blob: d084e412b3c53317d88fe59ac6f5f4baed70ba7a [file] [log] [blame]
/*
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Paul Mackerras <paulus@au1.ibm.com>
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description: KVM functions specific to running on Book 3S
* processors in hypervisor mode (specifically POWER7 and later).
*
* This file is derived from arch/powerpc/kvm/book3s.c,
* by Alexander Graf <agraf@suse.de>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
#include <linux/spinlock.h>
#include <linux/page-flags.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
#include <asm/cputhreads.h>
#include <asm/page.h>
#include <asm/hvcall.h>
#include <asm/switch_to.h>
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct kvmppc_vcore *vc = vcpu->arch.vcore;
local_paca->kvm_hstate.kvm_vcpu = vcpu;
local_paca->kvm_hstate.kvm_vcore = vc;
if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
vc->stolen_tb += mftb() - vc->preempt_tb;
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcore *vc = vcpu->arch.vcore;
if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
vc->preempt_tb = mftb();
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
vcpu->arch.shregs.msr = msr;
kvmppc_end_cede(vcpu);
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
vcpu->arch.pvr = pvr;
}
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
int r;
pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
for (r = 0; r < 16; ++r)
pr_err("r%2d = %.16lx r%d = %.16lx\n",
r, kvmppc_get_gpr(vcpu, r),
r+16, kvmppc_get_gpr(vcpu, r+16));
pr_err("ctr = %.16lx lr = %.16lx\n",
vcpu->arch.ctr, vcpu->arch.lr);
pr_err("srr0 = %.16llx srr1 = %.16llx\n",
vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
pr_err("fault dar = %.16lx dsisr = %.8x\n",
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
for (r = 0; r < vcpu->arch.slb_max; ++r)
pr_err(" ESID = %.16llx VSID = %.16llx\n",
vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
vcpu->arch.last_inst);
}
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
int r;
struct kvm_vcpu *v, *ret = NULL;
mutex_lock(&kvm->lock);
kvm_for_each_vcpu(r, v, kvm) {
if (v->vcpu_id == id) {
ret = v;
break;
}
}
mutex_unlock(&kvm->lock);
return ret;
}
static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
vpa->shared_proc = 1;
vpa->yield_count = 1;
}
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
u32 dummy;
union {
u16 hword;
u32 word;
} length;
};
static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
if (vpap->update_pending)
return vpap->next_gpa != 0;
return vpap->pinned_addr != NULL;
}
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
unsigned long flags,
unsigned long vcpuid, unsigned long vpa)
{
struct kvm *kvm = vcpu->kvm;
unsigned long len, nb;
void *va;
struct kvm_vcpu *tvcpu;
int err;
int subfunc;
struct kvmppc_vpa *vpap;
tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
if (!tvcpu)
return H_PARAMETER;
subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
subfunc == H_VPA_REG_SLB) {
/* Registering new area - address must be cache-line aligned */
if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
return H_PARAMETER;
/* convert logical addr to kernel addr and read length */
va = kvmppc_pin_guest_page(kvm, vpa, &nb);
if (va == NULL)
return H_PARAMETER;
if (subfunc == H_VPA_REG_VPA)
len = ((struct reg_vpa *)va)->length.hword;
else
len = ((struct reg_vpa *)va)->length.word;
kvmppc_unpin_guest_page(kvm, va);
/* Check length */
if (len > nb || len < sizeof(struct reg_vpa))
return H_PARAMETER;
} else {
vpa = 0;
len = 0;
}
err = H_PARAMETER;
vpap = NULL;
spin_lock(&tvcpu->arch.vpa_update_lock);
switch (subfunc) {
case H_VPA_REG_VPA: /* register VPA */
if (len < sizeof(struct lppaca))
break;
vpap = &tvcpu->arch.vpa;
err = 0;
break;
case H_VPA_REG_DTL: /* register DTL */
if (len < sizeof(struct dtl_entry))
break;
len -= len % sizeof(struct dtl_entry);
/* Check that they have previously registered a VPA */
err = H_RESOURCE;
if (!vpa_is_registered(&tvcpu->arch.vpa))
break;
vpap = &tvcpu->arch.dtl;
err = 0;
break;
case H_VPA_REG_SLB: /* register SLB shadow buffer */
/* Check that they have previously registered a VPA */
err = H_RESOURCE;
if (!vpa_is_registered(&tvcpu->arch.vpa))
break;
vpap = &tvcpu->arch.slb_shadow;
err = 0;
break;
case H_VPA_DEREG_VPA: /* deregister VPA */
/* Check they don't still have a DTL or SLB buf registered */
err = H_RESOURCE;
if (vpa_is_registered(&tvcpu->arch.dtl) ||
vpa_is_registered(&tvcpu->arch.slb_shadow))
break;
vpap = &tvcpu->arch.vpa;
err = 0;
break;
case H_VPA_DEREG_DTL: /* deregister DTL */
vpap = &tvcpu->arch.dtl;
err = 0;
break;
case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
vpap = &tvcpu->arch.slb_shadow;
err = 0;
break;
}
if (vpap) {
vpap->next_gpa = vpa;
vpap->len = len;
vpap->update_pending = 1;
}
spin_unlock(&tvcpu->arch.vpa_update_lock);
return err;
}
static void kvmppc_update_vpa(struct kvm *kvm, struct kvmppc_vpa *vpap)
{
void *va;
unsigned long nb;
vpap->update_pending = 0;
va = NULL;
if (vpap->next_gpa) {
va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
if (nb < vpap->len) {
/*
* If it's now too short, it must be that userspace
* has changed the mappings underlying guest memory,
* so unregister the region.
*/
kvmppc_unpin_guest_page(kvm, va);
va = NULL;
}
}
if (vpap->pinned_addr)
kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
vpap->pinned_addr = va;
if (va)
vpap->pinned_end = va + vpap->len;
}
static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
spin_lock(&vcpu->arch.vpa_update_lock);
if (vcpu->arch.vpa.update_pending) {
kvmppc_update_vpa(kvm, &vcpu->arch.vpa);
init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
}
if (vcpu->arch.dtl.update_pending) {
kvmppc_update_vpa(kvm, &vcpu->arch.dtl);
vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
vcpu->arch.dtl_index = 0;
}
if (vcpu->arch.slb_shadow.update_pending)
kvmppc_update_vpa(kvm, &vcpu->arch.slb_shadow);
spin_unlock(&vcpu->arch.vpa_update_lock);
}
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
struct kvmppc_vcore *vc)
{
struct dtl_entry *dt;
struct lppaca *vpa;
unsigned long old_stolen;
dt = vcpu->arch.dtl_ptr;
vpa = vcpu->arch.vpa.pinned_addr;
old_stolen = vcpu->arch.stolen_logged;
vcpu->arch.stolen_logged = vc->stolen_tb;
if (!dt || !vpa)
return;
memset(dt, 0, sizeof(struct dtl_entry));
dt->dispatch_reason = 7;
dt->processor_id = vc->pcpu + vcpu->arch.ptid;
dt->timebase = mftb();
dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
dt->srr0 = kvmppc_get_pc(vcpu);
dt->srr1 = vcpu->arch.shregs.msr;
++dt;
if (dt == vcpu->arch.dtl.pinned_end)
dt = vcpu->arch.dtl.pinned_addr;
vcpu->arch.dtl_ptr = dt;
/* order writing *dt vs. writing vpa->dtl_idx */
smp_wmb();
vpa->dtl_idx = ++vcpu->arch.dtl_index;
}
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
unsigned long req = kvmppc_get_gpr(vcpu, 3);
unsigned long target, ret = H_SUCCESS;
struct kvm_vcpu *tvcpu;
switch (req) {
case H_ENTER:
ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
kvmppc_get_gpr(vcpu, 5),
kvmppc_get_gpr(vcpu, 6),
kvmppc_get_gpr(vcpu, 7));
break;
case H_CEDE:
break;
case H_PROD:
target = kvmppc_get_gpr(vcpu, 4);
tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
if (!tvcpu) {
ret = H_PARAMETER;
break;
}
tvcpu->arch.prodded = 1;
smp_mb();
if (vcpu->arch.ceded) {
if (waitqueue_active(&vcpu->wq)) {
wake_up_interruptible(&vcpu->wq);
vcpu->stat.halt_wakeup++;
}
}
break;
case H_CONFER:
break;
case H_REGISTER_VPA:
ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
kvmppc_get_gpr(vcpu, 5),
kvmppc_get_gpr(vcpu, 6));
break;
default:
return RESUME_HOST;
}
kvmppc_set_gpr(vcpu, 3, ret);
vcpu->arch.hcall_needed = 0;
return RESUME_GUEST;
}
static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
struct task_struct *tsk)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
switch (vcpu->arch.trap) {
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_HV_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PERFMON:
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
ulong flags;
/*
* Normally program interrupts are delivered directly
* to the guest by the hardware, but we can get here
* as a result of a hypervisor emulation interrupt
* (e40) getting turned into a 700 by BML RTAS.
*/
flags = vcpu->arch.shregs.msr & 0x1f0000ull;
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
{
/* hcall - punt to userspace */
int i;
if (vcpu->arch.shregs.msr & MSR_PR) {
/* sc 1 from userspace - reflect to guest syscall */
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
r = RESUME_GUEST;
break;
}
run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
for (i = 0; i < 9; ++i)
run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
run->exit_reason = KVM_EXIT_PAPR_HCALL;
vcpu->arch.hcall_needed = 1;
r = RESUME_HOST;
break;
}
/*
* We get these next two if the guest accesses a page which it thinks
* it has mapped but which is not actually present, either because
* it is for an emulated I/O device or because the corresonding
* host page has been paged out. Any other HDSI/HISI interrupts
* have been handled already.
*/
case BOOK3S_INTERRUPT_H_DATA_STORAGE:
r = kvmppc_book3s_hv_page_fault(run, vcpu,
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
break;
case BOOK3S_INTERRUPT_H_INST_STORAGE:
r = kvmppc_book3s_hv_page_fault(run, vcpu,
kvmppc_get_pc(vcpu), 0);
break;
/*
* This occurs if the guest executes an illegal instruction.
* We just generate a program interrupt to the guest, since
* we don't emulate any guest instructions at this stage.
*/
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
kvmppc_core_queue_program(vcpu, 0x80000);
r = RESUME_GUEST;
break;
default:
kvmppc_dump_regs(vcpu);
printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
vcpu->arch.trap, kvmppc_get_pc(vcpu),
vcpu->arch.shregs.msr);
r = RESUME_HOST;
BUG();
break;
}
return r;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int i;
sregs->pvr = vcpu->arch.pvr;
memset(sregs, 0, sizeof(struct kvm_sregs));
for (i = 0; i < vcpu->arch.slb_max; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int i, j;
kvmppc_set_pvr(vcpu, sregs->pvr);
j = 0;
for (i = 0; i < vcpu->arch.slb_nr; i++) {
if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
++j;
}
}
vcpu->arch.slb_max = j;
return 0;
}
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r = -EINVAL;
switch (reg->id) {
case KVM_REG_PPC_HIOR:
r = put_user(0, (u64 __user *)reg->addr);
break;
default:
break;
}
return r;
}
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r = -EINVAL;
switch (reg->id) {
case KVM_REG_PPC_HIOR:
{
u64 hior;
/* Only allow this to be set to zero */
r = get_user(hior, (u64 __user *)reg->addr);
if (!r && (hior != 0))
r = -EINVAL;
break;
}
default:
break;
}
return r;
}
int kvmppc_core_check_processor_compat(void)
{
if (cpu_has_feature(CPU_FTR_HVMODE))
return 0;
return -EIO;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvm_vcpu *vcpu;
int err = -EINVAL;
int core;
struct kvmppc_vcore *vcore;
core = id / threads_per_core;
if (core >= KVM_MAX_VCORES)
goto out;
err = -ENOMEM;
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu)
goto out;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_vcpu;
vcpu->arch.shared = &vcpu->arch.shregs;
vcpu->arch.last_cpu = -1;
vcpu->arch.mmcr[0] = MMCR0_FC;
vcpu->arch.ctrl = CTRL_RUNLATCH;
/* default to host PVR, since we can't spoof it */
vcpu->arch.pvr = mfspr(SPRN_PVR);
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
spin_lock_init(&vcpu->arch.vpa_update_lock);
kvmppc_mmu_book3s_hv_init(vcpu);
/*
* We consider the vcpu stopped until we see the first run ioctl for it.
*/
vcpu->arch.state = KVMPPC_VCPU_STOPPED;
init_waitqueue_head(&vcpu->arch.cpu_run);
mutex_lock(&kvm->lock);
vcore = kvm->arch.vcores[core];
if (!vcore) {
vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
if (vcore) {
INIT_LIST_HEAD(&vcore->runnable_threads);
spin_lock_init(&vcore->lock);
init_waitqueue_head(&vcore->wq);
vcore->preempt_tb = mftb();
}
kvm->arch.vcores[core] = vcore;
}
mutex_unlock(&kvm->lock);
if (!vcore)
goto free_vcpu;
spin_lock(&vcore->lock);
++vcore->num_threads;
spin_unlock(&vcore->lock);
vcpu->arch.vcore = vcore;
vcpu->arch.stolen_logged = vcore->stolen_tb;
vcpu->arch.cpu_type = KVM_CPU_3S_64;
kvmppc_sanity_check(vcpu);
return vcpu;
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
spin_lock(&vcpu->arch.vpa_update_lock);
if (vcpu->arch.dtl.pinned_addr)
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
if (vcpu->arch.slb_shadow.pinned_addr)
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
if (vcpu->arch.vpa.pinned_addr)
kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
spin_unlock(&vcpu->arch.vpa_update_lock);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
{
unsigned long dec_nsec, now;
now = get_tb();
if (now > vcpu->arch.dec_expires) {
/* decrementer has already gone negative */
kvmppc_core_queue_dec(vcpu);
kvmppc_core_prepare_to_enter(vcpu);
return;
}
dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
/ tb_ticks_per_sec;
hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
HRTIMER_MODE_REL);
vcpu->arch.timer_running = 1;
}
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
{
vcpu->arch.ceded = 0;
if (vcpu->arch.timer_running) {
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
vcpu->arch.timer_running = 0;
}
}
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
extern void xics_wake_cpu(int cpu);
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
struct kvm_vcpu *vcpu)
{
struct kvm_vcpu *v;
if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
return;
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
--vc->n_runnable;
++vc->n_busy;
/* decrement the physical thread id of each following vcpu */
v = vcpu;
list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
--v->arch.ptid;
list_del(&vcpu->arch.run_list);
}
static int kvmppc_grab_hwthread(int cpu)
{
struct paca_struct *tpaca;
long timeout = 1000;
tpaca = &paca[cpu];
/* Ensure the thread won't go into the kernel if it wakes */
tpaca->kvm_hstate.hwthread_req = 1;
/*
* If the thread is already executing in the kernel (e.g. handling
* a stray interrupt), wait for it to get back to nap mode.
* The smp_mb() is to ensure that our setting of hwthread_req
* is visible before we look at hwthread_state, so if this
* races with the code at system_reset_pSeries and the thread
* misses our setting of hwthread_req, we are sure to see its
* setting of hwthread_state, and vice versa.
*/
smp_mb();
while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
if (--timeout <= 0) {
pr_err("KVM: couldn't grab cpu %d\n", cpu);
return -EBUSY;
}
udelay(1);
}
return 0;
}
static void kvmppc_release_hwthread(int cpu)
{
struct paca_struct *tpaca;
tpaca = &paca[cpu];
tpaca->kvm_hstate.hwthread_req = 0;
tpaca->kvm_hstate.kvm_vcpu = NULL;
}
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
int cpu;
struct paca_struct *tpaca;
struct kvmppc_vcore *vc = vcpu->arch.vcore;
if (vcpu->arch.timer_running) {
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
vcpu->arch.timer_running = 0;
}
cpu = vc->pcpu + vcpu->arch.ptid;
tpaca = &paca[cpu];
tpaca->kvm_hstate.kvm_vcpu = vcpu;
tpaca->kvm_hstate.kvm_vcore = vc;
tpaca->kvm_hstate.napping = 0;
vcpu->cpu = vc->pcpu;
smp_wmb();
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
if (vcpu->arch.ptid) {
kvmppc_grab_hwthread(cpu);
xics_wake_cpu(cpu);
++vc->n_woken;
}
#endif
}
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
int i;
HMT_low();
i = 0;
while (vc->nap_count < vc->n_woken) {
if (++i >= 1000000) {
pr_err("kvmppc_wait_for_nap timeout %d %d\n",
vc->nap_count, vc->n_woken);
break;
}
cpu_relax();
}
HMT_medium();
}
/*
* Check that we are on thread 0 and that any other threads in
* this core are off-line.
*/
static int on_primary_thread(void)
{
int cpu = smp_processor_id();
int thr = cpu_thread_in_core(cpu);
if (thr)
return 0;
while (++thr < threads_per_core)
if (cpu_online(cpu + thr))
return 0;
return 1;
}
/*
* Run a set of guest threads on a physical core.
* Called with vc->lock held.
*/
static int kvmppc_run_core(struct kvmppc_vcore *vc)
{
struct kvm_vcpu *vcpu, *vcpu0, *vnext;
long ret;
u64 now;
int ptid, i;
/* don't start if any threads have a signal pending */
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
if (signal_pending(vcpu->arch.run_task))
return 0;
/*
* Make sure we are running on thread 0, and that
* secondary threads are offline.
* XXX we should also block attempts to bring any
* secondary threads online.
*/
if (threads_per_core > 1 && !on_primary_thread()) {
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
vcpu->arch.ret = -EBUSY;
goto out;
}
/*
* Assign physical thread IDs, first to non-ceded vcpus
* and then to ceded ones.
*/
ptid = 0;
vcpu0 = NULL;
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
if (!vcpu->arch.ceded) {
if (!ptid)
vcpu0 = vcpu;
vcpu->arch.ptid = ptid++;
}
}
if (!vcpu0)
return 0; /* nothing to run */
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
if (vcpu->arch.ceded)
vcpu->arch.ptid = ptid++;
vc->n_woken = 0;
vc->nap_count = 0;
vc->entry_exit_count = 0;
vc->vcore_state = VCORE_RUNNING;
vc->stolen_tb += mftb() - vc->preempt_tb;
vc->in_guest = 0;
vc->pcpu = smp_processor_id();
vc->napping_threads = 0;
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
kvmppc_start_thread(vcpu);
if (vcpu->arch.vpa.update_pending ||
vcpu->arch.slb_shadow.update_pending ||
vcpu->arch.dtl.update_pending)
kvmppc_update_vpas(vcpu);
kvmppc_create_dtl_entry(vcpu, vc);
}
/* Grab any remaining hw threads so they can't go into the kernel */
for (i = ptid; i < threads_per_core; ++i)
kvmppc_grab_hwthread(vc->pcpu + i);
preempt_disable();
spin_unlock(&vc->lock);
kvm_guest_enter();
__kvmppc_vcore_entry(NULL, vcpu0);
for (i = 0; i < threads_per_core; ++i)
kvmppc_release_hwthread(vc->pcpu + i);
spin_lock(&vc->lock);
/* disable sending of IPIs on virtual external irqs */
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
vcpu->cpu = -1;
/* wait for secondary threads to finish writing their state to memory */
if (vc->nap_count < vc->n_woken)
kvmppc_wait_for_nap(vc);
/* prevent other vcpu threads from doing kvmppc_start_thread() now */
vc->vcore_state = VCORE_EXITING;
spin_unlock(&vc->lock);
/* make sure updates to secondary vcpu structs are visible now */
smp_mb();
kvm_guest_exit();
preempt_enable();
kvm_resched(vcpu);
now = get_tb();
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
/* cancel pending dec exception if dec is positive */
if (now < vcpu->arch.dec_expires &&
kvmppc_core_pending_dec(vcpu))
kvmppc_core_dequeue_dec(vcpu);
ret = RESUME_GUEST;
if (vcpu->arch.trap)
ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
vcpu->arch.run_task);
vcpu->arch.ret = ret;
vcpu->arch.trap = 0;
if (vcpu->arch.ceded) {
if (ret != RESUME_GUEST)
kvmppc_end_cede(vcpu);
else
kvmppc_set_timer(vcpu);
}
}
spin_lock(&vc->lock);
out:
vc->vcore_state = VCORE_INACTIVE;
vc->preempt_tb = mftb();
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
arch.run_list) {
if (vcpu->arch.ret != RESUME_GUEST) {
kvmppc_remove_runnable(vc, vcpu);
wake_up(&vcpu->arch.cpu_run);
}
}
return 1;
}
/*
* Wait for some other vcpu thread to execute us, and
* wake us up when we need to handle something in the host.
*/
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
{
DEFINE_WAIT(wait);
prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
schedule();
finish_wait(&vcpu->arch.cpu_run, &wait);
}
/*
* All the vcpus in this vcore are idle, so wait for a decrementer
* or external interrupt to one of the vcpus. vc->lock is held.
*/
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
DEFINE_WAIT(wait);
struct kvm_vcpu *v;
int all_idle = 1;
prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
vc->vcore_state = VCORE_SLEEPING;
spin_unlock(&vc->lock);
list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
if (!v->arch.ceded || v->arch.pending_exceptions) {
all_idle = 0;
break;
}
}
if (all_idle)
schedule();
finish_wait(&vc->wq, &wait);
spin_lock(&vc->lock);
vc->vcore_state = VCORE_INACTIVE;
}
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int n_ceded;
int prev_state;
struct kvmppc_vcore *vc;
struct kvm_vcpu *v, *vn;
kvm_run->exit_reason = 0;
vcpu->arch.ret = RESUME_GUEST;
vcpu->arch.trap = 0;
/*
* Synchronize with other threads in this virtual core
*/
vc = vcpu->arch.vcore;
spin_lock(&vc->lock);
vcpu->arch.ceded = 0;
vcpu->arch.run_task = current;
vcpu->arch.kvm_run = kvm_run;
prev_state = vcpu->arch.state;
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
++vc->n_runnable;
/*
* This happens the first time this is called for a vcpu.
* If the vcore is already running, we may be able to start
* this thread straight away and have it join in.
*/
if (prev_state == KVMPPC_VCPU_STOPPED) {
if (vc->vcore_state == VCORE_RUNNING &&
VCORE_EXIT_COUNT(vc) == 0) {
vcpu->arch.ptid = vc->n_runnable - 1;
kvmppc_start_thread(vcpu);
}
} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
--vc->n_busy;
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
!signal_pending(current)) {
if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
spin_unlock(&vc->lock);
kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
spin_lock(&vc->lock);
continue;
}
vc->runner = vcpu;
n_ceded = 0;
list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
n_ceded += v->arch.ceded;
if (n_ceded == vc->n_runnable)
kvmppc_vcore_blocked(vc);
else
kvmppc_run_core(vc);
list_for_each_entry_safe(v, vn, &vc->runnable_threads,
arch.run_list) {
kvmppc_core_prepare_to_enter(v);
if (signal_pending(v->arch.run_task)) {
kvmppc_remove_runnable(vc, v);
v->stat.signal_exits++;
v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
v->arch.ret = -EINTR;
wake_up(&v->arch.cpu_run);
}
}
vc->runner = NULL;
}
if (signal_pending(current)) {
if (vc->vcore_state == VCORE_RUNNING ||
vc->vcore_state == VCORE_EXITING) {
spin_unlock(&vc->lock);
kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
spin_lock(&vc->lock);
}
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
kvmppc_remove_runnable(vc, vcpu);
vcpu->stat.signal_exits++;
kvm_run->exit_reason = KVM_EXIT_INTR;
vcpu->arch.ret = -EINTR;
}
}
spin_unlock(&vc->lock);
return vcpu->arch.ret;
}
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
int r;
if (!vcpu->arch.sane) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
kvmppc_core_prepare_to_enter(vcpu);
/* No need to go into the guest when all we'll do is come back out */
if (signal_pending(current)) {
run->exit_reason = KVM_EXIT_INTR;
return -EINTR;
}
atomic_inc(&vcpu->kvm->arch.vcpus_running);
/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
smp_mb();
/* On the first time here, set up HTAB and VRMA or RMA */
if (!vcpu->kvm->arch.rma_setup_done) {
r = kvmppc_hv_setup_htab_rma(vcpu);
if (r)
goto out;
}
flush_fp_to_thread(current);
flush_altivec_to_thread(current);
flush_vsx_to_thread(current);
vcpu->arch.wqp = &vcpu->arch.vcore->wq;
vcpu->arch.pgdir = current->mm->pgd;
do {
r = kvmppc_run_vcpu(run, vcpu);
if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
!(vcpu->arch.shregs.msr & MSR_PR)) {
r = kvmppc_pseries_do_hcall(vcpu);
kvmppc_core_prepare_to_enter(vcpu);
}
} while (r == RESUME_GUEST);
out:
atomic_dec(&vcpu->kvm->arch.vcpus_running);
return r;
}
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
Assumes POWER7 or PPC970. */
static inline int lpcr_rmls(unsigned long rma_size)
{
switch (rma_size) {
case 32ul << 20: /* 32 MB */
if (cpu_has_feature(CPU_FTR_ARCH_206))
return 8; /* only supported on POWER7 */
return -1;
case 64ul << 20: /* 64 MB */
return 3;
case 128ul << 20: /* 128 MB */
return 7;
case 256ul << 20: /* 256 MB */
return 4;
case 1ul << 30: /* 1 GB */
return 2;
case 16ul << 30: /* 16 GB */
return 1;
case 256ul << 30: /* 256 GB */
return 0;
default:
return -1;
}
}
static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct kvmppc_linear_info *ri = vma->vm_file->private_data;
struct page *page;
if (vmf->pgoff >= ri->npages)
return VM_FAULT_SIGBUS;
page = pfn_to_page(ri->base_pfn + vmf->pgoff);
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct kvm_rma_vm_ops = {
.fault = kvm_rma_fault,
};
static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_flags |= VM_RESERVED;
vma->vm_ops = &kvm_rma_vm_ops;
return 0;
}
static int kvm_rma_release(struct inode *inode, struct file *filp)
{
struct kvmppc_linear_info *ri = filp->private_data;
kvm_release_rma(ri);
return 0;
}
static struct file_operations kvm_rma_fops = {
.mmap = kvm_rma_mmap,
.release = kvm_rma_release,
};
long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
{
struct kvmppc_linear_info *ri;
long fd;
ri = kvm_alloc_rma();
if (!ri)
return -ENOMEM;
fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
if (fd < 0)
kvm_release_rma(ri);
ret->rma_size = ri->npages << PAGE_SHIFT;
return fd;
}
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
int linux_psize)
{
struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
if (!def->shift)
return;
(*sps)->page_shift = def->shift;
(*sps)->slb_enc = def->sllp;
(*sps)->enc[0].page_shift = def->shift;
(*sps)->enc[0].pte_enc = def->penc;
(*sps)++;
}
int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
{
struct kvm_ppc_one_seg_page_size *sps;
info->flags = KVM_PPC_PAGE_SIZES_REAL;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
info->flags |= KVM_PPC_1T_SEGMENTS;
info->slb_size = mmu_slb_size;
/* We only support these sizes for now, and no muti-size segments */
sps = &info->sps[0];
kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = id_to_memslot(kvm->memslots, log->slot);
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
r = kvmppc_hv_get_dirty_log(kvm, memslot);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
goto out;
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static unsigned long slb_pgsize_encoding(unsigned long psize)
{
unsigned long senc = 0;
if (psize > 0x1000) {
senc = SLB_VSID_L;
if (psize == 0x10000)
senc |= SLB_VSID_LP_01;
}
return senc;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
unsigned long npages;
unsigned long *phys;
/* Allocate a slot_phys array */
phys = kvm->arch.slot_phys[mem->slot];
if (!kvm->arch.using_mmu_notifiers && !phys) {
npages = mem->memory_size >> PAGE_SHIFT;
phys = vzalloc(npages * sizeof(unsigned long));
if (!phys)
return -ENOMEM;
kvm->arch.slot_phys[mem->slot] = phys;
kvm->arch.slot_npages[mem->slot] = npages;
}
return 0;
}
static void unpin_slot(struct kvm *kvm, int slot_id)
{
unsigned long *physp;
unsigned long j, npages, pfn;
struct page *page;
physp = kvm->arch.slot_phys[slot_id];
npages = kvm->arch.slot_npages[slot_id];
if (physp) {
spin_lock(&kvm->arch.slot_phys_lock);
for (j = 0; j < npages; j++) {
if (!(physp[j] & KVMPPC_GOT_PAGE))
continue;
pfn = physp[j] >> PAGE_SHIFT;
page = pfn_to_page(pfn);
SetPageDirty(page);
put_page(page);
}
kvm->arch.slot_phys[slot_id] = NULL;
spin_unlock(&kvm->arch.slot_phys_lock);
vfree(physp);
}
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
}
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
{
int err = 0;
struct kvm *kvm = vcpu->kvm;
struct kvmppc_linear_info *ri = NULL;
unsigned long hva;
struct kvm_memory_slot *memslot;
struct vm_area_struct *vma;
unsigned long lpcr, senc;
unsigned long psize, porder;
unsigned long rma_size;
unsigned long rmls;
unsigned long *physp;
unsigned long i, npages;
mutex_lock(&kvm->lock);
if (kvm->arch.rma_setup_done)
goto out; /* another vcpu beat us to it */
/* Allocate hashed page table (if not done already) and reset it */
if (!kvm->arch.hpt_virt) {
err = kvmppc_alloc_hpt(kvm, NULL);
if (err) {
pr_err("KVM: Couldn't alloc HPT\n");
goto out;
}
}
/* Look up the memslot for guest physical address 0 */
memslot = gfn_to_memslot(kvm, 0);
/* We must have some memory at 0 by now */
err = -EINVAL;
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
goto out;
/* Look up the VMA for the start of this memory slot */
hva = memslot->userspace_addr;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, hva);
if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
goto up_out;
psize = vma_kernel_pagesize(vma);
porder = __ilog2(psize);
/* Is this one of our preallocated RMAs? */
if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
hva == vma->vm_start)
ri = vma->vm_file->private_data;
up_read(&current->mm->mmap_sem);
if (!ri) {
/* On POWER7, use VRMA; on PPC970, give up */
err = -EPERM;
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
pr_err("KVM: CPU requires an RMO\n");
goto out;
}
/* We can handle 4k, 64k or 16M pages in the VRMA */
err = -EINVAL;
if (!(psize == 0x1000 || psize == 0x10000 ||
psize == 0x1000000))
goto out;
/* Update VRMASD field in the LPCR */
senc = slb_pgsize_encoding(psize);
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
(VRMA_VSID << SLB_VSID_SHIFT_1T);
lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
lpcr |= senc << (LPCR_VRMASD_SH - 4);
kvm->arch.lpcr = lpcr;
/* Create HPTEs in the hash page table for the VRMA */
kvmppc_map_vrma(vcpu, memslot, porder);
} else {
/* Set up to use an RMO region */
rma_size = ri->npages;
if (rma_size > memslot->npages)
rma_size = memslot->npages;
rma_size <<= PAGE_SHIFT;
rmls = lpcr_rmls(rma_size);
err = -EINVAL;
if (rmls < 0) {
pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
goto out;
}
atomic_inc(&ri->use_count);
kvm->arch.rma = ri;
/* Update LPCR and RMOR */
lpcr = kvm->arch.lpcr;
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
/* PPC970; insert RMLS value (split field) in HID4 */
lpcr &= ~((1ul << HID4_RMLS0_SH) |
(3ul << HID4_RMLS2_SH));
lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
((rmls & 3) << HID4_RMLS2_SH);
/* RMOR is also in HID4 */
lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
<< HID4_RMOR_SH;
} else {
/* POWER7 */
lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
lpcr |= rmls << LPCR_RMLS_SH;
kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
}
kvm->arch.lpcr = lpcr;
pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
/* Initialize phys addrs of pages in RMO */
npages = ri->npages;
porder = __ilog2(npages);
physp = kvm->arch.slot_phys[memslot->id];
spin_lock(&kvm->arch.slot_phys_lock);
for (i = 0; i < npages; ++i)
physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder;
spin_unlock(&kvm->arch.slot_phys_lock);
}
/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
smp_wmb();
kvm->arch.rma_setup_done = 1;
err = 0;
out:
mutex_unlock(&kvm->lock);
return err;
up_out:
up_read(&current->mm->mmap_sem);
goto out;
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
unsigned long lpcr, lpid;
/* Allocate the guest's logical partition ID */
lpid = kvmppc_alloc_lpid();
if (lpid < 0)
return -ENOMEM;
kvm->arch.lpid = lpid;
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
kvm->arch.rma = NULL;
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
if (cpu_has_feature(CPU_FTR_ARCH_201)) {
/* PPC970; HID4 is effectively the LPCR */
kvm->arch.host_lpid = 0;
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
((lpid & 0xf) << HID4_LPID5_SH);
} else {
/* POWER7; init LPCR for virtual RMA mode */
kvm->arch.host_lpid = mfspr(SPRN_LPID);
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
lpcr &= LPCR_PECE | LPCR_LPES;
lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
LPCR_VPM0 | LPCR_VPM1;
kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
(VRMA_VSID << SLB_VSID_SHIFT_1T);
}
kvm->arch.lpcr = lpcr;
kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
spin_lock_init(&kvm->arch.slot_phys_lock);
return 0;
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
unsigned long i;
if (!kvm->arch.using_mmu_notifiers)
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
unpin_slot(kvm, i);
if (kvm->arch.rma) {
kvm_release_rma(kvm->arch.rma);
kvm->arch.rma = NULL;
}
kvmppc_free_hpt(kvm);
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
}
/* These are stubs for now */
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
}
/* We don't need to emulate any privileged instructions or dcbz */
int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int inst, int *advance)
{
return EMULATE_FAIL;
}
int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
{
return EMULATE_FAIL;
}
int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
{
return EMULATE_FAIL;
}
static int kvmppc_book3s_hv_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (r)
return r;
r = kvmppc_mmu_hv_init();
return r;
}
static void kvmppc_book3s_hv_exit(void)
{
kvm_exit();
}
module_init(kvmppc_book3s_hv_init);
module_exit(kvmppc_book3s_hv_exit);