blob: 34aaf0e87def8f0e6f529e56983e322493ad2fef [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_CGROUP_H
#define _LINUX_CGROUP_H
/*
* cgroup interface
*
* Copyright (C) 2003 BULL SA
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
*
*/
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h>
#include <linux/rculist.h>
#include <linux/cgroupstats.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kernfs.h>
#include <linux/jump_label.h>
#include <linux/types.h>
#include <linux/ns_common.h>
#include <linux/nsproxy.h>
#include <linux/user_namespace.h>
#include <linux/refcount.h>
#include <linux/kernel_stat.h>
#include <linux/cgroup-defs.h>
struct kernel_clone_args;
#ifdef CONFIG_CGROUPS
/*
* All weight knobs on the default hierarchy should use the following min,
* default and max values. The default value is the logarithmic center of
* MIN and MAX and allows 100x to be expressed in both directions.
*/
#define CGROUP_WEIGHT_MIN 1
#define CGROUP_WEIGHT_DFL 100
#define CGROUP_WEIGHT_MAX 10000
enum {
CSS_TASK_ITER_PROCS = (1U << 0), /* walk only threadgroup leaders */
CSS_TASK_ITER_THREADED = (1U << 1), /* walk all threaded css_sets in the domain */
CSS_TASK_ITER_SKIPPED = (1U << 16), /* internal flags */
};
/* a css_task_iter should be treated as an opaque object */
struct css_task_iter {
struct cgroup_subsys *ss;
unsigned int flags;
struct list_head *cset_pos;
struct list_head *cset_head;
struct list_head *tcset_pos;
struct list_head *tcset_head;
struct list_head *task_pos;
struct list_head *cur_tasks_head;
struct css_set *cur_cset;
struct css_set *cur_dcset;
struct task_struct *cur_task;
struct list_head iters_node; /* css_set->task_iters */
};
extern struct file_system_type cgroup_fs_type;
extern struct cgroup_root cgrp_dfl_root;
extern struct css_set init_css_set;
extern spinlock_t css_set_lock;
#define SUBSYS(_x) extern struct cgroup_subsys _x ## _cgrp_subsys;
#include <linux/cgroup_subsys.h>
#undef SUBSYS
#define SUBSYS(_x) \
extern struct static_key_true _x ## _cgrp_subsys_enabled_key; \
extern struct static_key_true _x ## _cgrp_subsys_on_dfl_key;
#include <linux/cgroup_subsys.h>
#undef SUBSYS
/**
* cgroup_subsys_enabled - fast test on whether a subsys is enabled
* @ss: subsystem in question
*/
#define cgroup_subsys_enabled(ss) \
static_branch_likely(&ss ## _enabled_key)
/**
* cgroup_subsys_on_dfl - fast test on whether a subsys is on default hierarchy
* @ss: subsystem in question
*/
#define cgroup_subsys_on_dfl(ss) \
static_branch_likely(&ss ## _on_dfl_key)
bool css_has_online_children(struct cgroup_subsys_state *css);
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss);
struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgroup,
struct cgroup_subsys *ss);
struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgroup,
struct cgroup_subsys *ss);
struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
struct cgroup_subsys *ss);
struct cgroup *cgroup_get_from_path(const char *path);
struct cgroup *cgroup_get_from_fd(int fd);
struct cgroup *cgroup_v1v2_get_from_fd(int fd);
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *);
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from);
int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts);
int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts);
int cgroup_rm_cftypes(struct cftype *cfts);
void cgroup_file_notify(struct cgroup_file *cfile);
void cgroup_file_show(struct cgroup_file *cfile, bool show);
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry);
int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *tsk);
void cgroup_fork(struct task_struct *p);
extern int cgroup_can_fork(struct task_struct *p,
struct kernel_clone_args *kargs);
extern void cgroup_cancel_fork(struct task_struct *p,
struct kernel_clone_args *kargs);
extern void cgroup_post_fork(struct task_struct *p,
struct kernel_clone_args *kargs);
void cgroup_exit(struct task_struct *p);
void cgroup_release(struct task_struct *p);
void cgroup_free(struct task_struct *p);
int cgroup_init_early(void);
int cgroup_init(void);
int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v);
/*
* Iteration helpers and macros.
*/
struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *parent);
struct cgroup_subsys_state *css_next_descendant_pre(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *css);
struct cgroup_subsys_state *css_rightmost_descendant(struct cgroup_subsys_state *pos);
struct cgroup_subsys_state *css_next_descendant_post(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *css);
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
struct cgroup_subsys_state **dst_cssp);
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
struct cgroup_subsys_state **dst_cssp);
void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
struct css_task_iter *it);
struct task_struct *css_task_iter_next(struct css_task_iter *it);
void css_task_iter_end(struct css_task_iter *it);
/**
* css_for_each_child - iterate through children of a css
* @pos: the css * to use as the loop cursor
* @parent: css whose children to walk
*
* Walk @parent's children. Must be called under rcu_read_lock().
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*
* It is allowed to temporarily drop RCU read lock during iteration. The
* caller is responsible for ensuring that @pos remains accessible until
* the start of the next iteration by, for example, bumping the css refcnt.
*/
#define css_for_each_child(pos, parent) \
for ((pos) = css_next_child(NULL, (parent)); (pos); \
(pos) = css_next_child((pos), (parent)))
/**
* css_for_each_descendant_pre - pre-order walk of a css's descendants
* @pos: the css * to use as the loop cursor
* @root: css whose descendants to walk
*
* Walk @root's descendants. @root is included in the iteration and the
* first node to be visited. Must be called under rcu_read_lock().
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*
* For example, the following guarantees that a descendant can't escape
* state updates of its ancestors.
*
* my_online(@css)
* {
* Lock @css's parent and @css;
* Inherit state from the parent;
* Unlock both.
* }
*
* my_update_state(@css)
* {
* css_for_each_descendant_pre(@pos, @css) {
* Lock @pos;
* if (@pos == @css)
* Update @css's state;
* else
* Verify @pos is alive and inherit state from its parent;
* Unlock @pos;
* }
* }
*
* As long as the inheriting step, including checking the parent state, is
* enclosed inside @pos locking, double-locking the parent isn't necessary
* while inheriting. The state update to the parent is guaranteed to be
* visible by walking order and, as long as inheriting operations to the
* same @pos are atomic to each other, multiple updates racing each other
* still result in the correct state. It's guaranateed that at least one
* inheritance happens for any css after the latest update to its parent.
*
* If checking parent's state requires locking the parent, each inheriting
* iteration should lock and unlock both @pos->parent and @pos.
*
* Alternatively, a subsystem may choose to use a single global lock to
* synchronize ->css_online() and ->css_offline() against tree-walking
* operations.
*
* It is allowed to temporarily drop RCU read lock during iteration. The
* caller is responsible for ensuring that @pos remains accessible until
* the start of the next iteration by, for example, bumping the css refcnt.
*/
#define css_for_each_descendant_pre(pos, css) \
for ((pos) = css_next_descendant_pre(NULL, (css)); (pos); \
(pos) = css_next_descendant_pre((pos), (css)))
/**
* css_for_each_descendant_post - post-order walk of a css's descendants
* @pos: the css * to use as the loop cursor
* @css: css whose descendants to walk
*
* Similar to css_for_each_descendant_pre() but performs post-order
* traversal instead. @root is included in the iteration and the last
* node to be visited.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*
* Note that the walk visibility guarantee example described in pre-order
* walk doesn't apply the same to post-order walks.
*/
#define css_for_each_descendant_post(pos, css) \
for ((pos) = css_next_descendant_post(NULL, (css)); (pos); \
(pos) = css_next_descendant_post((pos), (css)))
/**
* cgroup_taskset_for_each - iterate cgroup_taskset
* @task: the loop cursor
* @dst_css: the destination css
* @tset: taskset to iterate
*
* @tset may contain multiple tasks and they may belong to multiple
* processes.
*
* On the v2 hierarchy, there may be tasks from multiple processes and they
* may not share the source or destination csses.
*
* On traditional hierarchies, when there are multiple tasks in @tset, if a
* task of a process is in @tset, all tasks of the process are in @tset.
* Also, all are guaranteed to share the same source and destination csses.
*
* Iteration is not in any specific order.
*/
#define cgroup_taskset_for_each(task, dst_css, tset) \
for ((task) = cgroup_taskset_first((tset), &(dst_css)); \
(task); \
(task) = cgroup_taskset_next((tset), &(dst_css)))
/**
* cgroup_taskset_for_each_leader - iterate group leaders in a cgroup_taskset
* @leader: the loop cursor
* @dst_css: the destination css
* @tset: taskset to iterate
*
* Iterate threadgroup leaders of @tset. For single-task migrations, @tset
* may not contain any.
*/
#define cgroup_taskset_for_each_leader(leader, dst_css, tset) \
for ((leader) = cgroup_taskset_first((tset), &(dst_css)); \
(leader); \
(leader) = cgroup_taskset_next((tset), &(dst_css))) \
if ((leader) != (leader)->group_leader) \
; \
else
/*
* Inline functions.
*/
#ifdef CONFIG_DEBUG_CGROUP_REF
void css_get(struct cgroup_subsys_state *css);
void css_get_many(struct cgroup_subsys_state *css, unsigned int n);
bool css_tryget(struct cgroup_subsys_state *css);
bool css_tryget_online(struct cgroup_subsys_state *css);
void css_put(struct cgroup_subsys_state *css);
void css_put_many(struct cgroup_subsys_state *css, unsigned int n);
#else
#define CGROUP_REF_FN_ATTRS static inline
#define CGROUP_REF_EXPORT(fn)
#include <linux/cgroup_refcnt.h>
#endif
static inline u64 cgroup_id(const struct cgroup *cgrp)
{
return cgrp->kn->id;
}
/**
* css_is_dying - test whether the specified css is dying
* @css: target css
*
* Test whether @css is in the process of offlining or already offline. In
* most cases, ->css_online() and ->css_offline() callbacks should be
* enough; however, the actual offline operations are RCU delayed and this
* test returns %true also when @css is scheduled to be offlined.
*
* This is useful, for example, when the use case requires synchronous
* behavior with respect to cgroup removal. cgroup removal schedules css
* offlining but the css can seem alive while the operation is being
* delayed. If the delay affects user visible semantics, this test can be
* used to resolve the situation.
*/
static inline bool css_is_dying(struct cgroup_subsys_state *css)
{
return !(css->flags & CSS_NO_REF) && percpu_ref_is_dying(&css->refcnt);
}
static inline void cgroup_get(struct cgroup *cgrp)
{
css_get(&cgrp->self);
}
static inline bool cgroup_tryget(struct cgroup *cgrp)
{
return css_tryget(&cgrp->self);
}
static inline void cgroup_put(struct cgroup *cgrp)
{
css_put(&cgrp->self);
}
extern struct mutex cgroup_mutex;
static inline void cgroup_lock(void)
{
mutex_lock(&cgroup_mutex);
}
static inline void cgroup_unlock(void)
{
mutex_unlock(&cgroup_mutex);
}
/**
* task_css_set_check - obtain a task's css_set with extra access conditions
* @task: the task to obtain css_set for
* @__c: extra condition expression to be passed to rcu_dereference_check()
*
* A task's css_set is RCU protected, initialized and exited while holding
* task_lock(), and can only be modified while holding both cgroup_mutex
* and task_lock() while the task is alive. This macro verifies that the
* caller is inside proper critical section and returns @task's css_set.
*
* The caller can also specify additional allowed conditions via @__c, such
* as locks used during the cgroup_subsys::attach() methods.
*/
#ifdef CONFIG_PROVE_RCU
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
rcu_read_lock_sched_held() || \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
#else
#define task_css_set_check(task, __c) \
rcu_dereference((task)->cgroups)
#endif
/**
* task_css_check - obtain css for (task, subsys) w/ extra access conds
* @task: the target task
* @subsys_id: the target subsystem ID
* @__c: extra condition expression to be passed to rcu_dereference_check()
*
* Return the cgroup_subsys_state for the (@task, @subsys_id) pair. The
* synchronization rules are the same as task_css_set_check().
*/
#define task_css_check(task, subsys_id, __c) \
task_css_set_check((task), (__c))->subsys[(subsys_id)]
/**
* task_css_set - obtain a task's css_set
* @task: the task to obtain css_set for
*
* See task_css_set_check().
*/
static inline struct css_set *task_css_set(struct task_struct *task)
{
return task_css_set_check(task, false);
}
/**
* task_css - obtain css for (task, subsys)
* @task: the target task
* @subsys_id: the target subsystem ID
*
* See task_css_check().
*/
static inline struct cgroup_subsys_state *task_css(struct task_struct *task,
int subsys_id)
{
return task_css_check(task, subsys_id, false);
}
/**
* task_get_css - find and get the css for (task, subsys)
* @task: the target task
* @subsys_id: the target subsystem ID
*
* Find the css for the (@task, @subsys_id) combination, increment a
* reference on and return it. This function is guaranteed to return a
* valid css. The returned css may already have been offlined.
*/
static inline struct cgroup_subsys_state *
task_get_css(struct task_struct *task, int subsys_id)
{
struct cgroup_subsys_state *css;
rcu_read_lock();
while (true) {
css = task_css(task, subsys_id);
/*
* Can't use css_tryget_online() here. A task which has
* PF_EXITING set may stay associated with an offline css.
* If such task calls this function, css_tryget_online()
* will keep failing.
*/
if (likely(css_tryget(css)))
break;
cpu_relax();
}
rcu_read_unlock();
return css;
}
/**
* task_css_is_root - test whether a task belongs to the root css
* @task: the target task
* @subsys_id: the target subsystem ID
*
* Test whether @task belongs to the root css on the specified subsystem.
* May be invoked in any context.
*/
static inline bool task_css_is_root(struct task_struct *task, int subsys_id)
{
return task_css_check(task, subsys_id, true) ==
init_css_set.subsys[subsys_id];
}
static inline struct cgroup *task_cgroup(struct task_struct *task,
int subsys_id)
{
return task_css(task, subsys_id)->cgroup;
}
static inline struct cgroup *task_dfl_cgroup(struct task_struct *task)
{
return task_css_set(task)->dfl_cgrp;
}
static inline struct cgroup *cgroup_parent(struct cgroup *cgrp)
{
struct cgroup_subsys_state *parent_css = cgrp->self.parent;
if (parent_css)
return container_of(parent_css, struct cgroup, self);
return NULL;
}
/**
* cgroup_is_descendant - test ancestry
* @cgrp: the cgroup to be tested
* @ancestor: possible ancestor of @cgrp
*
* Test whether @cgrp is a descendant of @ancestor. It also returns %true
* if @cgrp == @ancestor. This function is safe to call as long as @cgrp
* and @ancestor are accessible.
*/
static inline bool cgroup_is_descendant(struct cgroup *cgrp,
struct cgroup *ancestor)
{
if (cgrp->root != ancestor->root || cgrp->level < ancestor->level)
return false;
return cgrp->ancestors[ancestor->level] == ancestor;
}
/**
* cgroup_ancestor - find ancestor of cgroup
* @cgrp: cgroup to find ancestor of
* @ancestor_level: level of ancestor to find starting from root
*
* Find ancestor of cgroup at specified level starting from root if it exists
* and return pointer to it. Return NULL if @cgrp doesn't have ancestor at
* @ancestor_level.
*
* This function is safe to call as long as @cgrp is accessible.
*/
static inline struct cgroup *cgroup_ancestor(struct cgroup *cgrp,
int ancestor_level)
{
if (ancestor_level < 0 || ancestor_level > cgrp->level)
return NULL;
return cgrp->ancestors[ancestor_level];
}
/**
* task_under_cgroup_hierarchy - test task's membership of cgroup ancestry
* @task: the task to be tested
* @ancestor: possible ancestor of @task's cgroup
*
* Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
* It follows all the same rules as cgroup_is_descendant, and only applies
* to the default hierarchy.
*/
static inline bool task_under_cgroup_hierarchy(struct task_struct *task,
struct cgroup *ancestor)
{
struct css_set *cset = task_css_set(task);
return cgroup_is_descendant(cset->dfl_cgrp, ancestor);
}
/* no synchronization, the result can only be used as a hint */
static inline bool cgroup_is_populated(struct cgroup *cgrp)
{
return cgrp->nr_populated_csets + cgrp->nr_populated_domain_children +
cgrp->nr_populated_threaded_children;
}
/* returns ino associated with a cgroup */
static inline ino_t cgroup_ino(struct cgroup *cgrp)
{
return kernfs_ino(cgrp->kn);
}
/* cft/css accessors for cftype->write() operation */
static inline struct cftype *of_cft(struct kernfs_open_file *of)
{
return of->kn->priv;
}
struct cgroup_subsys_state *of_css(struct kernfs_open_file *of);
/* cft/css accessors for cftype->seq_*() operations */
static inline struct cftype *seq_cft(struct seq_file *seq)
{
return of_cft(seq->private);
}
static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq)
{
return of_css(seq->private);
}
/*
* Name / path handling functions. All are thin wrappers around the kernfs
* counterparts and can be called under any context.
*/
static inline int cgroup_name(struct cgroup *cgrp, char *buf, size_t buflen)
{
return kernfs_name(cgrp->kn, buf, buflen);
}
static inline int cgroup_path(struct cgroup *cgrp, char *buf, size_t buflen)
{
return kernfs_path(cgrp->kn, buf, buflen);
}
static inline void pr_cont_cgroup_name(struct cgroup *cgrp)
{
pr_cont_kernfs_name(cgrp->kn);
}
static inline void pr_cont_cgroup_path(struct cgroup *cgrp)
{
pr_cont_kernfs_path(cgrp->kn);
}
bool cgroup_psi_enabled(void);
static inline void cgroup_init_kthreadd(void)
{
/*
* kthreadd is inherited by all kthreads, keep it in the root so
* that the new kthreads are guaranteed to stay in the root until
* initialization is finished.
*/
current->no_cgroup_migration = 1;
}
static inline void cgroup_kthread_ready(void)
{
/*
* This kthread finished initialization. The creator should have
* set PF_NO_SETAFFINITY if this kthread should stay in the root.
*/
current->no_cgroup_migration = 0;
}
void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen);
struct cgroup *cgroup_get_from_id(u64 id);
#else /* !CONFIG_CGROUPS */
struct cgroup_subsys_state;
struct cgroup;
static inline u64 cgroup_id(const struct cgroup *cgrp) { return 1; }
static inline void css_get(struct cgroup_subsys_state *css) {}
static inline void css_put(struct cgroup_subsys_state *css) {}
static inline void cgroup_lock(void) {}
static inline void cgroup_unlock(void) {}
static inline int cgroup_attach_task_all(struct task_struct *from,
struct task_struct *t) { return 0; }
static inline int cgroupstats_build(struct cgroupstats *stats,
struct dentry *dentry) { return -EINVAL; }
static inline void cgroup_fork(struct task_struct *p) {}
static inline int cgroup_can_fork(struct task_struct *p,
struct kernel_clone_args *kargs) { return 0; }
static inline void cgroup_cancel_fork(struct task_struct *p,
struct kernel_clone_args *kargs) {}
static inline void cgroup_post_fork(struct task_struct *p,
struct kernel_clone_args *kargs) {}
static inline void cgroup_exit(struct task_struct *p) {}
static inline void cgroup_release(struct task_struct *p) {}
static inline void cgroup_free(struct task_struct *p) {}
static inline int cgroup_init_early(void) { return 0; }
static inline int cgroup_init(void) { return 0; }
static inline void cgroup_init_kthreadd(void) {}
static inline void cgroup_kthread_ready(void) {}
static inline struct cgroup *cgroup_parent(struct cgroup *cgrp)
{
return NULL;
}
static inline bool cgroup_psi_enabled(void)
{
return false;
}
static inline bool task_under_cgroup_hierarchy(struct task_struct *task,
struct cgroup *ancestor)
{
return true;
}
static inline void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
{}
#endif /* !CONFIG_CGROUPS */
#ifdef CONFIG_CGROUPS
/*
* cgroup scalable recursive statistics.
*/
void cgroup_rstat_updated(struct cgroup *cgrp, int cpu);
void cgroup_rstat_flush(struct cgroup *cgrp);
void cgroup_rstat_flush_hold(struct cgroup *cgrp);
void cgroup_rstat_flush_release(void);
/*
* Basic resource stats.
*/
#ifdef CONFIG_CGROUP_CPUACCT
void cpuacct_charge(struct task_struct *tsk, u64 cputime);
void cpuacct_account_field(struct task_struct *tsk, int index, u64 val);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
static inline void cpuacct_account_field(struct task_struct *tsk, int index,
u64 val) {}
#endif
void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec);
void __cgroup_account_cputime_field(struct cgroup *cgrp,
enum cpu_usage_stat index, u64 delta_exec);
static inline void cgroup_account_cputime(struct task_struct *task,
u64 delta_exec)
{
struct cgroup *cgrp;
cpuacct_charge(task, delta_exec);
cgrp = task_dfl_cgroup(task);
if (cgroup_parent(cgrp))
__cgroup_account_cputime(cgrp, delta_exec);
}
static inline void cgroup_account_cputime_field(struct task_struct *task,
enum cpu_usage_stat index,
u64 delta_exec)
{
struct cgroup *cgrp;
cpuacct_account_field(task, index, delta_exec);
cgrp = task_dfl_cgroup(task);
if (cgroup_parent(cgrp))
__cgroup_account_cputime_field(cgrp, index, delta_exec);
}
#else /* CONFIG_CGROUPS */
static inline void cgroup_account_cputime(struct task_struct *task,
u64 delta_exec) {}
static inline void cgroup_account_cputime_field(struct task_struct *task,
enum cpu_usage_stat index,
u64 delta_exec) {}
#endif /* CONFIG_CGROUPS */
/*
* sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
* definition in cgroup-defs.h.
*/
#ifdef CONFIG_SOCK_CGROUP_DATA
void cgroup_sk_alloc(struct sock_cgroup_data *skcd);
void cgroup_sk_clone(struct sock_cgroup_data *skcd);
void cgroup_sk_free(struct sock_cgroup_data *skcd);
static inline struct cgroup *sock_cgroup_ptr(struct sock_cgroup_data *skcd)
{
return skcd->cgroup;
}
#else /* CONFIG_CGROUP_DATA */
static inline void cgroup_sk_alloc(struct sock_cgroup_data *skcd) {}
static inline void cgroup_sk_clone(struct sock_cgroup_data *skcd) {}
static inline void cgroup_sk_free(struct sock_cgroup_data *skcd) {}
#endif /* CONFIG_CGROUP_DATA */
struct cgroup_namespace {
struct ns_common ns;
struct user_namespace *user_ns;
struct ucounts *ucounts;
struct css_set *root_cset;
};
extern struct cgroup_namespace init_cgroup_ns;
#ifdef CONFIG_CGROUPS
void free_cgroup_ns(struct cgroup_namespace *ns);
struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
struct user_namespace *user_ns,
struct cgroup_namespace *old_ns);
int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
struct cgroup_namespace *ns);
#else /* !CONFIG_CGROUPS */
static inline void free_cgroup_ns(struct cgroup_namespace *ns) { }
static inline struct cgroup_namespace *
copy_cgroup_ns(unsigned long flags, struct user_namespace *user_ns,
struct cgroup_namespace *old_ns)
{
return old_ns;
}
#endif /* !CONFIG_CGROUPS */
static inline void get_cgroup_ns(struct cgroup_namespace *ns)
{
if (ns)
refcount_inc(&ns->ns.count);
}
static inline void put_cgroup_ns(struct cgroup_namespace *ns)
{
if (ns && refcount_dec_and_test(&ns->ns.count))
free_cgroup_ns(ns);
}
#ifdef CONFIG_CGROUPS
void cgroup_enter_frozen(void);
void cgroup_leave_frozen(bool always_leave);
void cgroup_update_frozen(struct cgroup *cgrp);
void cgroup_freeze(struct cgroup *cgrp, bool freeze);
void cgroup_freezer_migrate_task(struct task_struct *task, struct cgroup *src,
struct cgroup *dst);
static inline bool cgroup_task_frozen(struct task_struct *task)
{
return task->frozen;
}
#else /* !CONFIG_CGROUPS */
static inline void cgroup_enter_frozen(void) { }
static inline void cgroup_leave_frozen(bool always_leave) { }
static inline bool cgroup_task_frozen(struct task_struct *task)
{
return false;
}
#endif /* !CONFIG_CGROUPS */
#ifdef CONFIG_CGROUP_BPF
static inline void cgroup_bpf_get(struct cgroup *cgrp)
{
percpu_ref_get(&cgrp->bpf.refcnt);
}
static inline void cgroup_bpf_put(struct cgroup *cgrp)
{
percpu_ref_put(&cgrp->bpf.refcnt);
}
#else /* CONFIG_CGROUP_BPF */
static inline void cgroup_bpf_get(struct cgroup *cgrp) {}
static inline void cgroup_bpf_put(struct cgroup *cgrp) {}
#endif /* CONFIG_CGROUP_BPF */
struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id);
#endif /* _LINUX_CGROUP_H */