| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * IEEE754 floating point arithmetic |
| * double precision: MADDF.f (Fused Multiply Add) |
| * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) |
| * |
| * MIPS floating point support |
| * Copyright (C) 2015 Imagination Technologies, Ltd. |
| * Author: Markos Chandras <markos.chandras@imgtec.com> |
| */ |
| |
| #include "ieee754dp.h" |
| |
| |
| /* 128 bits shift right logical with rounding. */ |
| static void srl128(u64 *hptr, u64 *lptr, int count) |
| { |
| u64 low; |
| |
| if (count >= 128) { |
| *lptr = *hptr != 0 || *lptr != 0; |
| *hptr = 0; |
| } else if (count >= 64) { |
| if (count == 64) { |
| *lptr = *hptr | (*lptr != 0); |
| } else { |
| low = *lptr; |
| *lptr = *hptr >> (count - 64); |
| *lptr |= (*hptr << (128 - count)) != 0 || low != 0; |
| } |
| *hptr = 0; |
| } else { |
| low = *lptr; |
| *lptr = low >> count | *hptr << (64 - count); |
| *lptr |= (low << (64 - count)) != 0; |
| *hptr = *hptr >> count; |
| } |
| } |
| |
| static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y, enum maddf_flags flags) |
| { |
| int re; |
| int rs; |
| unsigned int lxm; |
| unsigned int hxm; |
| unsigned int lym; |
| unsigned int hym; |
| u64 lrm; |
| u64 hrm; |
| u64 lzm; |
| u64 hzm; |
| u64 t; |
| u64 at; |
| int s; |
| |
| COMPXDP; |
| COMPYDP; |
| COMPZDP; |
| |
| EXPLODEXDP; |
| EXPLODEYDP; |
| EXPLODEZDP; |
| |
| FLUSHXDP; |
| FLUSHYDP; |
| FLUSHZDP; |
| |
| ieee754_clearcx(); |
| |
| rs = xs ^ ys; |
| if (flags & MADDF_NEGATE_PRODUCT) |
| rs ^= 1; |
| if (flags & MADDF_NEGATE_ADDITION) |
| zs ^= 1; |
| |
| /* |
| * Handle the cases when at least one of x, y or z is a NaN. |
| * Order of precedence is sNaN, qNaN and z, x, y. |
| */ |
| if (zc == IEEE754_CLASS_SNAN) |
| return ieee754dp_nanxcpt(z); |
| if (xc == IEEE754_CLASS_SNAN) |
| return ieee754dp_nanxcpt(x); |
| if (yc == IEEE754_CLASS_SNAN) |
| return ieee754dp_nanxcpt(y); |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| if (xc == IEEE754_CLASS_QNAN) |
| return x; |
| if (yc == IEEE754_CLASS_QNAN) |
| return y; |
| |
| if (zc == IEEE754_CLASS_DNORM) |
| DPDNORMZ; |
| /* ZERO z cases are handled separately below */ |
| |
| switch (CLPAIR(xc, yc)) { |
| |
| /* |
| * Infinity handling |
| */ |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): |
| ieee754_setcx(IEEE754_INVALID_OPERATION); |
| return ieee754dp_indef(); |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): |
| if ((zc == IEEE754_CLASS_INF) && (zs != rs)) { |
| /* |
| * Cases of addition of infinities with opposite signs |
| * or subtraction of infinities with same signs. |
| */ |
| ieee754_setcx(IEEE754_INVALID_OPERATION); |
| return ieee754dp_indef(); |
| } |
| /* |
| * z is here either not an infinity, or an infinity having the |
| * same sign as product (x*y). The result must be an infinity, |
| * and its sign is determined only by the sign of product (x*y). |
| */ |
| return ieee754dp_inf(rs); |
| |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| if (zc == IEEE754_CLASS_ZERO) { |
| /* Handle cases +0 + (-0) and similar ones. */ |
| if (zs == rs) |
| /* |
| * Cases of addition of zeros of equal signs |
| * or subtraction of zeroes of opposite signs. |
| * The sign of the resulting zero is in any |
| * such case determined only by the sign of z. |
| */ |
| return z; |
| |
| return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| } |
| /* x*y is here 0, and z is not 0, so just return z */ |
| return z; |
| |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): |
| DPDNORMX; |
| /* fall through */ |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| DPDNORMY; |
| break; |
| |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| DPDNORMX; |
| break; |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| /* continue to real computations */ |
| } |
| |
| /* Finally get to do some computation */ |
| |
| /* |
| * Do the multiplication bit first |
| * |
| * rm = xm * ym, re = xe + ye basically |
| * |
| * At this point xm and ym should have been normalized. |
| */ |
| assert(xm & DP_HIDDEN_BIT); |
| assert(ym & DP_HIDDEN_BIT); |
| |
| re = xe + ye; |
| |
| /* shunt to top of word */ |
| xm <<= 64 - (DP_FBITS + 1); |
| ym <<= 64 - (DP_FBITS + 1); |
| |
| /* |
| * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm. |
| */ |
| |
| lxm = xm; |
| hxm = xm >> 32; |
| lym = ym; |
| hym = ym >> 32; |
| |
| lrm = DPXMULT(lxm, lym); |
| hrm = DPXMULT(hxm, hym); |
| |
| t = DPXMULT(lxm, hym); |
| |
| at = lrm + (t << 32); |
| hrm += at < lrm; |
| lrm = at; |
| |
| hrm = hrm + (t >> 32); |
| |
| t = DPXMULT(hxm, lym); |
| |
| at = lrm + (t << 32); |
| hrm += at < lrm; |
| lrm = at; |
| |
| hrm = hrm + (t >> 32); |
| |
| /* Put explicit bit at bit 126 if necessary */ |
| if ((int64_t)hrm < 0) { |
| lrm = (hrm << 63) | (lrm >> 1); |
| hrm = hrm >> 1; |
| re++; |
| } |
| |
| assert(hrm & (1 << 62)); |
| |
| if (zc == IEEE754_CLASS_ZERO) { |
| /* |
| * Move explicit bit from bit 126 to bit 55 since the |
| * ieee754dp_format code expects the mantissa to be |
| * 56 bits wide (53 + 3 rounding bits). |
| */ |
| srl128(&hrm, &lrm, (126 - 55)); |
| return ieee754dp_format(rs, re, lrm); |
| } |
| |
| /* Move explicit bit from bit 52 to bit 126 */ |
| lzm = 0; |
| hzm = zm << 10; |
| assert(hzm & (1 << 62)); |
| |
| /* Make the exponents the same */ |
| if (ze > re) { |
| /* |
| * Have to shift y fraction right to align. |
| */ |
| s = ze - re; |
| srl128(&hrm, &lrm, s); |
| re += s; |
| } else if (re > ze) { |
| /* |
| * Have to shift x fraction right to align. |
| */ |
| s = re - ze; |
| srl128(&hzm, &lzm, s); |
| ze += s; |
| } |
| assert(ze == re); |
| assert(ze <= DP_EMAX); |
| |
| /* Do the addition */ |
| if (zs == rs) { |
| /* |
| * Generate 128 bit result by adding two 127 bit numbers |
| * leaving result in hzm:lzm, zs and ze. |
| */ |
| hzm = hzm + hrm + (lzm > (lzm + lrm)); |
| lzm = lzm + lrm; |
| if ((int64_t)hzm < 0) { /* carry out */ |
| srl128(&hzm, &lzm, 1); |
| ze++; |
| } |
| } else { |
| if (hzm > hrm || (hzm == hrm && lzm >= lrm)) { |
| hzm = hzm - hrm - (lzm < lrm); |
| lzm = lzm - lrm; |
| } else { |
| hzm = hrm - hzm - (lrm < lzm); |
| lzm = lrm - lzm; |
| zs = rs; |
| } |
| if (lzm == 0 && hzm == 0) |
| return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| |
| /* |
| * Put explicit bit at bit 126 if necessary. |
| */ |
| if (hzm == 0) { |
| /* left shift by 63 or 64 bits */ |
| if ((int64_t)lzm < 0) { |
| /* MSB of lzm is the explicit bit */ |
| hzm = lzm >> 1; |
| lzm = lzm << 63; |
| ze -= 63; |
| } else { |
| hzm = lzm; |
| lzm = 0; |
| ze -= 64; |
| } |
| } |
| |
| t = 0; |
| while ((hzm >> (62 - t)) == 0) |
| t++; |
| |
| assert(t <= 62); |
| if (t) { |
| hzm = hzm << t | lzm >> (64 - t); |
| lzm = lzm << t; |
| ze -= t; |
| } |
| } |
| |
| /* |
| * Move explicit bit from bit 126 to bit 55 since the |
| * ieee754dp_format code expects the mantissa to be |
| * 56 bits wide (53 + 3 rounding bits). |
| */ |
| srl128(&hzm, &lzm, (126 - 55)); |
| |
| return ieee754dp_format(zs, ze, lzm); |
| } |
| |
| union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, 0); |
| } |
| |
| union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); |
| } |
| |
| union ieee754dp ieee754dp_madd(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, 0); |
| } |
| |
| union ieee754dp ieee754dp_msub(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, MADDF_NEGATE_ADDITION); |
| } |
| |
| union ieee754dp ieee754dp_nmadd(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT|MADDF_NEGATE_ADDITION); |
| } |
| |
| union ieee754dp ieee754dp_nmsub(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); |
| } |