blob: da5e0d74bb2f4df648203bbaa0293d2a32859945 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Scatterlist Cryptographic API.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 David S. Miller (davem@redhat.com)
* Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
*
* Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
* and Nettle, by Niels Möller.
*/
#ifndef _LINUX_CRYPTO_H
#define _LINUX_CRYPTO_H
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/bug.h>
#include <linux/refcount.h>
#include <linux/slab.h>
#include <linux/completion.h>
/*
* Autoloaded crypto modules should only use a prefixed name to avoid allowing
* arbitrary modules to be loaded. Loading from userspace may still need the
* unprefixed names, so retains those aliases as well.
* This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
* gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
* expands twice on the same line. Instead, use a separate base name for the
* alias.
*/
#define MODULE_ALIAS_CRYPTO(name) \
__MODULE_INFO(alias, alias_userspace, name); \
__MODULE_INFO(alias, alias_crypto, "crypto-" name)
/*
* Algorithm masks and types.
*/
#define CRYPTO_ALG_TYPE_MASK 0x0000000f
#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
#define CRYPTO_ALG_TYPE_AEAD 0x00000003
#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
#define CRYPTO_ALG_TYPE_KPP 0x00000008
#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
#define CRYPTO_ALG_TYPE_RNG 0x0000000c
#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
#define CRYPTO_ALG_TYPE_HASH 0x0000000e
#define CRYPTO_ALG_TYPE_SHASH 0x0000000e
#define CRYPTO_ALG_TYPE_AHASH 0x0000000f
#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
#define CRYPTO_ALG_LARVAL 0x00000010
#define CRYPTO_ALG_DEAD 0x00000020
#define CRYPTO_ALG_DYING 0x00000040
#define CRYPTO_ALG_ASYNC 0x00000080
/*
* Set if the algorithm (or an algorithm which it uses) requires another
* algorithm of the same type to handle corner cases.
*/
#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
/*
* Set if the algorithm has passed automated run-time testing. Note that
* if there is no run-time testing for a given algorithm it is considered
* to have passed.
*/
#define CRYPTO_ALG_TESTED 0x00000400
/*
* Set if the algorithm is an instance that is built from templates.
*/
#define CRYPTO_ALG_INSTANCE 0x00000800
/* Set this bit if the algorithm provided is hardware accelerated but
* not available to userspace via instruction set or so.
*/
#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
/*
* Mark a cipher as a service implementation only usable by another
* cipher and never by a normal user of the kernel crypto API
*/
#define CRYPTO_ALG_INTERNAL 0x00002000
/*
* Set if the algorithm has a ->setkey() method but can be used without
* calling it first, i.e. there is a default key.
*/
#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
/*
* Don't trigger module loading
*/
#define CRYPTO_NOLOAD 0x00008000
/*
* The algorithm may allocate memory during request processing, i.e. during
* encryption, decryption, or hashing. Users can request an algorithm with this
* flag unset if they can't handle memory allocation failures.
*
* This flag is currently only implemented for algorithms of type "skcipher",
* "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
* have this flag set even if they allocate memory.
*
* In some edge cases, algorithms can allocate memory regardless of this flag.
* To avoid these cases, users must obey the following usage constraints:
* skcipher:
* - The IV buffer and all scatterlist elements must be aligned to the
* algorithm's alignmask.
* - If the data were to be divided into chunks of size
* crypto_skcipher_walksize() (with any remainder going at the end), no
* chunk can cross a page boundary or a scatterlist element boundary.
* aead:
* - The IV buffer and all scatterlist elements must be aligned to the
* algorithm's alignmask.
* - The first scatterlist element must contain all the associated data,
* and its pages must be !PageHighMem.
* - If the plaintext/ciphertext were to be divided into chunks of size
* crypto_aead_walksize() (with the remainder going at the end), no chunk
* can cross a page boundary or a scatterlist element boundary.
* ahash:
* - The result buffer must be aligned to the algorithm's alignmask.
* - crypto_ahash_finup() must not be used unless the algorithm implements
* ->finup() natively.
*/
#define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
/*
* Transform masks and values (for crt_flags).
*/
#define CRYPTO_TFM_NEED_KEY 0x00000001
#define CRYPTO_TFM_REQ_MASK 0x000fff00
#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
/*
* Miscellaneous stuff.
*/
#define CRYPTO_MAX_ALG_NAME 128
/*
* The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
* declaration) is used to ensure that the crypto_tfm context structure is
* aligned correctly for the given architecture so that there are no alignment
* faults for C data types. On architectures that support non-cache coherent
* DMA, such as ARM or arm64, it also takes into account the minimal alignment
* that is required to ensure that the context struct member does not share any
* cachelines with the rest of the struct. This is needed to ensure that cache
* maintenance for non-coherent DMA (cache invalidation in particular) does not
* affect data that may be accessed by the CPU concurrently.
*/
#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
struct scatterlist;
struct crypto_async_request;
struct crypto_tfm;
struct crypto_type;
typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
/**
* DOC: Block Cipher Context Data Structures
*
* These data structures define the operating context for each block cipher
* type.
*/
struct crypto_async_request {
struct list_head list;
crypto_completion_t complete;
void *data;
struct crypto_tfm *tfm;
u32 flags;
};
/**
* DOC: Block Cipher Algorithm Definitions
*
* These data structures define modular crypto algorithm implementations,
* managed via crypto_register_alg() and crypto_unregister_alg().
*/
/**
* struct cipher_alg - single-block symmetric ciphers definition
* @cia_min_keysize: Minimum key size supported by the transformation. This is
* the smallest key length supported by this transformation
* algorithm. This must be set to one of the pre-defined
* values as this is not hardware specific. Possible values
* for this field can be found via git grep "_MIN_KEY_SIZE"
* include/crypto/
* @cia_max_keysize: Maximum key size supported by the transformation. This is
* the largest key length supported by this transformation
* algorithm. This must be set to one of the pre-defined values
* as this is not hardware specific. Possible values for this
* field can be found via git grep "_MAX_KEY_SIZE"
* include/crypto/
* @cia_setkey: Set key for the transformation. This function is used to either
* program a supplied key into the hardware or store the key in the
* transformation context for programming it later. Note that this
* function does modify the transformation context. This function
* can be called multiple times during the existence of the
* transformation object, so one must make sure the key is properly
* reprogrammed into the hardware. This function is also
* responsible for checking the key length for validity.
* @cia_encrypt: Encrypt a single block. This function is used to encrypt a
* single block of data, which must be @cra_blocksize big. This
* always operates on a full @cra_blocksize and it is not possible
* to encrypt a block of smaller size. The supplied buffers must
* therefore also be at least of @cra_blocksize size. Both the
* input and output buffers are always aligned to @cra_alignmask.
* In case either of the input or output buffer supplied by user
* of the crypto API is not aligned to @cra_alignmask, the crypto
* API will re-align the buffers. The re-alignment means that a
* new buffer will be allocated, the data will be copied into the
* new buffer, then the processing will happen on the new buffer,
* then the data will be copied back into the original buffer and
* finally the new buffer will be freed. In case a software
* fallback was put in place in the @cra_init call, this function
* might need to use the fallback if the algorithm doesn't support
* all of the key sizes. In case the key was stored in
* transformation context, the key might need to be re-programmed
* into the hardware in this function. This function shall not
* modify the transformation context, as this function may be
* called in parallel with the same transformation object.
* @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
* @cia_encrypt, and the conditions are exactly the same.
*
* All fields are mandatory and must be filled.
*/
struct cipher_alg {
unsigned int cia_min_keysize;
unsigned int cia_max_keysize;
int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen);
void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
};
/**
* struct compress_alg - compression/decompression algorithm
* @coa_compress: Compress a buffer of specified length, storing the resulting
* data in the specified buffer. Return the length of the
* compressed data in dlen.
* @coa_decompress: Decompress the source buffer, storing the uncompressed
* data in the specified buffer. The length of the data is
* returned in dlen.
*
* All fields are mandatory.
*/
struct compress_alg {
int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
unsigned int slen, u8 *dst, unsigned int *dlen);
int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
unsigned int slen, u8 *dst, unsigned int *dlen);
};
#ifdef CONFIG_CRYPTO_STATS
/*
* struct crypto_istat_aead - statistics for AEAD algorithm
* @encrypt_cnt: number of encrypt requests
* @encrypt_tlen: total data size handled by encrypt requests
* @decrypt_cnt: number of decrypt requests
* @decrypt_tlen: total data size handled by decrypt requests
* @err_cnt: number of error for AEAD requests
*/
struct crypto_istat_aead {
atomic64_t encrypt_cnt;
atomic64_t encrypt_tlen;
atomic64_t decrypt_cnt;
atomic64_t decrypt_tlen;
atomic64_t err_cnt;
};
/*
* struct crypto_istat_akcipher - statistics for akcipher algorithm
* @encrypt_cnt: number of encrypt requests
* @encrypt_tlen: total data size handled by encrypt requests
* @decrypt_cnt: number of decrypt requests
* @decrypt_tlen: total data size handled by decrypt requests
* @verify_cnt: number of verify operation
* @sign_cnt: number of sign requests
* @err_cnt: number of error for akcipher requests
*/
struct crypto_istat_akcipher {
atomic64_t encrypt_cnt;
atomic64_t encrypt_tlen;
atomic64_t decrypt_cnt;
atomic64_t decrypt_tlen;
atomic64_t verify_cnt;
atomic64_t sign_cnt;
atomic64_t err_cnt;
};
/*
* struct crypto_istat_cipher - statistics for cipher algorithm
* @encrypt_cnt: number of encrypt requests
* @encrypt_tlen: total data size handled by encrypt requests
* @decrypt_cnt: number of decrypt requests
* @decrypt_tlen: total data size handled by decrypt requests
* @err_cnt: number of error for cipher requests
*/
struct crypto_istat_cipher {
atomic64_t encrypt_cnt;
atomic64_t encrypt_tlen;
atomic64_t decrypt_cnt;
atomic64_t decrypt_tlen;
atomic64_t err_cnt;
};
/*
* struct crypto_istat_compress - statistics for compress algorithm
* @compress_cnt: number of compress requests
* @compress_tlen: total data size handled by compress requests
* @decompress_cnt: number of decompress requests
* @decompress_tlen: total data size handled by decompress requests
* @err_cnt: number of error for compress requests
*/
struct crypto_istat_compress {
atomic64_t compress_cnt;
atomic64_t compress_tlen;
atomic64_t decompress_cnt;
atomic64_t decompress_tlen;
atomic64_t err_cnt;
};
/*
* struct crypto_istat_hash - statistics for has algorithm
* @hash_cnt: number of hash requests
* @hash_tlen: total data size hashed
* @err_cnt: number of error for hash requests
*/
struct crypto_istat_hash {
atomic64_t hash_cnt;
atomic64_t hash_tlen;
atomic64_t err_cnt;
};
/*
* struct crypto_istat_kpp - statistics for KPP algorithm
* @setsecret_cnt: number of setsecrey operation
* @generate_public_key_cnt: number of generate_public_key operation
* @compute_shared_secret_cnt: number of compute_shared_secret operation
* @err_cnt: number of error for KPP requests
*/
struct crypto_istat_kpp {
atomic64_t setsecret_cnt;
atomic64_t generate_public_key_cnt;
atomic64_t compute_shared_secret_cnt;
atomic64_t err_cnt;
};
/*
* struct crypto_istat_rng: statistics for RNG algorithm
* @generate_cnt: number of RNG generate requests
* @generate_tlen: total data size of generated data by the RNG
* @seed_cnt: number of times the RNG was seeded
* @err_cnt: number of error for RNG requests
*/
struct crypto_istat_rng {
atomic64_t generate_cnt;
atomic64_t generate_tlen;
atomic64_t seed_cnt;
atomic64_t err_cnt;
};
#endif /* CONFIG_CRYPTO_STATS */
#define cra_cipher cra_u.cipher
#define cra_compress cra_u.compress
/**
* struct crypto_alg - definition of a cryptograpic cipher algorithm
* @cra_flags: Flags describing this transformation. See include/linux/crypto.h
* CRYPTO_ALG_* flags for the flags which go in here. Those are
* used for fine-tuning the description of the transformation
* algorithm.
* @cra_blocksize: Minimum block size of this transformation. The size in bytes
* of the smallest possible unit which can be transformed with
* this algorithm. The users must respect this value.
* In case of HASH transformation, it is possible for a smaller
* block than @cra_blocksize to be passed to the crypto API for
* transformation, in case of any other transformation type, an
* error will be returned upon any attempt to transform smaller
* than @cra_blocksize chunks.
* @cra_ctxsize: Size of the operational context of the transformation. This
* value informs the kernel crypto API about the memory size
* needed to be allocated for the transformation context.
* @cra_alignmask: Alignment mask for the input and output data buffer. The data
* buffer containing the input data for the algorithm must be
* aligned to this alignment mask. The data buffer for the
* output data must be aligned to this alignment mask. Note that
* the Crypto API will do the re-alignment in software, but
* only under special conditions and there is a performance hit.
* The re-alignment happens at these occasions for different
* @cra_u types: cipher -- For both input data and output data
* buffer; ahash -- For output hash destination buf; shash --
* For output hash destination buf.
* This is needed on hardware which is flawed by design and
* cannot pick data from arbitrary addresses.
* @cra_priority: Priority of this transformation implementation. In case
* multiple transformations with same @cra_name are available to
* the Crypto API, the kernel will use the one with highest
* @cra_priority.
* @cra_name: Generic name (usable by multiple implementations) of the
* transformation algorithm. This is the name of the transformation
* itself. This field is used by the kernel when looking up the
* providers of particular transformation.
* @cra_driver_name: Unique name of the transformation provider. This is the
* name of the provider of the transformation. This can be any
* arbitrary value, but in the usual case, this contains the
* name of the chip or provider and the name of the
* transformation algorithm.
* @cra_type: Type of the cryptographic transformation. This is a pointer to
* struct crypto_type, which implements callbacks common for all
* transformation types. There are multiple options, such as
* &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
* This field might be empty. In that case, there are no common
* callbacks. This is the case for: cipher, compress, shash.
* @cra_u: Callbacks implementing the transformation. This is a union of
* multiple structures. Depending on the type of transformation selected
* by @cra_type and @cra_flags above, the associated structure must be
* filled with callbacks. This field might be empty. This is the case
* for ahash, shash.
* @cra_init: Initialize the cryptographic transformation object. This function
* is used to initialize the cryptographic transformation object.
* This function is called only once at the instantiation time, right
* after the transformation context was allocated. In case the
* cryptographic hardware has some special requirements which need to
* be handled by software, this function shall check for the precise
* requirement of the transformation and put any software fallbacks
* in place.
* @cra_exit: Deinitialize the cryptographic transformation object. This is a
* counterpart to @cra_init, used to remove various changes set in
* @cra_init.
* @cra_u.cipher: Union member which contains a single-block symmetric cipher
* definition. See @struct @cipher_alg.
* @cra_u.compress: Union member which contains a (de)compression algorithm.
* See @struct @compress_alg.
* @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
* @cra_list: internally used
* @cra_users: internally used
* @cra_refcnt: internally used
* @cra_destroy: internally used
*
* @stats: union of all possible crypto_istat_xxx structures
* @stats.aead: statistics for AEAD algorithm
* @stats.akcipher: statistics for akcipher algorithm
* @stats.cipher: statistics for cipher algorithm
* @stats.compress: statistics for compress algorithm
* @stats.hash: statistics for hash algorithm
* @stats.rng: statistics for rng algorithm
* @stats.kpp: statistics for KPP algorithm
*
* The struct crypto_alg describes a generic Crypto API algorithm and is common
* for all of the transformations. Any variable not documented here shall not
* be used by a cipher implementation as it is internal to the Crypto API.
*/
struct crypto_alg {
struct list_head cra_list;
struct list_head cra_users;
u32 cra_flags;
unsigned int cra_blocksize;
unsigned int cra_ctxsize;
unsigned int cra_alignmask;
int cra_priority;
refcount_t cra_refcnt;
char cra_name[CRYPTO_MAX_ALG_NAME];
char cra_driver_name[CRYPTO_MAX_ALG_NAME];
const struct crypto_type *cra_type;
union {
struct cipher_alg cipher;
struct compress_alg compress;
} cra_u;
int (*cra_init)(struct crypto_tfm *tfm);
void (*cra_exit)(struct crypto_tfm *tfm);
void (*cra_destroy)(struct crypto_alg *alg);
struct module *cra_module;
#ifdef CONFIG_CRYPTO_STATS
union {
struct crypto_istat_aead aead;
struct crypto_istat_akcipher akcipher;
struct crypto_istat_cipher cipher;
struct crypto_istat_compress compress;
struct crypto_istat_hash hash;
struct crypto_istat_rng rng;
struct crypto_istat_kpp kpp;
} stats;
#endif /* CONFIG_CRYPTO_STATS */
} CRYPTO_MINALIGN_ATTR;
#ifdef CONFIG_CRYPTO_STATS
void crypto_stats_init(struct crypto_alg *alg);
void crypto_stats_get(struct crypto_alg *alg);
void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
#else
static inline void crypto_stats_init(struct crypto_alg *alg)
{}
static inline void crypto_stats_get(struct crypto_alg *alg)
{}
static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
{}
static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
{}
#endif
/*
* A helper struct for waiting for completion of async crypto ops
*/
struct crypto_wait {
struct completion completion;
int err;
};
/*
* Macro for declaring a crypto op async wait object on stack
*/
#define DECLARE_CRYPTO_WAIT(_wait) \
struct crypto_wait _wait = { \
COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
/*
* Async ops completion helper functioons
*/
void crypto_req_done(struct crypto_async_request *req, int err);
static inline int crypto_wait_req(int err, struct crypto_wait *wait)
{
switch (err) {
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&wait->completion);
reinit_completion(&wait->completion);
err = wait->err;
break;
}
return err;
}
static inline void crypto_init_wait(struct crypto_wait *wait)
{
init_completion(&wait->completion);
}
/*
* Algorithm registration interface.
*/
int crypto_register_alg(struct crypto_alg *alg);
void crypto_unregister_alg(struct crypto_alg *alg);
int crypto_register_algs(struct crypto_alg *algs, int count);
void crypto_unregister_algs(struct crypto_alg *algs, int count);
/*
* Algorithm query interface.
*/
int crypto_has_alg(const char *name, u32 type, u32 mask);
/*
* Transforms: user-instantiated objects which encapsulate algorithms
* and core processing logic. Managed via crypto_alloc_*() and
* crypto_free_*(), as well as the various helpers below.
*/
struct crypto_tfm {
u32 crt_flags;
int node;
void (*exit)(struct crypto_tfm *tfm);
struct crypto_alg *__crt_alg;
void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
};
struct crypto_comp {
struct crypto_tfm base;
};
enum {
CRYPTOA_UNSPEC,
CRYPTOA_ALG,
CRYPTOA_TYPE,
CRYPTOA_U32,
__CRYPTOA_MAX,
};
#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
/* Maximum number of (rtattr) parameters for each template. */
#define CRYPTO_MAX_ATTRS 32
struct crypto_attr_alg {
char name[CRYPTO_MAX_ALG_NAME];
};
struct crypto_attr_type {
u32 type;
u32 mask;
};
struct crypto_attr_u32 {
u32 num;
};
/*
* Transform user interface.
*/
struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
static inline void crypto_free_tfm(struct crypto_tfm *tfm)
{
return crypto_destroy_tfm(tfm, tfm);
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
/*
* Transform helpers which query the underlying algorithm.
*/
static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
{
return tfm->__crt_alg->cra_name;
}
static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
{
return tfm->__crt_alg->cra_driver_name;
}
static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
{
return tfm->__crt_alg->cra_priority;
}
static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
{
return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
}
static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
{
return tfm->__crt_alg->cra_blocksize;
}
static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
{
return tfm->__crt_alg->cra_alignmask;
}
static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
{
return tfm->crt_flags;
}
static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
{
tfm->crt_flags |= flags;
}
static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
{
tfm->crt_flags &= ~flags;
}
static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
{
return tfm->__crt_ctx;
}
static inline unsigned int crypto_tfm_ctx_alignment(void)
{
struct crypto_tfm *tfm;
return __alignof__(tfm->__crt_ctx);
}
static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
{
return (struct crypto_comp *)tfm;
}
static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
u32 type, u32 mask)
{
type &= ~CRYPTO_ALG_TYPE_MASK;
type |= CRYPTO_ALG_TYPE_COMPRESS;
mask |= CRYPTO_ALG_TYPE_MASK;
return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
}
static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
{
return &tfm->base;
}
static inline void crypto_free_comp(struct crypto_comp *tfm)
{
crypto_free_tfm(crypto_comp_tfm(tfm));
}
static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
{
type &= ~CRYPTO_ALG_TYPE_MASK;
type |= CRYPTO_ALG_TYPE_COMPRESS;
mask |= CRYPTO_ALG_TYPE_MASK;
return crypto_has_alg(alg_name, type, mask);
}
static inline const char *crypto_comp_name(struct crypto_comp *tfm)
{
return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
}
int crypto_comp_compress(struct crypto_comp *tfm,
const u8 *src, unsigned int slen,
u8 *dst, unsigned int *dlen);
int crypto_comp_decompress(struct crypto_comp *tfm,
const u8 *src, unsigned int slen,
u8 *dst, unsigned int *dlen);
#endif /* _LINUX_CRYPTO_H */