blob: abd62bebc46d0e58d5bc78d8f4500ddcbc6098f1 [file] [log] [blame]
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/export.h>
#include <linux/i2c.h>
#include <linux/notifier.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/timekeeping.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/display/drm_dp_tunnel.h>
#include <drm/display/drm_dsc_helper.h>
#include <drm/display/drm_hdmi_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
#include <drm/drm_probe_helper.h>
#include "g4x_dp.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
#include "intel_atomic.h"
#include "intel_audio.h"
#include "intel_backlight.h"
#include "intel_combo_phy_regs.h"
#include "intel_connector.h"
#include "intel_crtc.h"
#include "intel_cx0_phy.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display_driver.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_aux.h"
#include "intel_dp_hdcp.h"
#include "intel_dp_link_training.h"
#include "intel_dp_mst.h"
#include "intel_dp_tunnel.h"
#include "intel_dpio_phy.h"
#include "intel_dpll.h"
#include "intel_drrs.h"
#include "intel_fifo_underrun.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_hotplug_irq.h"
#include "intel_lspcon.h"
#include "intel_lvds.h"
#include "intel_panel.h"
#include "intel_pch_display.h"
#include "intel_pps.h"
#include "intel_psr.h"
#include "intel_tc.h"
#include "intel_vdsc.h"
#include "intel_vrr.h"
#include "intel_crtc_state_dump.h"
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE 2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
/* DP DSC FEC Overhead factor in ppm = 1/(0.972261) = 1.028530 */
#define DP_DSC_FEC_OVERHEAD_FACTOR 1028530
/* Compliance test status bits */
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
/* With Single pipe configuration, HW is capable of supporting maximum
* of 4 slices per line.
*/
static const u8 valid_dsc_slicecount[] = {1, 2, 4};
/**
* intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*
* This function is not safe to use prior to encoder type being set.
*/
bool intel_dp_is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
return dig_port->base.type == INTEL_OUTPUT_EDP;
}
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
/* Is link rate UHBR and thus 128b/132b? */
bool intel_dp_is_uhbr(const struct intel_crtc_state *crtc_state)
{
return drm_dp_is_uhbr_rate(crtc_state->port_clock);
}
/**
* intel_dp_link_symbol_size - get the link symbol size for a given link rate
* @rate: link rate in 10kbit/s units
*
* Returns the link symbol size in bits/symbol units depending on the link
* rate -> channel coding.
*/
int intel_dp_link_symbol_size(int rate)
{
return drm_dp_is_uhbr_rate(rate) ? 32 : 10;
}
/**
* intel_dp_link_symbol_clock - convert link rate to link symbol clock
* @rate: link rate in 10kbit/s units
*
* Returns the link symbol clock frequency in kHz units depending on the
* link rate and channel coding.
*/
int intel_dp_link_symbol_clock(int rate)
{
return DIV_ROUND_CLOSEST(rate * 10, intel_dp_link_symbol_size(rate));
}
static int max_dprx_rate(struct intel_dp *intel_dp)
{
if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp))
return drm_dp_tunnel_max_dprx_rate(intel_dp->tunnel);
return drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
}
static int max_dprx_lane_count(struct intel_dp *intel_dp)
{
if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp))
return drm_dp_tunnel_max_dprx_lane_count(intel_dp->tunnel);
return drm_dp_max_lane_count(intel_dp->dpcd);
}
static void intel_dp_set_default_sink_rates(struct intel_dp *intel_dp)
{
intel_dp->sink_rates[0] = 162000;
intel_dp->num_sink_rates = 1;
}
/* update sink rates from dpcd */
static void intel_dp_set_dpcd_sink_rates(struct intel_dp *intel_dp)
{
static const int dp_rates[] = {
162000, 270000, 540000, 810000
};
int i, max_rate;
int max_lttpr_rate;
if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
static const int quirk_rates[] = { 162000, 270000, 324000 };
memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
return;
}
/*
* Sink rates for 8b/10b.
*/
max_rate = max_dprx_rate(intel_dp);
max_lttpr_rate = drm_dp_lttpr_max_link_rate(intel_dp->lttpr_common_caps);
if (max_lttpr_rate)
max_rate = min(max_rate, max_lttpr_rate);
for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
if (dp_rates[i] > max_rate)
break;
intel_dp->sink_rates[i] = dp_rates[i];
}
/*
* Sink rates for 128b/132b. If set, sink should support all 8b/10b
* rates and 10 Gbps.
*/
if (intel_dp->dpcd[DP_MAIN_LINK_CHANNEL_CODING] & DP_CAP_ANSI_128B132B) {
u8 uhbr_rates = 0;
BUILD_BUG_ON(ARRAY_SIZE(intel_dp->sink_rates) < ARRAY_SIZE(dp_rates) + 3);
drm_dp_dpcd_readb(&intel_dp->aux,
DP_128B132B_SUPPORTED_LINK_RATES, &uhbr_rates);
if (drm_dp_lttpr_count(intel_dp->lttpr_common_caps)) {
/* We have a repeater */
if (intel_dp->lttpr_common_caps[0] >= 0x20 &&
intel_dp->lttpr_common_caps[DP_MAIN_LINK_CHANNEL_CODING_PHY_REPEATER -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV] &
DP_PHY_REPEATER_128B132B_SUPPORTED) {
/* Repeater supports 128b/132b, valid UHBR rates */
uhbr_rates &= intel_dp->lttpr_common_caps[DP_PHY_REPEATER_128B132B_RATES -
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
} else {
/* Does not support 128b/132b */
uhbr_rates = 0;
}
}
if (uhbr_rates & DP_UHBR10)
intel_dp->sink_rates[i++] = 1000000;
if (uhbr_rates & DP_UHBR13_5)
intel_dp->sink_rates[i++] = 1350000;
if (uhbr_rates & DP_UHBR20)
intel_dp->sink_rates[i++] = 2000000;
}
intel_dp->num_sink_rates = i;
}
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
intel_dp_set_dpcd_sink_rates(intel_dp);
if (intel_dp->num_sink_rates)
return;
drm_err(&dp_to_i915(intel_dp)->drm,
"[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD with no link rates, using defaults\n",
connector->base.base.id, connector->base.name,
encoder->base.base.id, encoder->base.name);
intel_dp_set_default_sink_rates(intel_dp);
}
static void intel_dp_set_default_max_sink_lane_count(struct intel_dp *intel_dp)
{
intel_dp->max_sink_lane_count = 1;
}
static void intel_dp_set_max_sink_lane_count(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
intel_dp->max_sink_lane_count = max_dprx_lane_count(intel_dp);
switch (intel_dp->max_sink_lane_count) {
case 1:
case 2:
case 4:
return;
}
drm_err(&dp_to_i915(intel_dp)->drm,
"[CONNECTOR:%d:%s][ENCODER:%d:%s] Invalid DPCD max lane count (%d), using default\n",
connector->base.base.id, connector->base.name,
encoder->base.base.id, encoder->base.name,
intel_dp->max_sink_lane_count);
intel_dp_set_default_max_sink_lane_count(intel_dp);
}
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
int i;
/* Limit results by potentially reduced max rate */
for (i = 0; i < len; i++) {
if (rates[len - i - 1] <= max_rate)
return len - i;
}
return 0;
}
/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
int max_rate)
{
return intel_dp_rate_limit_len(intel_dp->common_rates,
intel_dp->num_common_rates, max_rate);
}
static int intel_dp_common_rate(struct intel_dp *intel_dp, int index)
{
if (drm_WARN_ON(&dp_to_i915(intel_dp)->drm,
index < 0 || index >= intel_dp->num_common_rates))
return 162000;
return intel_dp->common_rates[index];
}
/* Theoretical max between source and sink */
int intel_dp_max_common_rate(struct intel_dp *intel_dp)
{
return intel_dp_common_rate(intel_dp, intel_dp->num_common_rates - 1);
}
static int intel_dp_max_source_lane_count(struct intel_digital_port *dig_port)
{
int vbt_max_lanes = intel_bios_dp_max_lane_count(dig_port->base.devdata);
int max_lanes = dig_port->max_lanes;
if (vbt_max_lanes)
max_lanes = min(max_lanes, vbt_max_lanes);
return max_lanes;
}
/* Theoretical max between source and sink */
int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
int source_max = intel_dp_max_source_lane_count(dig_port);
int sink_max = intel_dp->max_sink_lane_count;
int lane_max = intel_tc_port_max_lane_count(dig_port);
int lttpr_max = drm_dp_lttpr_max_lane_count(intel_dp->lttpr_common_caps);
if (lttpr_max)
sink_max = min(sink_max, lttpr_max);
return min3(source_max, sink_max, lane_max);
}
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
switch (intel_dp->max_link_lane_count) {
case 1:
case 2:
case 4:
return intel_dp->max_link_lane_count;
default:
MISSING_CASE(intel_dp->max_link_lane_count);
return 1;
}
}
/*
* The required data bandwidth for a mode with given pixel clock and bpp. This
* is the required net bandwidth independent of the data bandwidth efficiency.
*
* TODO: check if callers of this functions should use
* intel_dp_effective_data_rate() instead.
*/
int
intel_dp_link_required(int pixel_clock, int bpp)
{
/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
return DIV_ROUND_UP(pixel_clock * bpp, 8);
}
/**
* intel_dp_effective_data_rate - Return the pixel data rate accounting for BW allocation overhead
* @pixel_clock: pixel clock in kHz
* @bpp_x16: bits per pixel .4 fixed point format
* @bw_overhead: BW allocation overhead in 1ppm units
*
* Return the effective pixel data rate in kB/sec units taking into account
* the provided SSC, FEC, DSC BW allocation overhead.
*/
int intel_dp_effective_data_rate(int pixel_clock, int bpp_x16,
int bw_overhead)
{
return DIV_ROUND_UP_ULL(mul_u32_u32(pixel_clock * bpp_x16, bw_overhead),
1000000 * 16 * 8);
}
/**
* intel_dp_max_link_data_rate: Calculate the maximum rate for the given link params
* @intel_dp: Intel DP object
* @max_dprx_rate: Maximum data rate of the DPRX
* @max_dprx_lanes: Maximum lane count of the DPRX
*
* Calculate the maximum data rate for the provided link parameters taking into
* account any BW limitations by a DP tunnel attached to @intel_dp.
*
* Returns the maximum data rate in kBps units.
*/
int intel_dp_max_link_data_rate(struct intel_dp *intel_dp,
int max_dprx_rate, int max_dprx_lanes)
{
int max_rate = drm_dp_max_dprx_data_rate(max_dprx_rate, max_dprx_lanes);
if (intel_dp_tunnel_bw_alloc_is_enabled(intel_dp))
max_rate = min(max_rate,
drm_dp_tunnel_available_bw(intel_dp->tunnel));
return max_rate;
}
bool intel_dp_can_bigjoiner(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
return DISPLAY_VER(dev_priv) >= 12 ||
(DISPLAY_VER(dev_priv) == 11 &&
encoder->port != PORT_A);
}
static int dg2_max_source_rate(struct intel_dp *intel_dp)
{
return intel_dp_is_edp(intel_dp) ? 810000 : 1350000;
}
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
if (intel_phy_is_combo(dev_priv, phy) && !intel_dp_is_edp(intel_dp))
return 540000;
return 810000;
}
static int ehl_max_source_rate(struct intel_dp *intel_dp)
{
if (intel_dp_is_edp(intel_dp))
return 540000;
return 810000;
}
static int mtl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
if (intel_is_c10phy(i915, phy))
return 810000;
return 2000000;
}
static int vbt_max_link_rate(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int max_rate;
max_rate = intel_bios_dp_max_link_rate(encoder->devdata);
if (intel_dp_is_edp(intel_dp)) {
struct intel_connector *connector = intel_dp->attached_connector;
int edp_max_rate = connector->panel.vbt.edp.max_link_rate;
if (max_rate && edp_max_rate)
max_rate = min(max_rate, edp_max_rate);
else if (edp_max_rate)
max_rate = edp_max_rate;
}
return max_rate;
}
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
{
/* The values must be in increasing order */
static const int mtl_rates[] = {
162000, 216000, 243000, 270000, 324000, 432000, 540000, 675000,
810000, 1000000, 2000000,
};
static const int icl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000,
1000000, 1350000,
};
static const int bxt_rates[] = {
162000, 216000, 243000, 270000, 324000, 432000, 540000
};
static const int skl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000
};
static const int hsw_rates[] = {
162000, 270000, 540000
};
static const int g4x_rates[] = {
162000, 270000
};
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const int *source_rates;
int size, max_rate = 0, vbt_max_rate;
/* This should only be done once */
drm_WARN_ON(&dev_priv->drm,
intel_dp->source_rates || intel_dp->num_source_rates);
if (DISPLAY_VER(dev_priv) >= 14) {
source_rates = mtl_rates;
size = ARRAY_SIZE(mtl_rates);
max_rate = mtl_max_source_rate(intel_dp);
} else if (DISPLAY_VER(dev_priv) >= 11) {
source_rates = icl_rates;
size = ARRAY_SIZE(icl_rates);
if (IS_DG2(dev_priv))
max_rate = dg2_max_source_rate(intel_dp);
else if (IS_ALDERLAKE_P(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv))
max_rate = 810000;
else if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv))
max_rate = ehl_max_source_rate(intel_dp);
else
max_rate = icl_max_source_rate(intel_dp);
} else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) {
source_rates = bxt_rates;
size = ARRAY_SIZE(bxt_rates);
} else if (DISPLAY_VER(dev_priv) == 9) {
source_rates = skl_rates;
size = ARRAY_SIZE(skl_rates);
} else if ((IS_HASWELL(dev_priv) && !IS_HASWELL_ULX(dev_priv)) ||
IS_BROADWELL(dev_priv)) {
source_rates = hsw_rates;
size = ARRAY_SIZE(hsw_rates);
} else {
source_rates = g4x_rates;
size = ARRAY_SIZE(g4x_rates);
}
vbt_max_rate = vbt_max_link_rate(intel_dp);
if (max_rate && vbt_max_rate)
max_rate = min(max_rate, vbt_max_rate);
else if (vbt_max_rate)
max_rate = vbt_max_rate;
if (max_rate)
size = intel_dp_rate_limit_len(source_rates, size, max_rate);
intel_dp->source_rates = source_rates;
intel_dp->num_source_rates = size;
}
static int intersect_rates(const int *source_rates, int source_len,
const int *sink_rates, int sink_len,
int *common_rates)
{
int i = 0, j = 0, k = 0;
while (i < source_len && j < sink_len) {
if (source_rates[i] == sink_rates[j]) {
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
return k;
common_rates[k] = source_rates[i];
++k;
++i;
++j;
} else if (source_rates[i] < sink_rates[j]) {
++i;
} else {
++j;
}
}
return k;
}
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
int i;
for (i = 0; i < len; i++)
if (rate == rates[i])
return i;
return -1;
}
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
drm_WARN_ON(&i915->drm,
!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
intel_dp->num_source_rates,
intel_dp->sink_rates,
intel_dp->num_sink_rates,
intel_dp->common_rates);
/* Paranoia, there should always be something in common. */
if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
intel_dp->common_rates[0] = 162000;
intel_dp->num_common_rates = 1;
}
}
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
u8 lane_count)
{
/*
* FIXME: we need to synchronize the current link parameters with
* hardware readout. Currently fast link training doesn't work on
* boot-up.
*/
if (link_rate == 0 ||
link_rate > intel_dp->max_link_rate)
return false;
if (lane_count == 0 ||
lane_count > intel_dp_max_lane_count(intel_dp))
return false;
return true;
}
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
int link_rate,
u8 lane_count)
{
/* FIXME figure out what we actually want here */
const struct drm_display_mode *fixed_mode =
intel_panel_preferred_fixed_mode(intel_dp->attached_connector);
int mode_rate, max_rate;
mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
max_rate = intel_dp_max_link_data_rate(intel_dp, link_rate, lane_count);
if (mode_rate > max_rate)
return false;
return true;
}
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
int link_rate, u8 lane_count)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int index;
/*
* TODO: Enable fallback on MST links once MST link compute can handle
* the fallback params.
*/
if (intel_dp->is_mst) {
drm_err(&i915->drm, "Link Training Unsuccessful\n");
return -1;
}
if (intel_dp_is_edp(intel_dp) && !intel_dp->use_max_params) {
drm_dbg_kms(&i915->drm,
"Retrying Link training for eDP with max parameters\n");
intel_dp->use_max_params = true;
return 0;
}
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
link_rate);
if (index > 0) {
if (intel_dp_is_edp(intel_dp) &&
!intel_dp_can_link_train_fallback_for_edp(intel_dp,
intel_dp_common_rate(intel_dp, index - 1),
lane_count)) {
drm_dbg_kms(&i915->drm,
"Retrying Link training for eDP with same parameters\n");
return 0;
}
intel_dp->max_link_rate = intel_dp_common_rate(intel_dp, index - 1);
intel_dp->max_link_lane_count = lane_count;
} else if (lane_count > 1) {
if (intel_dp_is_edp(intel_dp) &&
!intel_dp_can_link_train_fallback_for_edp(intel_dp,
intel_dp_max_common_rate(intel_dp),
lane_count >> 1)) {
drm_dbg_kms(&i915->drm,
"Retrying Link training for eDP with same parameters\n");
return 0;
}
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
intel_dp->max_link_lane_count = lane_count >> 1;
} else {
drm_err(&i915->drm, "Link Training Unsuccessful\n");
return -1;
}
return 0;
}
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
return div_u64(mul_u32_u32(mode_clock, DP_DSC_FEC_OVERHEAD_FACTOR),
1000000U);
}
int intel_dp_bw_fec_overhead(bool fec_enabled)
{
/*
* TODO: Calculate the actual overhead for a given mode.
* The hard-coded 1/0.972261=2.853% overhead factor
* corresponds (for instance) to the 8b/10b DP FEC 2.4% +
* 0.453% DSC overhead. This is enough for a 3840 width mode,
* which has a DSC overhead of up to ~0.2%, but may not be
* enough for a 1024 width mode where this is ~0.8% (on a 4
* lane DP link, with 2 DSC slices and 8 bpp color depth).
*/
return fec_enabled ? DP_DSC_FEC_OVERHEAD_FACTOR : 1000000;
}
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 13)
return 17280 * 8;
else if (DISPLAY_VER(i915) >= 11)
return 7680 * 8;
else
return 6144 * 8;
}
u32 intel_dp_dsc_nearest_valid_bpp(struct drm_i915_private *i915, u32 bpp, u32 pipe_bpp)
{
u32 bits_per_pixel = bpp;
int i;
/* Error out if the max bpp is less than smallest allowed valid bpp */
if (bits_per_pixel < valid_dsc_bpp[0]) {
drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
bits_per_pixel, valid_dsc_bpp[0]);
return 0;
}
/* From XE_LPD onwards we support from bpc upto uncompressed bpp-1 BPPs */
if (DISPLAY_VER(i915) >= 13) {
bits_per_pixel = min(bits_per_pixel, pipe_bpp - 1);
/*
* According to BSpec, 27 is the max DSC output bpp,
* 8 is the min DSC output bpp.
* While we can still clamp higher bpp values to 27, saving bandwidth,
* if it is required to oompress up to bpp < 8, means we can't do
* that and probably means we can't fit the required mode, even with
* DSC enabled.
*/
if (bits_per_pixel < 8) {
drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min 8\n",
bits_per_pixel);
return 0;
}
bits_per_pixel = min_t(u32, bits_per_pixel, 27);
} else {
/* Find the nearest match in the array of known BPPs from VESA */
for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
if (bits_per_pixel < valid_dsc_bpp[i + 1])
break;
}
drm_dbg_kms(&i915->drm, "Set dsc bpp from %d to VESA %d\n",
bits_per_pixel, valid_dsc_bpp[i]);
bits_per_pixel = valid_dsc_bpp[i];
}
return bits_per_pixel;
}
static
u32 get_max_compressed_bpp_with_joiner(struct drm_i915_private *i915,
u32 mode_clock, u32 mode_hdisplay,
bool bigjoiner)
{
u32 max_bpp_small_joiner_ram;
/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / mode_hdisplay;
if (bigjoiner) {
int bigjoiner_interface_bits = DISPLAY_VER(i915) >= 14 ? 36 : 24;
/* With bigjoiner multiple dsc engines are used in parallel so PPC is 2 */
int ppc = 2;
u32 max_bpp_bigjoiner =
i915->display.cdclk.max_cdclk_freq * ppc * bigjoiner_interface_bits /
intel_dp_mode_to_fec_clock(mode_clock);
max_bpp_small_joiner_ram *= 2;
return min(max_bpp_small_joiner_ram, max_bpp_bigjoiner);
}
return max_bpp_small_joiner_ram;
}
u16 intel_dp_dsc_get_max_compressed_bpp(struct drm_i915_private *i915,
u32 link_clock, u32 lane_count,
u32 mode_clock, u32 mode_hdisplay,
bool bigjoiner,
enum intel_output_format output_format,
u32 pipe_bpp,
u32 timeslots)
{
u32 bits_per_pixel, joiner_max_bpp;
/*
* Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
* (LinkSymbolClock)* 8 * (TimeSlots / 64)
* for SST -> TimeSlots is 64(i.e all TimeSlots that are available)
* for MST -> TimeSlots has to be calculated, based on mode requirements
*
* Due to FEC overhead, the available bw is reduced to 97.2261%.
* To support the given mode:
* Bandwidth required should be <= Available link Bandwidth * FEC Overhead
* =>ModeClock * bits_per_pixel <= Available Link Bandwidth * FEC Overhead
* =>bits_per_pixel <= Available link Bandwidth * FEC Overhead / ModeClock
* =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock) * 8 (TimeSlots / 64) /
* (ModeClock / FEC Overhead)
* =>bits_per_pixel <= (NumberOfLanes * LinkSymbolClock * TimeSlots) /
* (ModeClock / FEC Overhead * 8)
*/
bits_per_pixel = ((link_clock * lane_count) * timeslots) /
(intel_dp_mode_to_fec_clock(mode_clock) * 8);
/* Bandwidth required for 420 is half, that of 444 format */
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
bits_per_pixel *= 2;
/*
* According to DSC 1.2a Section 4.1.1 Table 4.1 the maximum
* supported PPS value can be 63.9375 and with the further
* mention that for 420, 422 formats, bpp should be programmed double
* the target bpp restricting our target bpp to be 31.9375 at max.
*/
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
bits_per_pixel = min_t(u32, bits_per_pixel, 31);
drm_dbg_kms(&i915->drm, "Max link bpp is %u for %u timeslots "
"total bw %u pixel clock %u\n",
bits_per_pixel, timeslots,
(link_clock * lane_count * 8),
intel_dp_mode_to_fec_clock(mode_clock));
joiner_max_bpp = get_max_compressed_bpp_with_joiner(i915, mode_clock,
mode_hdisplay, bigjoiner);
bits_per_pixel = min(bits_per_pixel, joiner_max_bpp);
bits_per_pixel = intel_dp_dsc_nearest_valid_bpp(i915, bits_per_pixel, pipe_bpp);
return bits_per_pixel;
}
u8 intel_dp_dsc_get_slice_count(const struct intel_connector *connector,
int mode_clock, int mode_hdisplay,
bool bigjoiner)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
u8 min_slice_count, i;
int max_slice_width;
if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
min_slice_count = DIV_ROUND_UP(mode_clock,
DP_DSC_MAX_ENC_THROUGHPUT_0);
else
min_slice_count = DIV_ROUND_UP(mode_clock,
DP_DSC_MAX_ENC_THROUGHPUT_1);
/*
* Due to some DSC engine BW limitations, we need to enable second
* slice and VDSC engine, whenever we approach close enough to max CDCLK
*/
if (mode_clock >= ((i915->display.cdclk.max_cdclk_freq * 85) / 100))
min_slice_count = max_t(u8, min_slice_count, 2);
max_slice_width = drm_dp_dsc_sink_max_slice_width(connector->dp.dsc_dpcd);
if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
drm_dbg_kms(&i915->drm,
"Unsupported slice width %d by DP DSC Sink device\n",
max_slice_width);
return 0;
}
/* Also take into account max slice width */
min_slice_count = max_t(u8, min_slice_count,
DIV_ROUND_UP(mode_hdisplay,
max_slice_width));
/* Find the closest match to the valid slice count values */
for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
u8 test_slice_count = valid_dsc_slicecount[i] << bigjoiner;
if (test_slice_count >
drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd, false))
break;
/* big joiner needs small joiner to be enabled */
if (bigjoiner && test_slice_count < 4)
continue;
if (min_slice_count <= test_slice_count)
return test_slice_count;
}
drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
min_slice_count);
return 0;
}
static bool source_can_output(struct intel_dp *intel_dp,
enum intel_output_format format)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
switch (format) {
case INTEL_OUTPUT_FORMAT_RGB:
return true;
case INTEL_OUTPUT_FORMAT_YCBCR444:
/*
* No YCbCr output support on gmch platforms.
* Also, ILK doesn't seem capable of DP YCbCr output.
* The displayed image is severly corrupted. SNB+ is fine.
*/
return !HAS_GMCH(i915) && !IS_IRONLAKE(i915);
case INTEL_OUTPUT_FORMAT_YCBCR420:
/* Platform < Gen 11 cannot output YCbCr420 format */
return DISPLAY_VER(i915) >= 11;
default:
MISSING_CASE(format);
return false;
}
}
static bool
dfp_can_convert_from_rgb(struct intel_dp *intel_dp,
enum intel_output_format sink_format)
{
if (!drm_dp_is_branch(intel_dp->dpcd))
return false;
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444)
return intel_dp->dfp.rgb_to_ycbcr;
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
return intel_dp->dfp.rgb_to_ycbcr &&
intel_dp->dfp.ycbcr_444_to_420;
return false;
}
static bool
dfp_can_convert_from_ycbcr444(struct intel_dp *intel_dp,
enum intel_output_format sink_format)
{
if (!drm_dp_is_branch(intel_dp->dpcd))
return false;
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
return intel_dp->dfp.ycbcr_444_to_420;
return false;
}
static bool
dfp_can_convert(struct intel_dp *intel_dp,
enum intel_output_format output_format,
enum intel_output_format sink_format)
{
switch (output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
return dfp_can_convert_from_rgb(intel_dp, sink_format);
case INTEL_OUTPUT_FORMAT_YCBCR444:
return dfp_can_convert_from_ycbcr444(intel_dp, sink_format);
default:
MISSING_CASE(output_format);
return false;
}
return false;
}
static enum intel_output_format
intel_dp_output_format(struct intel_connector *connector,
enum intel_output_format sink_format)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
enum intel_output_format force_dsc_output_format =
intel_dp->force_dsc_output_format;
enum intel_output_format output_format;
if (force_dsc_output_format) {
if (source_can_output(intel_dp, force_dsc_output_format) &&
(!drm_dp_is_branch(intel_dp->dpcd) ||
sink_format != force_dsc_output_format ||
dfp_can_convert(intel_dp, force_dsc_output_format, sink_format)))
return force_dsc_output_format;
drm_dbg_kms(&i915->drm, "Cannot force DSC output format\n");
}
if (sink_format == INTEL_OUTPUT_FORMAT_RGB ||
dfp_can_convert_from_rgb(intel_dp, sink_format))
output_format = INTEL_OUTPUT_FORMAT_RGB;
else if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
dfp_can_convert_from_ycbcr444(intel_dp, sink_format))
output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
else
output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
drm_WARN_ON(&i915->drm, !source_can_output(intel_dp, output_format));
return output_format;
}
int intel_dp_min_bpp(enum intel_output_format output_format)
{
if (output_format == INTEL_OUTPUT_FORMAT_RGB)
return 6 * 3;
else
return 8 * 3;
}
int intel_dp_output_bpp(enum intel_output_format output_format, int bpp)
{
/*
* bpp value was assumed to RGB format. And YCbCr 4:2:0 output
* format of the number of bytes per pixel will be half the number
* of bytes of RGB pixel.
*/
if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
bpp /= 2;
return bpp;
}
static enum intel_output_format
intel_dp_sink_format(struct intel_connector *connector,
const struct drm_display_mode *mode)
{
const struct drm_display_info *info = &connector->base.display_info;
if (drm_mode_is_420_only(info, mode))
return INTEL_OUTPUT_FORMAT_YCBCR420;
return INTEL_OUTPUT_FORMAT_RGB;
}
static int
intel_dp_mode_min_output_bpp(struct intel_connector *connector,
const struct drm_display_mode *mode)
{
enum intel_output_format output_format, sink_format;
sink_format = intel_dp_sink_format(connector, mode);
output_format = intel_dp_output_format(connector, sink_format);
return intel_dp_output_bpp(output_format, intel_dp_min_bpp(output_format));
}
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
int hdisplay)
{
/*
* Older platforms don't like hdisplay==4096 with DP.
*
* On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
* and frame counter increment), but we don't get vblank interrupts,
* and the pipe underruns immediately. The link also doesn't seem
* to get trained properly.
*
* On CHV the vblank interrupts don't seem to disappear but
* otherwise the symptoms are similar.
*
* TODO: confirm the behaviour on HSW+
*/
return hdisplay == 4096 && !HAS_DDI(dev_priv);
}
static int intel_dp_max_tmds_clock(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
const struct drm_display_info *info = &connector->base.display_info;
int max_tmds_clock = intel_dp->dfp.max_tmds_clock;
/* Only consider the sink's max TMDS clock if we know this is a HDMI DFP */
if (max_tmds_clock && info->max_tmds_clock)
max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock);
return max_tmds_clock;
}
static enum drm_mode_status
intel_dp_tmds_clock_valid(struct intel_dp *intel_dp,
int clock, int bpc,
enum intel_output_format sink_format,
bool respect_downstream_limits)
{
int tmds_clock, min_tmds_clock, max_tmds_clock;
if (!respect_downstream_limits)
return MODE_OK;
tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
min_tmds_clock = intel_dp->dfp.min_tmds_clock;
max_tmds_clock = intel_dp_max_tmds_clock(intel_dp);
if (min_tmds_clock && tmds_clock < min_tmds_clock)
return MODE_CLOCK_LOW;
if (max_tmds_clock && tmds_clock > max_tmds_clock)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static enum drm_mode_status
intel_dp_mode_valid_downstream(struct intel_connector *connector,
const struct drm_display_mode *mode,
int target_clock)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
const struct drm_display_info *info = &connector->base.display_info;
enum drm_mode_status status;
enum intel_output_format sink_format;
/* If PCON supports FRL MODE, check FRL bandwidth constraints */
if (intel_dp->dfp.pcon_max_frl_bw) {
int target_bw;
int max_frl_bw;
int bpp = intel_dp_mode_min_output_bpp(connector, mode);
target_bw = bpp * target_clock;
max_frl_bw = intel_dp->dfp.pcon_max_frl_bw;
/* converting bw from Gbps to Kbps*/
max_frl_bw = max_frl_bw * 1000000;
if (target_bw > max_frl_bw)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
if (intel_dp->dfp.max_dotclock &&
target_clock > intel_dp->dfp.max_dotclock)
return MODE_CLOCK_HIGH;
sink_format = intel_dp_sink_format(connector, mode);
/* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
status = intel_dp_tmds_clock_valid(intel_dp, target_clock,
8, sink_format, true);
if (status != MODE_OK) {
if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
!connector->base.ycbcr_420_allowed ||
!drm_mode_is_420_also(info, mode))
return status;
sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
status = intel_dp_tmds_clock_valid(intel_dp, target_clock,
8, sink_format, true);
if (status != MODE_OK)
return status;
}
return MODE_OK;
}
bool intel_dp_need_bigjoiner(struct intel_dp *intel_dp,
int hdisplay, int clock)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector = intel_dp->attached_connector;
if (!intel_dp_can_bigjoiner(intel_dp))
return false;
return clock > i915->max_dotclk_freq || hdisplay > 5120 ||
connector->force_bigjoiner_enable;
}
static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *_connector,
struct drm_display_mode *mode)
{
struct intel_connector *connector = to_intel_connector(_connector);
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
const struct drm_display_mode *fixed_mode;
int target_clock = mode->clock;
int max_rate, mode_rate, max_lanes, max_link_clock;
int max_dotclk = dev_priv->max_dotclk_freq;
u16 dsc_max_compressed_bpp = 0;
u8 dsc_slice_count = 0;
enum drm_mode_status status;
bool dsc = false, bigjoiner = false;
status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
if (status != MODE_OK)
return status;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
fixed_mode = intel_panel_fixed_mode(connector, mode);
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
status = intel_panel_mode_valid(connector, mode);
if (status != MODE_OK)
return status;
target_clock = fixed_mode->clock;
}
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
if (intel_dp_need_bigjoiner(intel_dp, mode->hdisplay, target_clock)) {
bigjoiner = true;
max_dotclk *= 2;
}
if (target_clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
return MODE_H_ILLEGAL;
max_link_clock = intel_dp_max_link_rate(intel_dp);
max_lanes = intel_dp_max_lane_count(intel_dp);
max_rate = intel_dp_max_link_data_rate(intel_dp, max_link_clock, max_lanes);
mode_rate = intel_dp_link_required(target_clock,
intel_dp_mode_min_output_bpp(connector, mode));
if (HAS_DSC(dev_priv) &&
drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd)) {
enum intel_output_format sink_format, output_format;
int pipe_bpp;
sink_format = intel_dp_sink_format(connector, mode);
output_format = intel_dp_output_format(connector, sink_format);
/*
* TBD pass the connector BPC,
* for now U8_MAX so that max BPC on that platform would be picked
*/
pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, U8_MAX);
/*
* Output bpp is stored in 6.4 format so right shift by 4 to get the
* integer value since we support only integer values of bpp.
*/
if (intel_dp_is_edp(intel_dp)) {
dsc_max_compressed_bpp =
drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd) >> 4;
dsc_slice_count =
drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd,
true);
} else if (drm_dp_sink_supports_fec(connector->dp.fec_capability)) {
dsc_max_compressed_bpp =
intel_dp_dsc_get_max_compressed_bpp(dev_priv,
max_link_clock,
max_lanes,
target_clock,
mode->hdisplay,
bigjoiner,
output_format,
pipe_bpp, 64);
dsc_slice_count =
intel_dp_dsc_get_slice_count(connector,
target_clock,
mode->hdisplay,
bigjoiner);
}
dsc = dsc_max_compressed_bpp && dsc_slice_count;
}
/*
* Big joiner configuration needs DSC for TGL which is not true for
* XE_LPD where uncompressed joiner is supported.
*/
if (DISPLAY_VER(dev_priv) < 13 && bigjoiner && !dsc)
return MODE_CLOCK_HIGH;
if (mode_rate > max_rate && !dsc)
return MODE_CLOCK_HIGH;
status = intel_dp_mode_valid_downstream(connector, mode, target_clock);
if (status != MODE_OK)
return status;
return intel_mode_valid_max_plane_size(dev_priv, mode, bigjoiner);
}
bool intel_dp_source_supports_tps3(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 9 || IS_BROADWELL(i915) || IS_HASWELL(i915);
}
bool intel_dp_source_supports_tps4(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 10;
}
static void snprintf_int_array(char *str, size_t len,
const int *array, int nelem)
{
int i;
str[0] = '\0';
for (i = 0; i < nelem; i++) {
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
if (r >= len)
return;
str += r;
len -= r;
}
}
static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
char str[128]; /* FIXME: too big for stack? */
if (!drm_debug_enabled(DRM_UT_KMS))
return;
snprintf_int_array(str, sizeof(str),
intel_dp->source_rates, intel_dp->num_source_rates);
drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->sink_rates, intel_dp->num_sink_rates);
drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->common_rates, intel_dp->num_common_rates);
drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
}
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
int len;
len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
return intel_dp_common_rate(intel_dp, len - 1);
}
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int i = intel_dp_rate_index(intel_dp->sink_rates,
intel_dp->num_sink_rates, rate);
if (drm_WARN_ON(&i915->drm, i < 0))
i = 0;
return i;
}
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
u8 *link_bw, u8 *rate_select)
{
/* eDP 1.4 rate select method. */
if (intel_dp->use_rate_select) {
*link_bw = 0;
*rate_select =
intel_dp_rate_select(intel_dp, port_clock);
} else {
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
*rate_select = 0;
}
}
bool intel_dp_has_hdmi_sink(struct intel_dp *intel_dp)
{
struct intel_connector *connector = intel_dp->attached_connector;
return connector->base.display_info.is_hdmi;
}
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (DISPLAY_VER(dev_priv) >= 12)
return true;
if (DISPLAY_VER(dev_priv) == 11 && encoder->port != PORT_A &&
!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
return true;
return false;
}
bool intel_dp_supports_fec(struct intel_dp *intel_dp,
const struct intel_connector *connector,
const struct intel_crtc_state *pipe_config)
{
return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
drm_dp_sink_supports_fec(connector->dp.fec_capability);
}
static bool intel_dp_supports_dsc(const struct intel_connector *connector,
const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP) && !crtc_state->fec_enable)
return false;
return intel_dsc_source_support(crtc_state) &&
connector->dp.dsc_decompression_aux &&
drm_dp_sink_supports_dsc(connector->dp.dsc_dpcd);
}
static int intel_dp_hdmi_compute_bpc(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
int bpc, bool respect_downstream_limits)
{
int clock = crtc_state->hw.adjusted_mode.crtc_clock;
/*
* Current bpc could already be below 8bpc due to
* FDI bandwidth constraints or other limits.
* HDMI minimum is 8bpc however.
*/
bpc = max(bpc, 8);
/*
* We will never exceed downstream TMDS clock limits while
* attempting deep color. If the user insists on forcing an
* out of spec mode they will have to be satisfied with 8bpc.
*/
if (!respect_downstream_limits)
bpc = 8;
for (; bpc >= 8; bpc -= 2) {
if (intel_hdmi_bpc_possible(crtc_state, bpc,
intel_dp_has_hdmi_sink(intel_dp)) &&
intel_dp_tmds_clock_valid(intel_dp, clock, bpc, crtc_state->sink_format,
respect_downstream_limits) == MODE_OK)
return bpc;
}
return -EINVAL;
}
static int intel_dp_max_bpp(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool respect_downstream_limits)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_connector *intel_connector = intel_dp->attached_connector;
int bpp, bpc;
bpc = crtc_state->pipe_bpp / 3;
if (intel_dp->dfp.max_bpc)
bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
if (intel_dp->dfp.min_tmds_clock) {
int max_hdmi_bpc;
max_hdmi_bpc = intel_dp_hdmi_compute_bpc(intel_dp, crtc_state, bpc,
respect_downstream_limits);
if (max_hdmi_bpc < 0)
return 0;
bpc = min(bpc, max_hdmi_bpc);
}
bpp = bpc * 3;
if (intel_dp_is_edp(intel_dp)) {
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
intel_connector->panel.vbt.edp.bpp &&
intel_connector->panel.vbt.edp.bpp < bpp) {
drm_dbg_kms(&dev_priv->drm,
"clamping bpp for eDP panel to BIOS-provided %i\n",
intel_connector->panel.vbt.edp.bpp);
bpp = intel_connector->panel.vbt.edp.bpp;
}
}
return bpp;
}
/* Adjust link config limits based on compliance test requests. */
void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
/* For DP Compliance we override the computed bpp for the pipe */
if (intel_dp->compliance.test_data.bpc != 0) {
int bpp = 3 * intel_dp->compliance.test_data.bpc;
limits->pipe.min_bpp = limits->pipe.max_bpp = bpp;
pipe_config->dither_force_disable = bpp == 6 * 3;
drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
}
/* Use values requested by Compliance Test Request */
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
int index;
/* Validate the compliance test data since max values
* might have changed due to link train fallback.
*/
if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
intel_dp->compliance.test_lane_count)) {
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
intel_dp->compliance.test_link_rate);
if (index >= 0)
limits->min_rate = limits->max_rate =
intel_dp->compliance.test_link_rate;
limits->min_lane_count = limits->max_lane_count =
intel_dp->compliance.test_lane_count;
}
}
}
static bool has_seamless_m_n(struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
/*
* Seamless M/N reprogramming only implemented
* for BDW+ double buffered M/N registers so far.
*/
return HAS_DOUBLE_BUFFERED_M_N(i915) &&
intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS;
}
static int intel_dp_mode_clock(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_connector *connector = to_intel_connector(conn_state->connector);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/* FIXME a bit of a mess wrt clock vs. crtc_clock */
if (has_seamless_m_n(connector))
return intel_panel_highest_mode(connector, adjusted_mode)->clock;
else
return adjusted_mode->crtc_clock;
}
/* Optimize link config in order: max bpp, min clock, min lanes */
static int
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state,
const struct link_config_limits *limits)
{
int bpp, i, lane_count, clock = intel_dp_mode_clock(pipe_config, conn_state);
int mode_rate, link_rate, link_avail;
for (bpp = to_bpp_int(limits->link.max_bpp_x16);
bpp >= to_bpp_int(limits->link.min_bpp_x16);
bpp -= 2 * 3) {
int link_bpp = intel_dp_output_bpp(pipe_config->output_format, bpp);
mode_rate = intel_dp_link_required(clock, link_bpp);
for (i = 0; i < intel_dp->num_common_rates; i++) {
link_rate = intel_dp_common_rate(intel_dp, i);
if (link_rate < limits->min_rate ||
link_rate > limits->max_rate)
continue;
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
link_avail = intel_dp_max_link_data_rate(intel_dp,
link_rate,
lane_count);
if (mode_rate <= link_avail) {
pipe_config->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = link_rate;
return 0;
}
}
}
}
return -EINVAL;
}
static
u8 intel_dp_dsc_max_src_input_bpc(struct drm_i915_private *i915)
{
/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
if (DISPLAY_VER(i915) >= 12)
return 12;
if (DISPLAY_VER(i915) == 11)
return 10;
return 0;
}
int intel_dp_dsc_compute_max_bpp(const struct intel_connector *connector,
u8 max_req_bpc)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
int i, num_bpc;
u8 dsc_bpc[3] = {};
u8 dsc_max_bpc;
dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(i915);
if (!dsc_max_bpc)
return dsc_max_bpc;
dsc_max_bpc = min_t(u8, dsc_max_bpc, max_req_bpc);
num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd,
dsc_bpc);
for (i = 0; i < num_bpc; i++) {
if (dsc_max_bpc >= dsc_bpc[i])
return dsc_bpc[i] * 3;
}
return 0;
}
static int intel_dp_source_dsc_version_minor(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 14 ? 2 : 1;
}
static int intel_dp_sink_dsc_version_minor(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
{
return (dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >>
DP_DSC_MINOR_SHIFT;
}
static int intel_dp_get_slice_height(int vactive)
{
int slice_height;
/*
* VDSC 1.2a spec in Section 3.8 Options for Slices implies that 108
* lines is an optimal slice height, but any size can be used as long as
* vertical active integer multiple and maximum vertical slice count
* requirements are met.
*/
for (slice_height = 108; slice_height <= vactive; slice_height += 2)
if (vactive % slice_height == 0)
return slice_height;
/*
* Highly unlikely we reach here as most of the resolutions will end up
* finding appropriate slice_height in above loop but returning
* slice_height as 2 here as it should work with all resolutions.
*/
return 2;
}
static int intel_dp_dsc_compute_params(const struct intel_connector *connector,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
u8 line_buf_depth;
int ret;
/*
* RC_MODEL_SIZE is currently a constant across all configurations.
*
* FIXME: Look into using sink defined DPCD DP_DSC_RC_BUF_BLK_SIZE and
* DP_DSC_RC_BUF_SIZE for this.
*/
vdsc_cfg->rc_model_size = DSC_RC_MODEL_SIZE_CONST;
vdsc_cfg->pic_height = crtc_state->hw.adjusted_mode.crtc_vdisplay;
vdsc_cfg->slice_height = intel_dp_get_slice_height(vdsc_cfg->pic_height);
ret = intel_dsc_compute_params(crtc_state);
if (ret)
return ret;
vdsc_cfg->dsc_version_major =
(connector->dp.dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
vdsc_cfg->dsc_version_minor =
min(intel_dp_source_dsc_version_minor(i915),
intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd));
if (vdsc_cfg->convert_rgb)
vdsc_cfg->convert_rgb =
connector->dp.dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
DP_DSC_RGB;
line_buf_depth = drm_dp_dsc_sink_line_buf_depth(connector->dp.dsc_dpcd);
if (!line_buf_depth) {
drm_dbg_kms(&i915->drm,
"DSC Sink Line Buffer Depth invalid\n");
return -EINVAL;
}
if (vdsc_cfg->dsc_version_minor == 2)
vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
else
vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
vdsc_cfg->block_pred_enable =
connector->dp.dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
return drm_dsc_compute_rc_parameters(vdsc_cfg);
}
static bool intel_dp_dsc_supports_format(const struct intel_connector *connector,
enum intel_output_format output_format)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
u8 sink_dsc_format;
switch (output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
sink_dsc_format = DP_DSC_RGB;
break;
case INTEL_OUTPUT_FORMAT_YCBCR444:
sink_dsc_format = DP_DSC_YCbCr444;
break;
case INTEL_OUTPUT_FORMAT_YCBCR420:
if (min(intel_dp_source_dsc_version_minor(i915),
intel_dp_sink_dsc_version_minor(connector->dp.dsc_dpcd)) < 2)
return false;
sink_dsc_format = DP_DSC_YCbCr420_Native;
break;
default:
return false;
}
return drm_dp_dsc_sink_supports_format(connector->dp.dsc_dpcd, sink_dsc_format);
}
static bool is_bw_sufficient_for_dsc_config(u16 compressed_bppx16, u32 link_clock,
u32 lane_count, u32 mode_clock,
enum intel_output_format output_format,
int timeslots)
{
u32 available_bw, required_bw;
available_bw = (link_clock * lane_count * timeslots * 16) / 8;
required_bw = compressed_bppx16 * (intel_dp_mode_to_fec_clock(mode_clock));
return available_bw > required_bw;
}
static int dsc_compute_link_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
u16 compressed_bppx16,
int timeslots)
{
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
int link_rate, lane_count;
int i;
for (i = 0; i < intel_dp->num_common_rates; i++) {
link_rate = intel_dp_common_rate(intel_dp, i);
if (link_rate < limits->min_rate || link_rate > limits->max_rate)
continue;
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
if (!is_bw_sufficient_for_dsc_config(compressed_bppx16, link_rate,
lane_count, adjusted_mode->clock,
pipe_config->output_format,
timeslots))
continue;
pipe_config->lane_count = lane_count;
pipe_config->port_clock = link_rate;
return 0;
}
}
return -EINVAL;
}
static
u16 intel_dp_dsc_max_sink_compressed_bppx16(const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
int bpc)
{
u16 max_bppx16 = drm_edp_dsc_sink_output_bpp(connector->dp.dsc_dpcd);
if (max_bppx16)
return max_bppx16;
/*
* If support not given in DPCD 67h, 68h use the Maximum Allowed bit rate
* values as given in spec Table 2-157 DP v2.0
*/
switch (pipe_config->output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
case INTEL_OUTPUT_FORMAT_YCBCR444:
return (3 * bpc) << 4;
case INTEL_OUTPUT_FORMAT_YCBCR420:
return (3 * (bpc / 2)) << 4;
default:
MISSING_CASE(pipe_config->output_format);
break;
}
return 0;
}
int intel_dp_dsc_sink_min_compressed_bpp(struct intel_crtc_state *pipe_config)
{
/* From Mandatory bit rate range Support Table 2-157 (DP v2.0) */
switch (pipe_config->output_format) {
case INTEL_OUTPUT_FORMAT_RGB:
case INTEL_OUTPUT_FORMAT_YCBCR444:
return 8;
case INTEL_OUTPUT_FORMAT_YCBCR420:
return 6;
default:
MISSING_CASE(pipe_config->output_format);
break;
}
return 0;
}
int intel_dp_dsc_sink_max_compressed_bpp(const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
int bpc)
{
return intel_dp_dsc_max_sink_compressed_bppx16(connector,
pipe_config, bpc) >> 4;
}
static int dsc_src_min_compressed_bpp(void)
{
/* Min Compressed bpp supported by source is 8 */
return 8;
}
static int dsc_src_max_compressed_bpp(struct intel_dp *intel_dp)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
/*
* Max Compressed bpp for Gen 13+ is 27bpp.
* For earlier platform is 23bpp. (Bspec:49259).
*/
if (DISPLAY_VER(i915) < 13)
return 23;
else
return 27;
}
/*
* From a list of valid compressed bpps try different compressed bpp and find a
* suitable link configuration that can support it.
*/
static int
icl_dsc_compute_link_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
int dsc_max_bpp,
int dsc_min_bpp,
int pipe_bpp,
int timeslots)
{
int i, ret;
/* Compressed BPP should be less than the Input DSC bpp */
dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1);
for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp); i++) {
if (valid_dsc_bpp[i] < dsc_min_bpp)
continue;
if (valid_dsc_bpp[i] > dsc_max_bpp)
break;
ret = dsc_compute_link_config(intel_dp,
pipe_config,
limits,
valid_dsc_bpp[i] << 4,
timeslots);
if (ret == 0) {
pipe_config->dsc.compressed_bpp_x16 =
to_bpp_x16(valid_dsc_bpp[i]);
return 0;
}
}
return -EINVAL;
}
/*
* From XE_LPD onwards we supports compression bpps in steps of 1 up to
* uncompressed bpp-1. So we start from max compressed bpp and see if any
* link configuration is able to support that compressed bpp, if not we
* step down and check for lower compressed bpp.
*/
static int
xelpd_dsc_compute_link_config(struct intel_dp *intel_dp,
const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
int dsc_max_bpp,
int dsc_min_bpp,
int pipe_bpp,
int timeslots)
{
u8 bppx16_incr = drm_dp_dsc_sink_bpp_incr(connector->dp.dsc_dpcd);
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
u16 compressed_bppx16;
u8 bppx16_step;
int ret;
if (DISPLAY_VER(i915) < 14 || bppx16_incr <= 1)
bppx16_step = 16;
else
bppx16_step = 16 / bppx16_incr;
/* Compressed BPP should be less than the Input DSC bpp */
dsc_max_bpp = min(dsc_max_bpp << 4, (pipe_bpp << 4) - bppx16_step);
dsc_min_bpp = dsc_min_bpp << 4;
for (compressed_bppx16 = dsc_max_bpp;
compressed_bppx16 >= dsc_min_bpp;
compressed_bppx16 -= bppx16_step) {
if (intel_dp->force_dsc_fractional_bpp_en &&
!to_bpp_frac(compressed_bppx16))
continue;
ret = dsc_compute_link_config(intel_dp,
pipe_config,
limits,
compressed_bppx16,
timeslots);
if (ret == 0) {
pipe_config->dsc.compressed_bpp_x16 = compressed_bppx16;
if (intel_dp->force_dsc_fractional_bpp_en &&
to_bpp_frac(compressed_bppx16))
drm_dbg_kms(&i915->drm, "Forcing DSC fractional bpp\n");
return 0;
}
}
return -EINVAL;
}
static int dsc_compute_compressed_bpp(struct intel_dp *intel_dp,
const struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits,
int pipe_bpp,
int timeslots)
{
const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp;
int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp;
int dsc_joiner_max_bpp;
dsc_src_min_bpp = dsc_src_min_compressed_bpp();
dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(pipe_config);
dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp);
dsc_min_bpp = max(dsc_min_bpp, to_bpp_int_roundup(limits->link.min_bpp_x16));
dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp);
dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector,
pipe_config,
pipe_bpp / 3);
dsc_max_bpp = dsc_sink_max_bpp ? min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp;
dsc_joiner_max_bpp = get_max_compressed_bpp_with_joiner(i915, adjusted_mode->clock,
adjusted_mode->hdisplay,
pipe_config->bigjoiner_pipes);
dsc_max_bpp = min(dsc_max_bpp, dsc_joiner_max_bpp);
dsc_max_bpp = min(dsc_max_bpp, to_bpp_int(limits->link.max_bpp_x16));
if (DISPLAY_VER(i915) >= 13)
return xelpd_dsc_compute_link_config(intel_dp, connector, pipe_config, limits,
dsc_max_bpp, dsc_min_bpp, pipe_bpp, timeslots);
return icl_dsc_compute_link_config(intel_dp, pipe_config, limits,
dsc_max_bpp, dsc_min_bpp, pipe_bpp, timeslots);
}
static
u8 intel_dp_dsc_min_src_input_bpc(struct drm_i915_private *i915)
{
/* Min DSC Input BPC for ICL+ is 8 */
return HAS_DSC(i915) ? 8 : 0;
}
static
bool is_dsc_pipe_bpp_sufficient(struct drm_i915_private *i915,
struct drm_connector_state *conn_state,
struct link_config_limits *limits,
int pipe_bpp)
{
u8 dsc_max_bpc, dsc_min_bpc, dsc_max_pipe_bpp, dsc_min_pipe_bpp;
dsc_max_bpc = min(intel_dp_dsc_max_src_input_bpc(i915), conn_state->max_requested_bpc);
dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(i915);
dsc_max_pipe_bpp = min(dsc_max_bpc * 3, limits->pipe.max_bpp);
dsc_min_pipe_bpp = max(dsc_min_bpc * 3, limits->pipe.min_bpp);
return pipe_bpp >= dsc_min_pipe_bpp &&
pipe_bpp <= dsc_max_pipe_bpp;
}
static
int intel_dp_force_dsc_pipe_bpp(struct intel_dp *intel_dp,
struct drm_connector_state *conn_state,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
int forced_bpp;
if (!intel_dp->force_dsc_bpc)
return 0;
forced_bpp = intel_dp->force_dsc_bpc * 3;
if (is_dsc_pipe_bpp_sufficient(i915, conn_state, limits, forced_bpp)) {
drm_dbg_kms(&i915->drm, "Input DSC BPC forced to %d\n", intel_dp->force_dsc_bpc);
return forced_bpp;
}
drm_dbg_kms(&i915->drm, "Cannot force DSC BPC:%d, due to DSC BPC limits\n",
intel_dp->force_dsc_bpc);
return 0;
}
static int intel_dp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits,
int timeslots)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
const struct intel_connector *connector =
to_intel_connector(conn_state->connector);
u8 max_req_bpc = conn_state->max_requested_bpc;
u8 dsc_max_bpc, dsc_max_bpp;
u8 dsc_min_bpc, dsc_min_bpp;
u8 dsc_bpc[3] = {};
int forced_bpp, pipe_bpp;
int num_bpc, i, ret;
forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, conn_state, limits);
if (forced_bpp) {
ret = dsc_compute_compressed_bpp(intel_dp, connector, pipe_config,
limits, forced_bpp, timeslots);
if (ret == 0) {
pipe_config->pipe_bpp = forced_bpp;
return 0;
}
}
dsc_max_bpc = intel_dp_dsc_max_src_input_bpc(i915);
if (!dsc_max_bpc)
return -EINVAL;
dsc_max_bpc = min_t(u8, dsc_max_bpc, max_req_bpc);
dsc_max_bpp = min(dsc_max_bpc * 3, limits->pipe.max_bpp);
dsc_min_bpc = intel_dp_dsc_min_src_input_bpc(i915);
dsc_min_bpp = max(dsc_min_bpc * 3, limits->pipe.min_bpp);
/*
* Get the maximum DSC bpc that will be supported by any valid
* link configuration and compressed bpp.
*/
num_bpc = drm_dp_dsc_sink_supported_input_bpcs(connector->dp.dsc_dpcd, dsc_bpc);
for (i = 0; i < num_bpc; i++) {
pipe_bpp = dsc_bpc[i] * 3;
if (pipe_bpp < dsc_min_bpp)
break;
if (pipe_bpp > dsc_max_bpp)
continue;
ret = dsc_compute_compressed_bpp(intel_dp, connector, pipe_config,
limits, pipe_bpp, timeslots);
if (ret == 0) {
pipe_config->pipe_bpp = pipe_bpp;
return 0;
}
}
return -EINVAL;
}
static int intel_edp_dsc_compute_pipe_bpp(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
int pipe_bpp, forced_bpp;
int dsc_src_min_bpp, dsc_sink_min_bpp, dsc_min_bpp;
int dsc_src_max_bpp, dsc_sink_max_bpp, dsc_max_bpp;
forced_bpp = intel_dp_force_dsc_pipe_bpp(intel_dp, conn_state, limits);
if (forced_bpp) {
pipe_bpp = forced_bpp;
} else {
int max_bpc = min(limits->pipe.max_bpp / 3, (int)conn_state->max_requested_bpc);
/* For eDP use max bpp that can be supported with DSC. */
pipe_bpp = intel_dp_dsc_compute_max_bpp(connector, max_bpc);
if (!is_dsc_pipe_bpp_sufficient(i915, conn_state, limits, pipe_bpp)) {
drm_dbg_kms(&i915->drm,
"Computed BPC is not in DSC BPC limits\n");
return -EINVAL;
}
}
pipe_config->port_clock = limits->max_rate;
pipe_config->lane_count = limits->max_lane_count;
dsc_src_min_bpp = dsc_src_min_compressed_bpp();
dsc_sink_min_bpp = intel_dp_dsc_sink_min_compressed_bpp(pipe_config);
dsc_min_bpp = max(dsc_src_min_bpp, dsc_sink_min_bpp);
dsc_min_bpp = max(dsc_min_bpp, to_bpp_int_roundup(limits->link.min_bpp_x16));
dsc_src_max_bpp = dsc_src_max_compressed_bpp(intel_dp);
dsc_sink_max_bpp = intel_dp_dsc_sink_max_compressed_bpp(connector,
pipe_config,
pipe_bpp / 3);
dsc_max_bpp = dsc_sink_max_bpp ? min(dsc_sink_max_bpp, dsc_src_max_bpp) : dsc_src_max_bpp;
dsc_max_bpp = min(dsc_max_bpp, to_bpp_int(limits->link.max_bpp_x16));
/* Compressed BPP should be less than the Input DSC bpp */
dsc_max_bpp = min(dsc_max_bpp, pipe_bpp - 1);
pipe_config->dsc.compressed_bpp_x16 =
to_bpp_x16(max(dsc_min_bpp, dsc_max_bpp));
pipe_config->pipe_bpp = pipe_bpp;
return 0;
}
int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits,
int timeslots,
bool compute_pipe_bpp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const struct intel_connector *connector =
to_intel_connector(conn_state->connector);
const struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
int ret;
pipe_config->fec_enable = pipe_config->fec_enable ||
(!intel_dp_is_edp(intel_dp) &&
intel_dp_supports_fec(intel_dp, connector, pipe_config));
if (!intel_dp_supports_dsc(connector, pipe_config))
return -EINVAL;
if (!intel_dp_dsc_supports_format(connector, pipe_config->output_format))
return -EINVAL;
/*
* compute pipe bpp is set to false for DP MST DSC case
* and compressed_bpp is calculated same time once
* vpci timeslots are allocated, because overall bpp
* calculation procedure is bit different for MST case.
*/
if (compute_pipe_bpp) {
if (intel_dp_is_edp(intel_dp))
ret = intel_edp_dsc_compute_pipe_bpp(intel_dp, pipe_config,
conn_state, limits);
else
ret = intel_dp_dsc_compute_pipe_bpp(intel_dp, pipe_config,
conn_state, limits, timeslots);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"No Valid pipe bpp for given mode ret = %d\n", ret);
return ret;
}
}
/* Calculate Slice count */
if (intel_dp_is_edp(intel_dp)) {
pipe_config->dsc.slice_count =
drm_dp_dsc_sink_max_slice_count(connector->dp.dsc_dpcd,
true);
if (!pipe_config->dsc.slice_count) {
drm_dbg_kms(&dev_priv->drm, "Unsupported Slice Count %d\n",
pipe_config->dsc.slice_count);
return -EINVAL;
}
} else {
u8 dsc_dp_slice_count;
dsc_dp_slice_count =
intel_dp_dsc_get_slice_count(connector,
adjusted_mode->crtc_clock,
adjusted_mode->crtc_hdisplay,
pipe_config->bigjoiner_pipes);
if (!dsc_dp_slice_count) {
drm_dbg_kms(&dev_priv->drm,
"Compressed Slice Count not supported\n");
return -EINVAL;
}
pipe_config->dsc.slice_count = dsc_dp_slice_count;
}
/*
* VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
* is greater than the maximum Cdclock and if slice count is even
* then we need to use 2 VDSC instances.
*/
if (pipe_config->bigjoiner_pipes || pipe_config->dsc.slice_count > 1)
pipe_config->dsc.dsc_split = true;
ret = intel_dp_dsc_compute_params(connector, pipe_config);
if (ret < 0) {
drm_dbg_kms(&dev_priv->drm,
"Cannot compute valid DSC parameters for Input Bpp = %d"
"Compressed BPP = " BPP_X16_FMT "\n",
pipe_config->pipe_bpp,
BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16));
return ret;
}
pipe_config->dsc.compression_enable = true;
drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
"Compressed Bpp = " BPP_X16_FMT " Slice Count = %d\n",
pipe_config->pipe_bpp,
BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16),
pipe_config->dsc.slice_count);
return 0;
}
/**
* intel_dp_compute_config_link_bpp_limits - compute output link bpp limits
* @intel_dp: intel DP
* @crtc_state: crtc state
* @dsc: DSC compression mode
* @limits: link configuration limits
*
* Calculates the output link min, max bpp values in @limits based on the
* pipe bpp range, @crtc_state and @dsc mode.
*
* Returns %true in case of success.
*/
bool
intel_dp_compute_config_link_bpp_limits(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool dsc,
struct link_config_limits *limits)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
const struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
const struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
int max_link_bpp_x16;
max_link_bpp_x16 = min(crtc_state->max_link_bpp_x16,
to_bpp_x16(limits->pipe.max_bpp));
if (!dsc) {
max_link_bpp_x16 = rounddown(max_link_bpp_x16, to_bpp_x16(2 * 3));
if (max_link_bpp_x16 < to_bpp_x16(limits->pipe.min_bpp))
return false;
limits->link.min_bpp_x16 = to_bpp_x16(limits->pipe.min_bpp);
} else {
/*
* TODO: set the DSC link limits already here, atm these are
* initialized only later in intel_edp_dsc_compute_pipe_bpp() /
* intel_dp_dsc_compute_pipe_bpp()
*/
limits->link.min_bpp_x16 = 0;
}
limits->link.max_bpp_x16 = max_link_bpp_x16;
drm_dbg_kms(&i915->drm,
"[ENCODER:%d:%s][CRTC:%d:%s] DP link limits: pixel clock %d kHz DSC %s max lanes %d max rate %d max pipe_bpp %d max link_bpp " BPP_X16_FMT "\n",
encoder->base.base.id, encoder->base.name,
crtc->base.base.id, crtc->base.name,
adjusted_mode->crtc_clock,
dsc ? "on" : "off",
limits->max_lane_count,
limits->max_rate,
limits->pipe.max_bpp,
BPP_X16_ARGS(limits->link.max_bpp_x16));
return true;
}
static bool
intel_dp_compute_config_limits(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
bool respect_downstream_limits,
bool dsc,
struct link_config_limits *limits)
{
limits->min_rate = intel_dp_common_rate(intel_dp, 0);
limits->max_rate = intel_dp_max_link_rate(intel_dp);
/* FIXME 128b/132b SST support missing */
limits->max_rate = min(limits->max_rate, 810000);
limits->min_lane_count = 1;
limits->max_lane_count = intel_dp_max_lane_count(intel_dp);
limits->pipe.min_bpp = intel_dp_min_bpp(crtc_state->output_format);
limits->pipe.max_bpp = intel_dp_max_bpp(intel_dp, crtc_state,
respect_downstream_limits);
if (intel_dp->use_max_params) {
/*
* Use the maximum clock and number of lanes the eDP panel
* advertizes being capable of in case the initial fast
* optimal params failed us. The panels are generally
* designed to support only a single clock and lane
* configuration, and typically on older panels these
* values correspond to the native resolution of the panel.
*/
limits->min_lane_count = limits->max_lane_count;
limits->min_rate = limits->max_rate;
}
intel_dp_adjust_compliance_config(intel_dp, crtc_state, limits);
return intel_dp_compute_config_link_bpp_limits(intel_dp,
crtc_state,
dsc,
limits);
}
int intel_dp_config_required_rate(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
int bpp = crtc_state->dsc.compression_enable ?
to_bpp_int_roundup(crtc_state->dsc.compressed_bpp_x16) :
crtc_state->pipe_bpp;
return intel_dp_link_required(adjusted_mode->crtc_clock, bpp);
}
static int
intel_dp_compute_link_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
bool respect_downstream_limits)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
const struct intel_connector *connector =
to_intel_connector(conn_state->connector);
const struct drm_display_mode *adjusted_mode =
&pipe_config->hw.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct link_config_limits limits;
bool joiner_needs_dsc = false;
bool dsc_needed;
int ret = 0;
if (pipe_config->fec_enable &&
!intel_dp_supports_fec(intel_dp, connector, pipe_config))
return -EINVAL;
if (intel_dp_need_bigjoiner(intel_dp, adjusted_mode->crtc_hdisplay,
adjusted_mode->crtc_clock))
pipe_config->bigjoiner_pipes = GENMASK(crtc->pipe + 1, crtc->pipe);
/*
* Pipe joiner needs compression up to display 12 due to bandwidth
* limitation. DG2 onwards pipe joiner can be enabled without
* compression.
*/
joiner_needs_dsc = DISPLAY_VER(i915) < 13 && pipe_config->bigjoiner_pipes;
dsc_needed = joiner_needs_dsc || intel_dp->force_dsc_en ||
!intel_dp_compute_config_limits(intel_dp, pipe_config,
respect_downstream_limits,
false,
&limits);
if (!dsc_needed) {
/*
* Optimize for slow and wide for everything, because there are some
* eDP 1.3 and 1.4 panels don't work well with fast and narrow.
*/
ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
conn_state, &limits);
if (ret)
dsc_needed = true;
}
if (dsc_needed) {
drm_dbg_kms(&i915->drm, "Try DSC (fallback=%s, joiner=%s, force=%s)\n",
str_yes_no(ret), str_yes_no(joiner_needs_dsc),
str_yes_no(intel_dp->force_dsc_en));
if (!intel_dp_compute_config_limits(intel_dp, pipe_config,
respect_downstream_limits,
true,
&limits))
return -EINVAL;
ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
conn_state, &limits, 64, true);
if (ret < 0)
return ret;
}
drm_dbg_kms(&i915->drm,
"DP lane count %d clock %d bpp input %d compressed " BPP_X16_FMT " link rate required %d available %d\n",
pipe_config->lane_count, pipe_config->port_clock,
pipe_config->pipe_bpp,
BPP_X16_ARGS(pipe_config->dsc.compressed_bpp_x16),
intel_dp_config_required_rate(pipe_config),
intel_dp_max_link_data_rate(intel_dp,
pipe_config->port_clock,
pipe_config->lane_count));
return 0;
}
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
const struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
/*
* Our YCbCr output is always limited range.
* crtc_state->limited_color_range only applies to RGB,
* and it must never be set for YCbCr or we risk setting
* some conflicting bits in TRANSCONF which will mess up
* the colors on the monitor.
*/
if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
return false;
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/*
* See:
* CEA-861-E - 5.1 Default Encoding Parameters
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
*/
return crtc_state->pipe_bpp != 18 &&
drm_default_rgb_quant_range(adjusted_mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
} else {
return intel_conn_state->broadcast_rgb ==
INTEL_BROADCAST_RGB_LIMITED;
}
}
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
enum port port)
{
if (IS_G4X(dev_priv))
return false;
if (DISPLAY_VER(dev_priv) < 12 && port == PORT_A)
return false;
return true;
}
static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state,
struct drm_dp_vsc_sdp *vsc)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (crtc_state->has_panel_replay) {
/*
* Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223
* VSC SDP supporting 3D stereo, Panel Replay, and Pixel
* Encoding/Colorimetry Format indication.
*/
vsc->revision = 0x7;
} else {
/*
* Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
* VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
* Colorimetry Format indication.
*/
vsc->revision = 0x5;
}
vsc->length = 0x13;
/* DP 1.4a spec, Table 2-120 */
switch (crtc_state->output_format) {
case INTEL_OUTPUT_FORMAT_YCBCR444:
vsc->pixelformat = DP_PIXELFORMAT_YUV444;
break;
case INTEL_OUTPUT_FORMAT_YCBCR420:
vsc->pixelformat = DP_PIXELFORMAT_YUV420;
break;
case INTEL_OUTPUT_FORMAT_RGB:
default:
vsc->pixelformat = DP_PIXELFORMAT_RGB;
}
switch (conn_state->colorspace) {
case DRM_MODE_COLORIMETRY_BT709_YCC:
vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
break;
case DRM_MODE_COLORIMETRY_XVYCC_601:
vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
break;
case DRM_MODE_COLORIMETRY_XVYCC_709:
vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
break;
case DRM_MODE_COLORIMETRY_SYCC_601:
vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
break;
case DRM_MODE_COLORIMETRY_OPYCC_601:
vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
break;
case DRM_MODE_COLORIMETRY_BT2020_CYCC:
vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
break;
case DRM_MODE_COLORIMETRY_BT2020_RGB:
vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
break;
case DRM_MODE_COLORIMETRY_BT2020_YCC:
vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
break;
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
break;
default:
/*
* RGB->YCBCR color conversion uses the BT.709
* color space.
*/
if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
else
vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
break;
}
vsc->bpc = crtc_state->pipe_bpp / 3;
/* only RGB pixelformat supports 6 bpc */
drm_WARN_ON(&dev_priv->drm,
vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
/* all YCbCr are always limited range */
vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
}
static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_dp_vsc_sdp *vsc;
if ((!intel_dp->colorimetry_support ||
!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) &&
!crtc_state->has_psr)
return;
vsc = &crtc_state->infoframes.vsc;
crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
vsc->sdp_type = DP_SDP_VSC;
/* Needs colorimetry */
if (intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
vsc);
} else if (crtc_state->has_psr2) {
/*
* [PSR2 without colorimetry]
* Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
* 3D stereo + PSR/PSR2 + Y-coordinate.
*/
vsc->revision = 0x4;
vsc->length = 0xe;
} else if (crtc_state->has_panel_replay) {
/*
* [Panel Replay without colorimetry info]
* Prepare VSC Header for SU as per DP 2.0 spec, Table 2-223
* VSC SDP supporting 3D stereo + Panel Replay.
*/
vsc->revision = 0x6;
vsc->length = 0x10;
} else {
/*
* [PSR1]
* Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
* VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
* higher).
*/
vsc->revision = 0x2;
vsc->length = 0x8;
}
}
static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
int ret;
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
if (!conn_state->hdr_output_metadata)
return;
ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
if (ret) {
drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
return;
}
crtc_state->infoframes.enable |=
intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
}
static bool can_enable_drrs(struct intel_connector *connector,
const struct intel_crtc_state *pipe_config,
const struct drm_display_mode *downclock_mode)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
if (pipe_config->vrr.enable)
return false;
/*
* DRRS and PSR can't be enable together, so giving preference to PSR
* as it allows more power-savings by complete shutting down display,
* so to guarantee this, intel_drrs_compute_config() must be called
* after intel_psr_compute_config().
*/
if (pipe_config->has_psr)
return false;
/* FIXME missing FDI M2/N2 etc. */
if (pipe_config->has_pch_encoder)
return false;
if (!intel_cpu_transcoder_has_drrs(i915, pipe_config->cpu_transcoder))
return false;
return downclock_mode &&
intel_panel_drrs_type(connector) == DRRS_TYPE_SEAMLESS;
}
static void
intel_dp_drrs_compute_config(struct intel_connector *connector,
struct intel_crtc_state *pipe_config,
int link_bpp_x16)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
const struct drm_display_mode *downclock_mode =
intel_panel_downclock_mode(connector, &pipe_config->hw.adjusted_mode);
int pixel_clock;
if (has_seamless_m_n(connector))
pipe_config->update_m_n = true;
if (!can_enable_drrs(connector, pipe_config, downclock_mode)) {
if (intel_cpu_transcoder_has_m2_n2(i915, pipe_config->cpu_transcoder))
intel_zero_m_n(&pipe_config->dp_m2_n2);
return;
}
if (IS_IRONLAKE(i915) || IS_SANDYBRIDGE(i915) || IS_IVYBRIDGE(i915))
pipe_config->msa_timing_delay = connector->panel.vbt.edp.drrs_msa_timing_delay;
pipe_config->has_drrs = true;
pixel_clock = downclock_mode->clock;
if (pipe_config->splitter.enable)
pixel_clock /= pipe_config->splitter.link_count;
intel_link_compute_m_n(link_bpp_x16, pipe_config->lane_count, pixel_clock,
pipe_config->port_clock,
intel_dp_bw_fec_overhead(pipe_config->fec_enable),
&pipe_config->dp_m2_n2);
/* FIXME: abstract this better */
if (pipe_config->splitter.enable)
pipe_config->dp_m2_n2.data_m *= pipe_config->splitter.link_count;
}
static bool intel_dp_has_audio(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST) &&
!intel_dp_port_has_audio(i915, encoder->port))
return false;
if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
return connector->base.display_info.has_audio;
else
return intel_conn_state->force_audio == HDMI_AUDIO_ON;
}
static int
intel_dp_compute_output_format(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
bool respect_downstream_limits)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_connector *connector = intel_dp->attached_connector;
const struct drm_display_info *info = &connector->base.display_info;
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
bool ycbcr_420_only;
int ret;
ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
if (ycbcr_420_only && !connector->base.ycbcr_420_allowed) {
drm_dbg_kms(&i915->drm,
"YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
} else {
crtc_state->sink_format = intel_dp_sink_format(connector, adjusted_mode);
}
crtc_state->output_format = intel_dp_output_format(connector, crtc_state->sink_format);
ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state,
respect_downstream_limits);
if (ret) {
if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
!connector->base.ycbcr_420_allowed ||
!drm_mode_is_420_also(info, adjusted_mode))
return ret;
crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
crtc_state->output_format = intel_dp_output_format(connector,
crtc_state->sink_format);
ret = intel_dp_compute_link_config(encoder, crtc_state, conn_state,
respect_downstream_limits);
}
return ret;
}
void
intel_dp_audio_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
pipe_config->has_audio =
intel_dp_has_audio(encoder, pipe_config, conn_state) &&
intel_audio_compute_config(encoder, pipe_config, conn_state);
pipe_config->sdp_split_enable = pipe_config->has_audio &&
intel_dp_is_uhbr(pipe_config);
}
void intel_dp_queue_modeset_retry_work(struct intel_connector *connector)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
drm_connector_get(&connector->base);
if (!queue_work(i915->unordered_wq, &connector->modeset_retry_work))
drm_connector_put(&connector->base);
}
void
intel_dp_queue_modeset_retry_for_link(struct intel_atomic_state *state,
struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_connector *connector;
struct intel_digital_connector_state *conn_state;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
int i;
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP_MST)) {
intel_dp_queue_modeset_retry_work(intel_dp->attached_connector);
return;
}
for_each_new_intel_connector_in_state(state, connector, conn_state, i) {
if (!conn_state->base.crtc)
continue;
if (connector->mst_port == intel_dp)
intel_dp_queue_modeset_retry_work(connector);
}
}
int
intel_dp_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_atomic_state *state = to_intel_atomic_state(conn_state->state);
struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
const struct drm_display_mode *fixed_mode;
struct intel_connector *connector = intel_dp->attached_connector;
int ret = 0, link_bpp_x16;
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && encoder->port != PORT_A)
pipe_config->has_pch_encoder = true;
fixed_mode = intel_panel_fixed_mode(connector, adjusted_mode);
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
ret = intel_panel_compute_config(connector, adjusted_mode);
if (ret)
return ret;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return -EINVAL;
if (!connector->base.interlace_allowed &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return -EINVAL;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return -EINVAL;
if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
return -EINVAL;
/*
* Try to respect downstream TMDS clock limits first, if
* that fails assume the user might know something we don't.
*/
ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, true);
if (ret)
ret = intel_dp_compute_output_format(encoder, pipe_config, conn_state, false);
if (ret)
return ret;
if ((intel_dp_is_edp(intel_dp) && fixed_mode) ||
pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
ret = intel_panel_fitting(pipe_config, conn_state);
if (ret)
return ret;
}
pipe_config->limited_color_range =
intel_dp_limited_color_range(pipe_config, conn_state);
pipe_config->enhanced_framing =
drm_dp_enhanced_frame_cap(intel_dp->dpcd);
if (pipe_config->dsc.compression_enable)
link_bpp_x16 = pipe_config->dsc.compressed_bpp_x16;
else
link_bpp_x16 = to_bpp_x16(intel_dp_output_bpp(pipe_config->output_format,
pipe_config->pipe_bpp));
if (intel_dp->mso_link_count) {
int n = intel_dp->mso_link_count;
int overlap = intel_dp->mso_pixel_overlap;
pipe_config->splitter.enable = true;
pipe_config->splitter.link_count = n;
pipe_config->splitter.pixel_overlap = overlap;
drm_dbg_kms(&dev_priv->drm, "MSO link count %d, pixel overlap %d\n",
n, overlap);
adjusted_mode->crtc_hdisplay = adjusted_mode->crtc_hdisplay / n + overlap;
adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hblank_start / n + overlap;
adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_hblank_end / n + overlap;
adjusted_mode->crtc_hsync_start = adjusted_mode->crtc_hsync_start / n + overlap;
adjusted_mode->crtc_hsync_end = adjusted_mode->crtc_hsync_end / n + overlap;
adjusted_mode->crtc_htotal = adjusted_mode->crtc_htotal / n + overlap;
adjusted_mode->crtc_clock /= n;
}
intel_dp_audio_compute_config(encoder, pipe_config, conn_state);
intel_link_compute_m_n(link_bpp_x16,
pipe_config->lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
intel_dp_bw_fec_overhead(pipe_config->fec_enable),
&pipe_config->dp_m_n);
/* FIXME: abstract this better */
if (pipe_config->splitter.enable)
pipe_config->dp_m_n.data_m *= pipe_config->splitter.link_count;
if (!HAS_DDI(dev_priv))
g4x_dp_set_clock(encoder, pipe_config);
intel_vrr_compute_config(pipe_config, conn_state);
intel_psr_compute_config(intel_dp, pipe_config, conn_state);
intel_dp_drrs_compute_config(connector, pipe_config, link_bpp_x16);
intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
return intel_dp_tunnel_atomic_compute_stream_bw(state, intel_dp, connector,
pipe_config);
}
void intel_dp_set_link_params(struct intel_dp *intel_dp,
int link_rate, int lane_count)
{
memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
intel_dp->link_trained = false;
intel_dp->link_rate = link_rate;
intel_dp->lane_count = lane_count;
}
static void intel_dp_reset_max_link_params(struct intel_dp *intel_dp)
{
intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
}
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_dp_is_edp(intel_dp))
return;
drm_dbg_kms(&i915->drm, "\n");
intel_backlight_enable(crtc_state, conn_state);
intel_pps_backlight_on(intel_dp);
}
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
struct drm_i915_private *i915 = dp_to_i915(intel_dp);
if (!intel_dp_is_edp(intel_dp))
return;
drm_dbg_kms(&i915->drm, "\n");
intel_pps_backlight_off(intel_dp);
intel_backlight_disable(old_conn_state);
}
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
/*
* DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
* be capable of signalling downstream hpd with a long pulse.
* Whether or not that means D3 is safe to use is not clear,
* but let's assume so until proven otherwise.
*
* FIXME should really check all downstream ports...
*/
return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
drm_dp_is_branch(intel_dp->dpcd) &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}
static int
write_dsc_decompression_flag(struct drm_dp_aux *aux, u8 flag, bool set)
{
int err;
u8 val;
err = drm_dp_dpcd_readb(aux, DP_DSC_ENABLE, &val);
if (err < 0)
return err;
if (set)
val |= flag;
else
val &= ~flag;
return drm_dp_dpcd_writeb(aux, DP_DSC_ENABLE, val);
}
static void
intel_dp_sink_set_dsc_decompression(struct intel_connector *connector,
bool enable)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
if (write_dsc_decompression_flag(connector->dp.dsc_decompression_aux,
DP_DECOMPRESSION_EN, enable) < 0)
drm_dbg_kms(&i915->drm,
"Failed to %s sink decompression state\n",
str_enable_disable(enable));
}
static void
intel_dp_sink_set_dsc_passthrough(const struct intel_connector *connector,
bool enable)
{
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct drm_dp_aux *aux = connector->port ?
connector->port->passthrough_aux : NULL;
if (!aux)
return;
if (write_dsc_decompression_flag(aux,
DP_DSC_PASSTHROUGH_EN, enable) < 0)
drm_dbg_kms(&i915->drm,
"Failed to %s sink compression passthrough state\n",
str_enable_disable(enable));
}