE_ID_CMEDIA_CM8738B:
if (!pci_dev_present(intel_82437vx))
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
break;
default:
break;
}
if (cm->chip_version < 68) {
val = pci->device < 0x110 ? 8338 : 8738;
} else {
switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
case 0:
val = 8769;
break;
case 2:
val = 8762;
break;
default:
switch ((pci->subsystem_vendor << 16) |
pci->subsystem_device) {
case 0x13f69761:
case 0x584d3741:
case 0x584d3751:
case 0x584d3761:
case 0x584d3771:
case 0x72848384:
val = 8770;
break;
default:
val = 8768;
break;
}
}
}
sprintf(card->shortname, "C-Media CMI%d", val);
if (cm->chip_version < 68)
sprintf(modelstr, " (model %d)", cm->chip_version);
else
modelstr[0] = '\0';
sprintf(card->longname, "%s%s at %#lx, irq %i",
card->shortname, modelstr, cm->iobase, cm->irq);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
snd_cmipci_free(cm);
return err;
}
if (cm->chip_version >= 39) {
val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
if (val != 0x00 && val != 0xff) {
iomidi = cm->iobase + CM_REG_MPU_PCI;
integrated_midi = 1;
}
}
if (!integrated_midi) {
val = 0;
iomidi = mpu_port[dev];
switch (iomidi) {
case 0x320: val = CM_VMPU_320; break;
case 0x310: val = CM_VMPU_310; break;
case 0x300: val = CM_VMPU_300; break;
case 0x330: val = CM_VMPU_330; break;
default:
iomidi = 0; break;
}
if (iomidi > 0) {
snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
/* enable UART */
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
if (inb(iomidi + 1) == 0xff) {
snd_printk(KERN_ERR "cannot enable MPU-401 port"
" at %#lx\n", iomidi);
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
CM_UART_EN);
iomidi = 0;
}
}
}
if (cm->chip_version < 68) {
err = snd_cmipci_create_fm(cm, fm_port[dev]);
if (err < 0)
return err;
}
/* reset mixer */
snd_cmipci_mixer_write(cm, 0, 0);
snd_cmipci_proc_init(cm);
/* create pcm devices */
pcm_index = pcm_spdif_index = 0;
if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
return err;
pcm_index++;
if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
return err;
pcm_index++;
if (cm->can_ac3_hw || cm->can_ac3_sw) {
pcm_spdif_index = pcm_index;
if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
return err;
}
/* create mixer interface & switches */
if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
return err;
if (iomidi > 0) {
if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
iomidi,
(integrated_midi ?
MPU401_INFO_INTEGRATED : 0) |
MPU401_INFO_IRQ_HOOK,
-1, &cm->rmidi)) < 0) {
printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
}
}
#ifdef USE_VAR48KRATE
for (val = 0; val < ARRAY_SIZE(rates); val++)
snd_cmipci_set_pll(cm, rates[val], val);
/*
* (Re-)Enable external switch spdo_48k
*/
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
#endif /* USE_VAR48KRATE */
if (snd_cmipci_create_gameport(cm, dev) < 0)
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
snd_card_set_dev(card, &pci->dev);
*rcmipci = cm;
return 0;
}
/*
*/
MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
static int snd_cmipci_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct snd_card *card;
struct cmipci *cm;
int err;
if (dev >= SNDRV_CARDS)
return -ENODEV;
if (! enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
if (err < 0)
return err;
switch (pci->device) {
case PCI_DEVICE_ID_CMEDIA_CM8738:
case PCI_DEVICE_ID_CMEDIA_CM8738B:
strcpy(card->driver, "CMI8738");
break;
case PCI_DEVICE_ID_CMEDIA_CM8338A:
case PCI_DEVICE_ID_CMEDIA_CM8338B:
strcpy(card->driver, "CMI8338");
break;
default:
strcpy(card->driver, "CMIPCI");
break;
}
if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
snd_card_free(card);
return err;
}
card->private_data = cm;
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void snd_cmipci_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
#ifdef CONFIG_PM_SLEEP
/*
* power management
*/
static unsigned char saved_regs[] = {
CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
};
static unsigned char saved_mixers[] = {
SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
};
static int snd_cmipci_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct cmipci *cm = card->private_data;
int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(cm->pcm);
snd_pcm_suspend_all(cm->pcm2);
snd_pcm_suspend_all(cm->pcm_spdif);
/* save registers */
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
/* disable ints */
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
pci_disable_device(pci);
pci_save_state(pci);
pci_set_power_state(pci, PCI_D3hot);
return 0;
}
static int snd_cmipci_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct cmipci *cm = card->private_data;
int i;
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
if (pci_enable_device(pci) < 0) {
printk(KERN_ERR "cmipci: pci_enable_device failed, "
"disabling device\n");
snd_card_disconnect(card);
return -EIO;
}
pci_set_master(pci);
/* reset / initialize to a sane state */
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
snd_cmipci_mixer_write(cm, 0, 0);
/* restore registers */
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
#define SND_CMIPCI_PM_OPS &snd_cmipci_pm
#else
#define SND_CMIPCI_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static struct pci_driver cmipci_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_cmipci_ids,
.probe = snd_cmipci_probe,
.remove = snd_cmipci_remove,
.driver = {
.pm = SND_CMIPCI_PM_OPS,
},
};
module_pci_driver(cmipci_driver);