blob: 6104418c9ad5d30ca6cdb2e0342b8127c579ecc8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Support PCI/PCIe on PowerNV platforms
*
* Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>
#include <linux/iommu.h>
#include <linux/sched/mm.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/ppc-pci.h>
#include <asm/pnv-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>
#include <asm/firmware.h>
#include <asm/eeh_event.h>
#include <asm/eeh.h>
#include "powernv.h"
#include "pci.h"
static DEFINE_MUTEX(tunnel_mutex);
int pnv_pci_get_slot_id(struct device_node *np, uint64_t *id)
{
struct device_node *parent = np;
u32 bdfn;
u64 phbid;
int ret;
ret = of_property_read_u32(np, "reg", &bdfn);
if (ret)
return -ENXIO;
bdfn = ((bdfn & 0x00ffff00) >> 8);
while ((parent = of_get_parent(parent))) {
if (!PCI_DN(parent)) {
of_node_put(parent);
break;
}
if (!of_device_is_compatible(parent, "ibm,ioda2-phb")) {
of_node_put(parent);
continue;
}
ret = of_property_read_u64(parent, "ibm,opal-phbid", &phbid);
if (ret) {
of_node_put(parent);
return -ENXIO;
}
*id = PCI_SLOT_ID(phbid, bdfn);
return 0;
}
return -ENODEV;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_slot_id);
int pnv_pci_get_device_tree(uint32_t phandle, void *buf, uint64_t len)
{
int64_t rc;
if (!opal_check_token(OPAL_GET_DEVICE_TREE))
return -ENXIO;
rc = opal_get_device_tree(phandle, (uint64_t)buf, len);
if (rc < OPAL_SUCCESS)
return -EIO;
return rc;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_device_tree);
int pnv_pci_get_presence_state(uint64_t id, uint8_t *state)
{
int64_t rc;
if (!opal_check_token(OPAL_PCI_GET_PRESENCE_STATE))
return -ENXIO;
rc = opal_pci_get_presence_state(id, (uint64_t)state);
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_presence_state);
int pnv_pci_get_power_state(uint64_t id, uint8_t *state)
{
int64_t rc;
if (!opal_check_token(OPAL_PCI_GET_POWER_STATE))
return -ENXIO;
rc = opal_pci_get_power_state(id, (uint64_t)state);
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(pnv_pci_get_power_state);
int pnv_pci_set_power_state(uint64_t id, uint8_t state, struct opal_msg *msg)
{
struct opal_msg m;
int token, ret;
int64_t rc;
if (!opal_check_token(OPAL_PCI_SET_POWER_STATE))
return -ENXIO;
token = opal_async_get_token_interruptible();
if (unlikely(token < 0))
return token;
rc = opal_pci_set_power_state(token, id, (uint64_t)&state);
if (rc == OPAL_SUCCESS) {
ret = 0;
goto exit;
} else if (rc != OPAL_ASYNC_COMPLETION) {
ret = -EIO;
goto exit;
}
ret = opal_async_wait_response(token, &m);
if (ret < 0)
goto exit;
if (msg) {
ret = 1;
memcpy(msg, &m, sizeof(m));
}
exit:
opal_async_release_token(token);
return ret;
}
EXPORT_SYMBOL_GPL(pnv_pci_set_power_state);
int pnv_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct msi_desc *entry;
struct msi_msg msg;
int hwirq;
unsigned int virq;
int rc;
if (WARN_ON(!phb) || !phb->msi_bmp.bitmap)
return -ENODEV;
if (pdev->no_64bit_msi && !phb->msi32_support)
return -ENODEV;
for_each_pci_msi_entry(entry, pdev) {
if (!entry->msi_attrib.is_64 && !phb->msi32_support) {
pr_warn("%s: Supports only 64-bit MSIs\n",
pci_name(pdev));
return -ENXIO;
}
hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, 1);
if (hwirq < 0) {
pr_warn("%s: Failed to find a free MSI\n",
pci_name(pdev));
return -ENOSPC;
}
virq = irq_create_mapping(NULL, phb->msi_base + hwirq);
if (!virq) {
pr_warn("%s: Failed to map MSI to linux irq\n",
pci_name(pdev));
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
return -ENOMEM;
}
rc = phb->msi_setup(phb, pdev, phb->msi_base + hwirq,
virq, entry->msi_attrib.is_64, &msg);
if (rc) {
pr_warn("%s: Failed to setup MSI\n", pci_name(pdev));
irq_dispose_mapping(virq);
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, 1);
return rc;
}
irq_set_msi_desc(virq, entry);
pci_write_msi_msg(virq, &msg);
}
return 0;
}
void pnv_teardown_msi_irqs(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct msi_desc *entry;
irq_hw_number_t hwirq;
if (WARN_ON(!phb))
return;
for_each_pci_msi_entry(entry, pdev) {
if (!entry->irq)
continue;
hwirq = virq_to_hw(entry->irq);
irq_set_msi_desc(entry->irq, NULL);
irq_dispose_mapping(entry->irq);
msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, 1);
}
}
/* Nicely print the contents of the PE State Tables (PEST). */
static void pnv_pci_dump_pest(__be64 pestA[], __be64 pestB[], int pest_size)
{
__be64 prevA = ULONG_MAX, prevB = ULONG_MAX;
bool dup = false;
int i;
for (i = 0; i < pest_size; i++) {
__be64 peA = be64_to_cpu(pestA[i]);
__be64 peB = be64_to_cpu(pestB[i]);
if (peA != prevA || peB != prevB) {
if (dup) {
pr_info("PE[..%03x] A/B: as above\n", i-1);
dup = false;
}
prevA = peA;
prevB = peB;
if (peA & PNV_IODA_STOPPED_STATE ||
peB & PNV_IODA_STOPPED_STATE)
pr_info("PE[%03x] A/B: %016llx %016llx\n",
i, peA, peB);
} else if (!dup && (peA & PNV_IODA_STOPPED_STATE ||
peB & PNV_IODA_STOPPED_STATE)) {
dup = true;
}
}
}
static void pnv_pci_dump_p7ioc_diag_data(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoP7IOCPhbErrorData *data;
data = (struct OpalIoP7IOCPhbErrorData *)common;
pr_info("P7IOC PHB#%x Diag-data (Version: %d)\n",
hose->global_number, be32_to_cpu(common->version));
if (data->brdgCtl)
pr_info("brdgCtl: %08x\n",
be32_to_cpu(data->brdgCtl));
if (data->portStatusReg || data->rootCmplxStatus ||
data->busAgentStatus)
pr_info("UtlSts: %08x %08x %08x\n",
be32_to_cpu(data->portStatusReg),
be32_to_cpu(data->rootCmplxStatus),
be32_to_cpu(data->busAgentStatus));
if (data->deviceStatus || data->slotStatus ||
data->linkStatus || data->devCmdStatus ||
data->devSecStatus)
pr_info("RootSts: %08x %08x %08x %08x %08x\n",
be32_to_cpu(data->deviceStatus),
be32_to_cpu(data->slotStatus),
be32_to_cpu(data->linkStatus),
be32_to_cpu(data->devCmdStatus),
be32_to_cpu(data->devSecStatus));
if (data->rootErrorStatus || data->uncorrErrorStatus ||
data->corrErrorStatus)
pr_info("RootErrSts: %08x %08x %08x\n",
be32_to_cpu(data->rootErrorStatus),
be32_to_cpu(data->uncorrErrorStatus),
be32_to_cpu(data->corrErrorStatus));
if (data->tlpHdr1 || data->tlpHdr2 ||
data->tlpHdr3 || data->tlpHdr4)
pr_info("RootErrLog: %08x %08x %08x %08x\n",
be32_to_cpu(data->tlpHdr1),
be32_to_cpu(data->tlpHdr2),
be32_to_cpu(data->tlpHdr3),
be32_to_cpu(data->tlpHdr4));
if (data->sourceId || data->errorClass ||
data->correlator)
pr_info("RootErrLog1: %08x %016llx %016llx\n",
be32_to_cpu(data->sourceId),
be64_to_cpu(data->errorClass),
be64_to_cpu(data->correlator));
if (data->p7iocPlssr || data->p7iocCsr)
pr_info("PhbSts: %016llx %016llx\n",
be64_to_cpu(data->p7iocPlssr),
be64_to_cpu(data->p7iocCsr));
if (data->lemFir)
pr_info("Lem: %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrorMask),
be64_to_cpu(data->lemWOF));
if (data->phbErrorStatus)
pr_info("PhbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbErrorStatus),
be64_to_cpu(data->phbFirstErrorStatus),
be64_to_cpu(data->phbErrorLog0),
be64_to_cpu(data->phbErrorLog1));
if (data->mmioErrorStatus)
pr_info("OutErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->mmioErrorStatus),
be64_to_cpu(data->mmioFirstErrorStatus),
be64_to_cpu(data->mmioErrorLog0),
be64_to_cpu(data->mmioErrorLog1));
if (data->dma0ErrorStatus)
pr_info("InAErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma0ErrorStatus),
be64_to_cpu(data->dma0FirstErrorStatus),
be64_to_cpu(data->dma0ErrorLog0),
be64_to_cpu(data->dma0ErrorLog1));
if (data->dma1ErrorStatus)
pr_info("InBErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma1ErrorStatus),
be64_to_cpu(data->dma1FirstErrorStatus),
be64_to_cpu(data->dma1ErrorLog0),
be64_to_cpu(data->dma1ErrorLog1));
pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_P7IOC_NUM_PEST_REGS);
}
static void pnv_pci_dump_phb3_diag_data(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoPhb3ErrorData *data;
data = (struct OpalIoPhb3ErrorData*)common;
pr_info("PHB3 PHB#%x Diag-data (Version: %d)\n",
hose->global_number, be32_to_cpu(common->version));
if (data->brdgCtl)
pr_info("brdgCtl: %08x\n",
be32_to_cpu(data->brdgCtl));
if (data->portStatusReg || data->rootCmplxStatus ||
data->busAgentStatus)
pr_info("UtlSts: %08x %08x %08x\n",
be32_to_cpu(data->portStatusReg),
be32_to_cpu(data->rootCmplxStatus),
be32_to_cpu(data->busAgentStatus));
if (data->deviceStatus || data->slotStatus ||
data->linkStatus || data->devCmdStatus ||
data->devSecStatus)
pr_info("RootSts: %08x %08x %08x %08x %08x\n",
be32_to_cpu(data->deviceStatus),
be32_to_cpu(data->slotStatus),
be32_to_cpu(data->linkStatus),
be32_to_cpu(data->devCmdStatus),
be32_to_cpu(data->devSecStatus));
if (data->rootErrorStatus || data->uncorrErrorStatus ||
data->corrErrorStatus)
pr_info("RootErrSts: %08x %08x %08x\n",
be32_to_cpu(data->rootErrorStatus),
be32_to_cpu(data->uncorrErrorStatus),
be32_to_cpu(data->corrErrorStatus));
if (data->tlpHdr1 || data->tlpHdr2 ||
data->tlpHdr3 || data->tlpHdr4)
pr_info("RootErrLog: %08x %08x %08x %08x\n",
be32_to_cpu(data->tlpHdr1),
be32_to_cpu(data->tlpHdr2),
be32_to_cpu(data->tlpHdr3),
be32_to_cpu(data->tlpHdr4));
if (data->sourceId || data->errorClass ||
data->correlator)
pr_info("RootErrLog1: %08x %016llx %016llx\n",
be32_to_cpu(data->sourceId),
be64_to_cpu(data->errorClass),
be64_to_cpu(data->correlator));
if (data->nFir)
pr_info("nFir: %016llx %016llx %016llx\n",
be64_to_cpu(data->nFir),
be64_to_cpu(data->nFirMask),
be64_to_cpu(data->nFirWOF));
if (data->phbPlssr || data->phbCsr)
pr_info("PhbSts: %016llx %016llx\n",
be64_to_cpu(data->phbPlssr),
be64_to_cpu(data->phbCsr));
if (data->lemFir)
pr_info("Lem: %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrorMask),
be64_to_cpu(data->lemWOF));
if (data->phbErrorStatus)
pr_info("PhbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbErrorStatus),
be64_to_cpu(data->phbFirstErrorStatus),
be64_to_cpu(data->phbErrorLog0),
be64_to_cpu(data->phbErrorLog1));
if (data->mmioErrorStatus)
pr_info("OutErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->mmioErrorStatus),
be64_to_cpu(data->mmioFirstErrorStatus),
be64_to_cpu(data->mmioErrorLog0),
be64_to_cpu(data->mmioErrorLog1));
if (data->dma0ErrorStatus)
pr_info("InAErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma0ErrorStatus),
be64_to_cpu(data->dma0FirstErrorStatus),
be64_to_cpu(data->dma0ErrorLog0),
be64_to_cpu(data->dma0ErrorLog1));
if (data->dma1ErrorStatus)
pr_info("InBErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->dma1ErrorStatus),
be64_to_cpu(data->dma1FirstErrorStatus),
be64_to_cpu(data->dma1ErrorLog0),
be64_to_cpu(data->dma1ErrorLog1));
pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB3_NUM_PEST_REGS);
}
static void pnv_pci_dump_phb4_diag_data(struct pci_controller *hose,
struct OpalIoPhbErrorCommon *common)
{
struct OpalIoPhb4ErrorData *data;
data = (struct OpalIoPhb4ErrorData*)common;
pr_info("PHB4 PHB#%d Diag-data (Version: %d)\n",
hose->global_number, be32_to_cpu(common->version));
if (data->brdgCtl)
pr_info("brdgCtl: %08x\n",
be32_to_cpu(data->brdgCtl));
if (data->deviceStatus || data->slotStatus ||
data->linkStatus || data->devCmdStatus ||
data->devSecStatus)
pr_info("RootSts: %08x %08x %08x %08x %08x\n",
be32_to_cpu(data->deviceStatus),
be32_to_cpu(data->slotStatus),
be32_to_cpu(data->linkStatus),
be32_to_cpu(data->devCmdStatus),
be32_to_cpu(data->devSecStatus));
if (data->rootErrorStatus || data->uncorrErrorStatus ||
data->corrErrorStatus)
pr_info("RootErrSts: %08x %08x %08x\n",
be32_to_cpu(data->rootErrorStatus),
be32_to_cpu(data->uncorrErrorStatus),
be32_to_cpu(data->corrErrorStatus));
if (data->tlpHdr1 || data->tlpHdr2 ||
data->tlpHdr3 || data->tlpHdr4)
pr_info("RootErrLog: %08x %08x %08x %08x\n",
be32_to_cpu(data->tlpHdr1),
be32_to_cpu(data->tlpHdr2),
be32_to_cpu(data->tlpHdr3),
be32_to_cpu(data->tlpHdr4));
if (data->sourceId)
pr_info("sourceId: %08x\n", be32_to_cpu(data->sourceId));
if (data->nFir)
pr_info("nFir: %016llx %016llx %016llx\n",
be64_to_cpu(data->nFir),
be64_to_cpu(data->nFirMask),
be64_to_cpu(data->nFirWOF));
if (data->phbPlssr || data->phbCsr)
pr_info("PhbSts: %016llx %016llx\n",
be64_to_cpu(data->phbPlssr),
be64_to_cpu(data->phbCsr));
if (data->lemFir)
pr_info("Lem: %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrorMask),
be64_to_cpu(data->lemWOF));
if (data->phbErrorStatus)
pr_info("PhbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbErrorStatus),
be64_to_cpu(data->phbFirstErrorStatus),
be64_to_cpu(data->phbErrorLog0),
be64_to_cpu(data->phbErrorLog1));
if (data->phbTxeErrorStatus)
pr_info("PhbTxeErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbTxeErrorStatus),
be64_to_cpu(data->phbTxeFirstErrorStatus),
be64_to_cpu(data->phbTxeErrorLog0),
be64_to_cpu(data->phbTxeErrorLog1));
if (data->phbRxeArbErrorStatus)
pr_info("RxeArbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRxeArbErrorStatus),
be64_to_cpu(data->phbRxeArbFirstErrorStatus),
be64_to_cpu(data->phbRxeArbErrorLog0),
be64_to_cpu(data->phbRxeArbErrorLog1));
if (data->phbRxeMrgErrorStatus)
pr_info("RxeMrgErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRxeMrgErrorStatus),
be64_to_cpu(data->phbRxeMrgFirstErrorStatus),
be64_to_cpu(data->phbRxeMrgErrorLog0),
be64_to_cpu(data->phbRxeMrgErrorLog1));
if (data->phbRxeTceErrorStatus)
pr_info("RxeTceErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRxeTceErrorStatus),
be64_to_cpu(data->phbRxeTceFirstErrorStatus),
be64_to_cpu(data->phbRxeTceErrorLog0),
be64_to_cpu(data->phbRxeTceErrorLog1));
if (data->phbPblErrorStatus)
pr_info("PblErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbPblErrorStatus),
be64_to_cpu(data->phbPblFirstErrorStatus),
be64_to_cpu(data->phbPblErrorLog0),
be64_to_cpu(data->phbPblErrorLog1));
if (data->phbPcieDlpErrorStatus)
pr_info("PcieDlp: %016llx %016llx %016llx\n",
be64_to_cpu(data->phbPcieDlpErrorLog1),
be64_to_cpu(data->phbPcieDlpErrorLog2),
be64_to_cpu(data->phbPcieDlpErrorStatus));
if (data->phbRegbErrorStatus)
pr_info("RegbErr: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->phbRegbErrorStatus),
be64_to_cpu(data->phbRegbFirstErrorStatus),
be64_to_cpu(data->phbRegbErrorLog0),
be64_to_cpu(data->phbRegbErrorLog1));
pnv_pci_dump_pest(data->pestA, data->pestB, OPAL_PHB4_NUM_PEST_REGS);
}
void pnv_pci_dump_phb_diag_data(struct pci_controller *hose,
unsigned char *log_buff)
{
struct OpalIoPhbErrorCommon *common;
if (!hose || !log_buff)
return;
common = (struct OpalIoPhbErrorCommon *)log_buff;
switch (be32_to_cpu(common->ioType)) {
case OPAL_PHB_ERROR_DATA_TYPE_P7IOC:
pnv_pci_dump_p7ioc_diag_data(hose, common);
break;
case OPAL_PHB_ERROR_DATA_TYPE_PHB3:
pnv_pci_dump_phb3_diag_data(hose, common);
break;
case OPAL_PHB_ERROR_DATA_TYPE_PHB4:
pnv_pci_dump_phb4_diag_data(hose, common);
break;
default:
pr_warn("%s: Unrecognized ioType %d\n",
__func__, be32_to_cpu(common->ioType));
}
}
static void pnv_pci_handle_eeh_config(struct pnv_phb *phb, u32 pe_no)
{
unsigned long flags, rc;
int has_diag, ret = 0;
spin_lock_irqsave(&phb->lock, flags);
/* Fetch PHB diag-data */
rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
phb->diag_data_size);
has_diag = (rc == OPAL_SUCCESS);
/* If PHB supports compound PE, to handle it */
if (phb->unfreeze_pe) {
ret = phb->unfreeze_pe(phb,
pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
} else {
rc = opal_pci_eeh_freeze_clear(phb->opal_id,
pe_no,
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
if (rc) {
pr_warn("%s: Failure %ld clearing frozen "
"PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number,
pe_no);
ret = -EIO;
}
}
/*
* For now, let's only display the diag buffer when we fail to clear
* the EEH status. We'll do more sensible things later when we have
* proper EEH support. We need to make sure we don't pollute ourselves
* with the normal errors generated when probing empty slots
*/
if (has_diag && ret)
pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
spin_unlock_irqrestore(&phb->lock, flags);
}
static void pnv_pci_config_check_eeh(struct pci_dn *pdn)
{
struct pnv_phb *phb = pdn->phb->private_data;
u8 fstate = 0;
__be16 pcierr = 0;
unsigned int pe_no;
s64 rc;
/*
* Get the PE#. During the PCI probe stage, we might not
* setup that yet. So all ER errors should be mapped to
* reserved PE.
*/
pe_no = pdn->pe_number;
if (pe_no == IODA_INVALID_PE) {
pe_no = phb->ioda.reserved_pe_idx;
}
/*
* Fetch frozen state. If the PHB support compound PE,
* we need handle that case.
*/
if (phb->get_pe_state) {
fstate = phb->get_pe_state(phb, pe_no);
} else {
rc = opal_pci_eeh_freeze_status(phb->opal_id,
pe_no,
&fstate,
&pcierr,
NULL);
if (rc) {
pr_warn("%s: Failure %lld getting PHB#%x-PE#%x state\n",
__func__, rc, phb->hose->global_number, pe_no);
return;
}
}
pr_devel(" -> EEH check, bdfn=%04x PE#%x fstate=%x\n",
(pdn->busno << 8) | (pdn->devfn), pe_no, fstate);
/* Clear the frozen state if applicable */
if (fstate == OPAL_EEH_STOPPED_MMIO_FREEZE ||
fstate == OPAL_EEH_STOPPED_DMA_FREEZE ||
fstate == OPAL_EEH_STOPPED_MMIO_DMA_FREEZE) {
/*
* If PHB supports compound PE, freeze it for
* consistency.
*/
if (phb->freeze_pe)
phb->freeze_pe(phb, pe_no);
pnv_pci_handle_eeh_config(phb, pe_no);
}
}
int pnv_pci_cfg_read(struct pci_dn *pdn,
int where, int size, u32 *val)
{
struct pnv_phb *phb = pdn->phb->private_data;
u32 bdfn = (pdn->busno << 8) | pdn->devfn;
s64 rc;
switch (size) {
case 1: {
u8 v8;
rc = opal_pci_config_read_byte(phb->opal_id, bdfn, where, &v8);
*val = (rc == OPAL_SUCCESS) ? v8 : 0xff;
break;
}
case 2: {
__be16 v16;
rc = opal_pci_config_read_half_word(phb->opal_id, bdfn, where,
&v16);
*val = (rc == OPAL_SUCCESS) ? be16_to_cpu(v16) : 0xffff;
break;
}
case 4: {
__be32 v32;
rc = opal_pci_config_read_word(phb->opal_id, bdfn, where, &v32);
*val = (rc == OPAL_SUCCESS) ? be32_to_cpu(v32) : 0xffffffff;
break;
}
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
__func__, pdn->busno, pdn->devfn, where, size, *val);
return PCIBIOS_SUCCESSFUL;
}
int pnv_pci_cfg_write(struct pci_dn *pdn,
int where, int size, u32 val)
{
struct pnv_phb *phb = pdn->phb->private_data;
u32 bdfn = (pdn->busno << 8) | pdn->devfn;
pr_devel("%s: bus: %x devfn: %x +%x/%x -> %08x\n",
__func__, pdn->busno, pdn->devfn, where, size, val);
switch (size) {
case 1:
opal_pci_config_write_byte(phb->opal_id, bdfn, where, val);
break;
case 2:
opal_pci_config_write_half_word(phb->opal_id, bdfn, where, val);
break;
case 4:
opal_pci_config_write_word(phb->opal_id, bdfn, where, val);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
return PCIBIOS_SUCCESSFUL;
}
#if CONFIG_EEH
static bool pnv_pci_cfg_check(struct pci_dn *pdn)
{
struct eeh_dev *edev = NULL;
struct pnv_phb *phb = pdn->phb->private_data;
/* EEH not enabled ? */
if (!(phb->flags & PNV_PHB_FLAG_EEH))
return true;
/* PE reset or device removed ? */
edev = pdn->edev;
if (edev) {
if (edev->pe &&
(edev->pe->state & EEH_PE_CFG_BLOCKED))
return false;
if (edev->mode & EEH_DEV_REMOVED)
return false;
}
return true;
}
#else
static inline pnv_pci_cfg_check(struct pci_dn *pdn)
{
return true;
}
#endif /* CONFIG_EEH */
static int pnv_pci_read_config(struct pci_bus *bus,
unsigned int devfn,
int where, int size, u32 *val)
{
struct pci_dn *pdn;
struct pnv_phb *phb;
int ret;
*val = 0xFFFFFFFF;
pdn = pci_get_pdn_by_devfn(bus, devfn);
if (!pdn)
return PCIBIOS_DEVICE_NOT_FOUND;
if (!pnv_pci_cfg_check(pdn))
return PCIBIOS_DEVICE_NOT_FOUND;
ret = pnv_pci_cfg_read(pdn, where, size, val);
phb = pdn->phb->private_data;
if (phb->flags & PNV_PHB_FLAG_EEH && pdn->edev) {
if (*val == EEH_IO_ERROR_VALUE(size) &&
eeh_dev_check_failure(pdn->edev))
return PCIBIOS_DEVICE_NOT_FOUND;
} else {
pnv_pci_config_check_eeh(pdn);
}
return ret;
}
static int pnv_pci_write_config(struct pci_bus *bus,
unsigned int devfn,
int where, int size, u32 val)
{
struct pci_dn *pdn;
struct pnv_phb *phb;
int ret;
pdn = pci_get_pdn_by_devfn(bus, devfn);
if (!pdn)
return PCIBIOS_DEVICE_NOT_FOUND;
if (!pnv_pci_cfg_check(pdn))
return PCIBIOS_DEVICE_NOT_FOUND;
ret = pnv_pci_cfg_write(pdn, where, size, val);
phb = pdn->phb->private_data;
if (!(phb->flags & PNV_PHB_FLAG_EEH))
pnv_pci_config_check_eeh(pdn);
return ret;
}
struct pci_ops pnv_pci_ops = {
.read = pnv_pci_read_config,
.write = pnv_pci_write_config,
};
struct iommu_table *pnv_pci_table_alloc(int nid)
{
struct iommu_table *tbl;
tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL, nid);
if (!tbl)
return NULL;
INIT_LIST_HEAD_RCU(&tbl->it_group_list);
kref_init(&tbl->it_kref);
return tbl;
}
void pnv_pci_dma_dev_setup(struct pci_dev *pdev)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
#ifdef CONFIG_PCI_IOV
struct pnv_ioda_pe *pe;
struct pci_dn *pdn;
/* Fix the VF pdn PE number */
if (pdev->is_virtfn) {
pdn = pci_get_pdn(pdev);
WARN_ON(pdn->pe_number != IODA_INVALID_PE);
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
if (pe->rid == ((pdev->bus->number << 8) |
(pdev->devfn & 0xff))) {
pdn->pe_number = pe->pe_number;
pe->pdev = pdev;
break;
}
}
}
#endif /* CONFIG_PCI_IOV */
if (phb && phb->dma_dev_setup)
phb->dma_dev_setup(phb, pdev);
}
void pnv_pci_dma_bus_setup(struct pci_bus *bus)
{
struct pci_controller *hose = bus->sysdata;
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pe;
list_for_each_entry(pe, &phb->ioda.pe_list, list) {
if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
continue;
if (!pe->pbus)
continue;
if (bus->number == ((pe->rid >> 8) & 0xFF)) {
pe->pbus = bus;
break;
}
}
}
struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
{
struct pci_controller *hose = pci_bus_to_host(dev->bus);
return of_node_get(hose->dn);
}
EXPORT_SYMBOL(pnv_pci_get_phb_node);
int pnv_pci_set_tunnel_bar(struct pci_dev *dev, u64 addr, int enable)
{
__be64 val;
struct pci_controller *hose;
struct pnv_phb *phb;
u64 tunnel_bar;
int rc;
if (!opal_check_token(OPAL_PCI_GET_PBCQ_TUNNEL_BAR))
return -ENXIO;
if (!opal_check_token(OPAL_PCI_SET_PBCQ_TUNNEL_BAR))
return -ENXIO;
hose = pci_bus_to_host(dev->bus);
phb = hose->private_data;
mutex_lock(&tunnel_mutex);
rc = opal_pci_get_pbcq_tunnel_bar(phb->opal_id, &val);
if (rc != OPAL_SUCCESS) {
rc = -EIO;
goto out;
}
tunnel_bar = be64_to_cpu(val);
if (enable) {
/*
* Only one device per PHB can use atomics.
* Our policy is first-come, first-served.
*/
if (tunnel_bar) {
if (tunnel_bar != addr)
rc = -EBUSY;
else
rc = 0; /* Setting same address twice is ok */
goto out;
}
} else {
/*
* The device that owns atomics and wants to release
* them must pass the same address with enable == 0.
*/
if (tunnel_bar != addr) {
rc = -EPERM;
goto out;
}
addr = 0x0ULL;
}
rc = opal_pci_set_pbcq_tunnel_bar(phb->opal_id, addr);
rc = opal_error_code(rc);
out:
mutex_unlock(&tunnel_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(pnv_pci_set_tunnel_bar);
void pnv_pci_shutdown(void)
{
struct pci_controller *hose;
list_for_each_entry(hose, &hose_list, list_node)
if (hose->controller_ops.shutdown)
hose->controller_ops.shutdown(hose);
}
/* Fixup wrong class code in p7ioc and p8 root complex */
static void pnv_p7ioc_rc_quirk(struct pci_dev *dev)
{
dev->class = PCI_CLASS_BRIDGE_PCI << 8;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_IBM, 0x3b9, pnv_p7ioc_rc_quirk);
void __init pnv_pci_init(void)
{
struct device_node *np;
pci_add_flags(PCI_CAN_SKIP_ISA_ALIGN);
/* If we don't have OPAL, eg. in sim, just skip PCI probe */
if (!firmware_has_feature(FW_FEATURE_OPAL))
return;
/* Look for IODA IO-Hubs. */
for_each_compatible_node(np, NULL, "ibm,ioda-hub") {
pnv_pci_init_ioda_hub(np);
}
/* Look for ioda2 built-in PHB3's */
for_each_compatible_node(np, NULL, "ibm,ioda2-phb")
pnv_pci_init_ioda2_phb(np);
/* Look for ioda3 built-in PHB4's, we treat them as IODA2 */
for_each_compatible_node(np, NULL, "ibm,ioda3-phb")
pnv_pci_init_ioda2_phb(np);
/* Look for NPU PHBs */
for_each_compatible_node(np, NULL, "ibm,ioda2-npu-phb")
pnv_pci_init_npu_phb(np);
/*
* Look for NPU2 PHBs which we treat mostly as NPU PHBs with
* the exception of TCE kill which requires an OPAL call.
*/
for_each_compatible_node(np, NULL, "ibm,ioda2-npu2-phb")
pnv_pci_init_npu_phb(np);
/* Look for NPU2 OpenCAPI PHBs */
for_each_compatible_node(np, NULL, "ibm,ioda2-npu2-opencapi-phb")
pnv_pci_init_npu2_opencapi_phb(np);
/* Configure IOMMU DMA hooks */
set_pci_dma_ops(&dma_iommu_ops);
}
static int pnv_tce_iommu_bus_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
struct pci_dev *pdev;
struct pci_dn *pdn;
struct pnv_ioda_pe *pe;
struct pci_controller *hose;
struct pnv_phb *phb;
switch (action) {
case BUS_NOTIFY_ADD_DEVICE:
pdev = to_pci_dev(dev);
pdn = pci_get_pdn(pdev);
hose = pci_bus_to_host(pdev->bus);
phb = hose->private_data;
WARN_ON_ONCE(!phb);
if (!pdn || pdn->pe_number == IODA_INVALID_PE || !phb)
return 0;
pe = &phb->ioda.pe_array[pdn->pe_number];
if (!pe->table_group.group)
return 0;
iommu_add_device(&pe->table_group, dev);
return 0;
case BUS_NOTIFY_DEL_DEVICE:
iommu_del_device(dev);
return 0;
default:
return 0;
}
}
static struct notifier_block pnv_tce_iommu_bus_nb = {
.notifier_call = pnv_tce_iommu_bus_notifier,
};
static int __init pnv_tce_iommu_bus_notifier_init(void)
{
bus_register_notifier(&pci_bus_type, &pnv_tce_iommu_bus_nb);
return 0;
}
machine_subsys_initcall_sync(powernv, pnv_tce_iommu_bus_notifier_init);