blob: cb1526ec44b5f66572337fff1ba61dcc704a1d19 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Block data types and constants. Directly include this file only to
* break include dependency loop.
*/
#ifndef __LINUX_BLK_TYPES_H
#define __LINUX_BLK_TYPES_H
#include <linux/types.h>
#include <linux/bvec.h>
#include <linux/device.h>
#include <linux/ktime.h>
#include <linux/rw_hint.h>
struct bio_set;
struct bio;
struct bio_integrity_payload;
struct page;
struct io_context;
struct cgroup_subsys_state;
typedef void (bio_end_io_t) (struct bio *);
struct bio_crypt_ctx;
/*
* The basic unit of block I/O is a sector. It is used in a number of contexts
* in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
* bytes. Variables of type sector_t represent an offset or size that is a
* multiple of 512 bytes. Hence these two constants.
*/
#ifndef SECTOR_SHIFT
#define SECTOR_SHIFT 9
#endif
#ifndef SECTOR_SIZE
#define SECTOR_SIZE (1 << SECTOR_SHIFT)
#endif
#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
#define SECTOR_MASK (PAGE_SECTORS - 1)
struct block_device {
sector_t bd_start_sect;
sector_t bd_nr_sectors;
struct gendisk * bd_disk;
struct request_queue * bd_queue;
struct disk_stats __percpu *bd_stats;
unsigned long bd_stamp;
bool bd_read_only; /* read-only policy */
u8 bd_partno;
bool bd_write_holder;
bool bd_has_submit_bio;
dev_t bd_dev;
struct inode *bd_inode; /* will die */
atomic_t bd_openers;
spinlock_t bd_size_lock; /* for bd_inode->i_size updates */
void * bd_claiming;
void * bd_holder;
const struct blk_holder_ops *bd_holder_ops;
struct mutex bd_holder_lock;
int bd_holders;
struct kobject *bd_holder_dir;
atomic_t bd_fsfreeze_count; /* number of freeze requests */
struct mutex bd_fsfreeze_mutex; /* serialize freeze/thaw */
struct partition_meta_info *bd_meta_info;
#ifdef CONFIG_FAIL_MAKE_REQUEST
bool bd_make_it_fail;
#endif
bool bd_ro_warned;
int bd_writers;
/*
* keep this out-of-line as it's both big and not needed in the fast
* path
*/
struct device bd_device;
} __randomize_layout;
#define bdev_whole(_bdev) \
((_bdev)->bd_disk->part0)
#define dev_to_bdev(device) \
container_of((device), struct block_device, bd_device)
#define bdev_kobj(_bdev) \
(&((_bdev)->bd_device.kobj))
/*
* Block error status values. See block/blk-core:blk_errors for the details.
* Alpha cannot write a byte atomically, so we need to use 32-bit value.
*/
#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
typedef u32 __bitwise blk_status_t;
typedef u32 blk_short_t;
#else
typedef u8 __bitwise blk_status_t;
typedef u16 blk_short_t;
#endif
#define BLK_STS_OK 0
#define BLK_STS_NOTSUPP ((__force blk_status_t)1)
#define BLK_STS_TIMEOUT ((__force blk_status_t)2)
#define BLK_STS_NOSPC ((__force blk_status_t)3)
#define BLK_STS_TRANSPORT ((__force blk_status_t)4)
#define BLK_STS_TARGET ((__force blk_status_t)5)
#define BLK_STS_RESV_CONFLICT ((__force blk_status_t)6)
#define BLK_STS_MEDIUM ((__force blk_status_t)7)
#define BLK_STS_PROTECTION ((__force blk_status_t)8)
#define BLK_STS_RESOURCE ((__force blk_status_t)9)
#define BLK_STS_IOERR ((__force blk_status_t)10)
/* hack for device mapper, don't use elsewhere: */
#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
/*
* BLK_STS_AGAIN should only be returned if RQF_NOWAIT is set
* and the bio would block (cf bio_wouldblock_error())
*/
#define BLK_STS_AGAIN ((__force blk_status_t)12)
/*
* BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
* device related resources are unavailable, but the driver can guarantee
* that the queue will be rerun in the future once resources become
* available again. This is typically the case for device specific
* resources that are consumed for IO. If the driver fails allocating these
* resources, we know that inflight (or pending) IO will free these
* resource upon completion.
*
* This is different from BLK_STS_RESOURCE in that it explicitly references
* a device specific resource. For resources of wider scope, allocation
* failure can happen without having pending IO. This means that we can't
* rely on request completions freeing these resources, as IO may not be in
* flight. Examples of that are kernel memory allocations, DMA mappings, or
* any other system wide resources.
*/
#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
/*
* BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
* related resources are unavailable, but the driver can guarantee the queue
* will be rerun in the future once the resources become available again.
*
* This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
* a zone specific resource and IO to a different zone on the same device could
* still be served. Examples of that are zones that are write-locked, but a read
* to the same zone could be served.
*/
#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14)
/*
* BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
* path if the device returns a status indicating that too many zone resources
* are currently open. The same command should be successful if resubmitted
* after the number of open zones decreases below the device's limits, which is
* reported in the request_queue's max_open_zones.
*/
#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15)
/*
* BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
* path if the device returns a status indicating that too many zone resources
* are currently active. The same command should be successful if resubmitted
* after the number of active zones decreases below the device's limits, which
* is reported in the request_queue's max_active_zones.
*/
#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16)
/*
* BLK_STS_OFFLINE is returned from the driver when the target device is offline
* or is being taken offline. This could help differentiate the case where a
* device is intentionally being shut down from a real I/O error.
*/
#define BLK_STS_OFFLINE ((__force blk_status_t)17)
/*
* BLK_STS_DURATION_LIMIT is returned from the driver when the target device
* aborted the command because it exceeded one of its Command Duration Limits.
*/
#define BLK_STS_DURATION_LIMIT ((__force blk_status_t)18)
/**
* blk_path_error - returns true if error may be path related
* @error: status the request was completed with
*
* Description:
* This classifies block error status into non-retryable errors and ones
* that may be successful if retried on a failover path.
*
* Return:
* %false - retrying failover path will not help
* %true - may succeed if retried
*/
static inline bool blk_path_error(blk_status_t error)
{
switch (error) {
case BLK_STS_NOTSUPP:
case BLK_STS_NOSPC:
case BLK_STS_TARGET:
case BLK_STS_RESV_CONFLICT:
case BLK_STS_MEDIUM:
case BLK_STS_PROTECTION:
return false;
}
/* Anything else could be a path failure, so should be retried */
return true;
}
struct bio_issue {
u64 value;
};
typedef __u32 __bitwise blk_opf_t;
typedef unsigned int blk_qc_t;
#define BLK_QC_T_NONE -1U
/*
* main unit of I/O for the block layer and lower layers (ie drivers and
* stacking drivers)
*/
struct bio {
struct bio *bi_next; /* request queue link */
struct block_device *bi_bdev;
blk_opf_t bi_opf; /* bottom bits REQ_OP, top bits
* req_flags.
*/
unsigned short bi_flags; /* BIO_* below */
unsigned short bi_ioprio;
enum rw_hint bi_write_hint;
blk_status_t bi_status;
atomic_t __bi_remaining;
struct bvec_iter bi_iter;
blk_qc_t bi_cookie;
bio_end_io_t *bi_end_io;
void *bi_private;
#ifdef CONFIG_BLK_CGROUP
/*
* Represents the association of the css and request_queue for the bio.
* If a bio goes direct to device, it will not have a blkg as it will
* not have a request_queue associated with it. The reference is put
* on release of the bio.
*/
struct blkcg_gq *bi_blkg;
struct bio_issue bi_issue;
#ifdef CONFIG_BLK_CGROUP_IOCOST
u64 bi_iocost_cost;
#endif
#endif
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
struct bio_crypt_ctx *bi_crypt_context;
#endif
union {
#if defined(CONFIG_BLK_DEV_INTEGRITY)
struct bio_integrity_payload *bi_integrity; /* data integrity */
#endif
};
unsigned short bi_vcnt; /* how many bio_vec's */
/*
* Everything starting with bi_max_vecs will be preserved by bio_reset()
*/
unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
atomic_t __bi_cnt; /* pin count */
struct bio_vec *bi_io_vec; /* the actual vec list */
struct bio_set *bi_pool;
/*
* We can inline a number of vecs at the end of the bio, to avoid
* double allocations for a small number of bio_vecs. This member
* MUST obviously be kept at the very end of the bio.
*/
struct bio_vec bi_inline_vecs[];
};
#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
#define BIO_MAX_SECTORS (UINT_MAX >> SECTOR_SHIFT)
/*
* bio flags
*/
enum {
BIO_PAGE_PINNED, /* Unpin pages in bio_release_pages() */
BIO_CLONED, /* doesn't own data */
BIO_BOUNCED, /* bio is a bounce bio */
BIO_QUIET, /* Make BIO Quiet */
BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
BIO_REFFED, /* bio has elevated ->bi_cnt */
BIO_BPS_THROTTLED, /* This bio has already been subjected to
* throttling rules. Don't do it again. */
BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
* of this bio. */
BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
BIO_QOS_THROTTLED, /* bio went through rq_qos throttle path */
BIO_QOS_MERGED, /* but went through rq_qos merge path */
BIO_REMAPPED,
BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */
BIO_FLAG_LAST
};
typedef __u32 __bitwise blk_mq_req_flags_t;
#define REQ_OP_BITS 8
#define REQ_OP_MASK (__force blk_opf_t)((1 << REQ_OP_BITS) - 1)
#define REQ_FLAG_BITS 24
/**
* enum req_op - Operations common to the bio and request structures.
* We use 8 bits for encoding the operation, and the remaining 24 for flags.
*
* The least significant bit of the operation number indicates the data
* transfer direction:
*
* - if the least significant bit is set transfers are TO the device
* - if the least significant bit is not set transfers are FROM the device
*
* If a operation does not transfer data the least significant bit has no
* meaning.
*/
enum req_op {
/* read sectors from the device */
REQ_OP_READ = (__force blk_opf_t)0,
/* write sectors to the device */
REQ_OP_WRITE = (__force blk_opf_t)1,
/* flush the volatile write cache */
REQ_OP_FLUSH = (__force blk_opf_t)2,
/* discard sectors */
REQ_OP_DISCARD = (__force blk_opf_t)3,
/* securely erase sectors */
REQ_OP_SECURE_ERASE = (__force blk_opf_t)5,
/* write data at the current zone write pointer */
REQ_OP_ZONE_APPEND = (__force blk_opf_t)7,
/* write the zero filled sector many times */
REQ_OP_WRITE_ZEROES = (__force blk_opf_t)9,
/* Open a zone */
REQ_OP_ZONE_OPEN = (__force blk_opf_t)10,
/* Close a zone */
REQ_OP_ZONE_CLOSE = (__force blk_opf_t)11,
/* Transition a zone to full */
REQ_OP_ZONE_FINISH = (__force blk_opf_t)12,
/* reset a zone write pointer */
REQ_OP_ZONE_RESET = (__force blk_opf_t)13,
/* reset all the zone present on the device */
REQ_OP_ZONE_RESET_ALL = (__force blk_opf_t)15,
/* Driver private requests */
REQ_OP_DRV_IN = (__force blk_opf_t)34,
REQ_OP_DRV_OUT = (__force blk_opf_t)35,
REQ_OP_LAST = (__force blk_opf_t)36,
};
enum req_flag_bits {
__REQ_FAILFAST_DEV = /* no driver retries of device errors */
REQ_OP_BITS,
__REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
__REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
__REQ_SYNC, /* request is sync (sync write or read) */
__REQ_META, /* metadata io request */
__REQ_PRIO, /* boost priority in cfq */
__REQ_NOMERGE, /* don't touch this for merging */
__REQ_IDLE, /* anticipate more IO after this one */
__REQ_INTEGRITY, /* I/O includes block integrity payload */
__REQ_FUA, /* forced unit access */
__REQ_PREFLUSH, /* request for cache flush */
__REQ_RAHEAD, /* read ahead, can fail anytime */
__REQ_BACKGROUND, /* background IO */
__REQ_NOWAIT, /* Don't wait if request will block */
__REQ_POLLED, /* caller polls for completion using bio_poll */
__REQ_ALLOC_CACHE, /* allocate IO from cache if available */
__REQ_SWAP, /* swap I/O */
__REQ_DRV, /* for driver use */
__REQ_FS_PRIVATE, /* for file system (submitter) use */
/*
* Command specific flags, keep last:
*/
/* for REQ_OP_WRITE_ZEROES: */
__REQ_NOUNMAP, /* do not free blocks when zeroing */
__REQ_NR_BITS, /* stops here */
};
#define REQ_FAILFAST_DEV \
(__force blk_opf_t)(1ULL << __REQ_FAILFAST_DEV)
#define REQ_FAILFAST_TRANSPORT \
(__force blk_opf_t)(1ULL << __REQ_FAILFAST_TRANSPORT)
#define REQ_FAILFAST_DRIVER \
(__force blk_opf_t)(1ULL << __REQ_FAILFAST_DRIVER)
#define REQ_SYNC (__force blk_opf_t)(1ULL << __REQ_SYNC)
#define REQ_META (__force blk_opf_t)(1ULL << __REQ_META)
#define REQ_PRIO (__force blk_opf_t)(1ULL << __REQ_PRIO)
#define REQ_NOMERGE (__force blk_opf_t)(1ULL << __REQ_NOMERGE)
#define REQ_IDLE (__force blk_opf_t)(1ULL << __REQ_IDLE)
#define REQ_INTEGRITY (__force blk_opf_t)(1ULL << __REQ_INTEGRITY)
#define REQ_FUA (__force blk_opf_t)(1ULL << __REQ_FUA)
#define REQ_PREFLUSH (__force blk_opf_t)(1ULL << __REQ_PREFLUSH)
#define REQ_RAHEAD (__force blk_opf_t)(1ULL << __REQ_RAHEAD)
#define REQ_BACKGROUND (__force blk_opf_t)(1ULL << __REQ_BACKGROUND)
#define REQ_NOWAIT (__force blk_opf_t)(1ULL << __REQ_NOWAIT)
#define REQ_POLLED (__force blk_opf_t)(1ULL << __REQ_POLLED)
#define REQ_ALLOC_CACHE (__force blk_opf_t)(1ULL << __REQ_ALLOC_CACHE)
#define REQ_SWAP (__force blk_opf_t)(1ULL << __REQ_SWAP)
#define REQ_DRV (__force blk_opf_t)(1ULL << __REQ_DRV)
#define REQ_FS_PRIVATE (__force blk_opf_t)(1ULL << __REQ_FS_PRIVATE)
#define REQ_NOUNMAP (__force blk_opf_t)(1ULL << __REQ_NOUNMAP)
#define REQ_FAILFAST_MASK \
(REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
#define REQ_NOMERGE_FLAGS \
(REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
enum stat_group {
STAT_READ,
STAT_WRITE,
STAT_DISCARD,
STAT_FLUSH,
NR_STAT_GROUPS
};
static inline enum req_op bio_op(const struct bio *bio)
{
return bio->bi_opf & REQ_OP_MASK;
}
static inline bool op_is_write(blk_opf_t op)
{
return !!(op & (__force blk_opf_t)1);
}
/*
* Check if the bio or request is one that needs special treatment in the
* flush state machine.
*/
static inline bool op_is_flush(blk_opf_t op)
{
return op & (REQ_FUA | REQ_PREFLUSH);
}
/*
* Reads are always treated as synchronous, as are requests with the FUA or
* PREFLUSH flag. Other operations may be marked as synchronous using the
* REQ_SYNC flag.
*/
static inline bool op_is_sync(blk_opf_t op)
{
return (op & REQ_OP_MASK) == REQ_OP_READ ||
(op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
}
static inline bool op_is_discard(blk_opf_t op)
{
return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
}
/*
* Check if a bio or request operation is a zone management operation, with
* the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
* due to its different handling in the block layer and device response in
* case of command failure.
*/
static inline bool op_is_zone_mgmt(enum req_op op)
{
switch (op & REQ_OP_MASK) {
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_OPEN:
case REQ_OP_ZONE_CLOSE:
case REQ_OP_ZONE_FINISH:
return true;
default:
return false;
}
}
static inline int op_stat_group(enum req_op op)
{
if (op_is_discard(op))
return STAT_DISCARD;
return op_is_write(op);
}
struct blk_rq_stat {
u64 mean;
u64 min;
u64 max;
u32 nr_samples;
u64 batch;
};
#endif /* __LINUX_BLK_TYPES_H */