| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | #ifndef _ASM_X86_CMPXCHG_32_H | 
 | #define _ASM_X86_CMPXCHG_32_H | 
 |  | 
 | /* | 
 |  * Note: if you use set64_bit(), __cmpxchg64(), or their variants, you | 
 |  *       you need to test for the feature in boot_cpu_data. | 
 |  */ | 
 |  | 
 | /* | 
 |  * CMPXCHG8B only writes to the target if we had the previous | 
 |  * value in registers, otherwise it acts as a read and gives us the | 
 |  * "new previous" value.  That is why there is a loop.  Preloading | 
 |  * EDX:EAX is a performance optimization: in the common case it means | 
 |  * we need only one locked operation. | 
 |  * | 
 |  * A SIMD/3DNOW!/MMX/FPU 64-bit store here would require at the very | 
 |  * least an FPU save and/or %cr0.ts manipulation. | 
 |  * | 
 |  * cmpxchg8b must be used with the lock prefix here to allow the | 
 |  * instruction to be executed atomically.  We need to have the reader | 
 |  * side to see the coherent 64bit value. | 
 |  */ | 
 | static inline void set_64bit(volatile u64 *ptr, u64 value) | 
 | { | 
 | 	u32 low  = value; | 
 | 	u32 high = value >> 32; | 
 | 	u64 prev = *ptr; | 
 |  | 
 | 	asm volatile("\n1:\t" | 
 | 		     LOCK_PREFIX "cmpxchg8b %0\n\t" | 
 | 		     "jnz 1b" | 
 | 		     : "=m" (*ptr), "+A" (prev) | 
 | 		     : "b" (low), "c" (high) | 
 | 		     : "memory"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_CMPXCHG64 | 
 | #define arch_cmpxchg64(ptr, o, n)					\ | 
 | 	((__typeof__(*(ptr)))__cmpxchg64((ptr), (unsigned long long)(o), \ | 
 | 					 (unsigned long long)(n))) | 
 | #define arch_cmpxchg64_local(ptr, o, n)					\ | 
 | 	((__typeof__(*(ptr)))__cmpxchg64_local((ptr), (unsigned long long)(o), \ | 
 | 					       (unsigned long long)(n))) | 
 | #endif | 
 |  | 
 | static inline u64 __cmpxchg64(volatile u64 *ptr, u64 old, u64 new) | 
 | { | 
 | 	u64 prev; | 
 | 	asm volatile(LOCK_PREFIX "cmpxchg8b %1" | 
 | 		     : "=A" (prev), | 
 | 		       "+m" (*ptr) | 
 | 		     : "b" ((u32)new), | 
 | 		       "c" ((u32)(new >> 32)), | 
 | 		       "0" (old) | 
 | 		     : "memory"); | 
 | 	return prev; | 
 | } | 
 |  | 
 | static inline u64 __cmpxchg64_local(volatile u64 *ptr, u64 old, u64 new) | 
 | { | 
 | 	u64 prev; | 
 | 	asm volatile("cmpxchg8b %1" | 
 | 		     : "=A" (prev), | 
 | 		       "+m" (*ptr) | 
 | 		     : "b" ((u32)new), | 
 | 		       "c" ((u32)(new >> 32)), | 
 | 		       "0" (old) | 
 | 		     : "memory"); | 
 | 	return prev; | 
 | } | 
 |  | 
 | #ifndef CONFIG_X86_CMPXCHG64 | 
 | /* | 
 |  * Building a kernel capable running on 80386 and 80486. It may be necessary | 
 |  * to simulate the cmpxchg8b on the 80386 and 80486 CPU. | 
 |  */ | 
 |  | 
 | #define arch_cmpxchg64(ptr, o, n)				\ | 
 | ({								\ | 
 | 	__typeof__(*(ptr)) __ret;				\ | 
 | 	__typeof__(*(ptr)) __old = (o);				\ | 
 | 	__typeof__(*(ptr)) __new = (n);				\ | 
 | 	alternative_io(LOCK_PREFIX_HERE				\ | 
 | 			"call cmpxchg8b_emu",			\ | 
 | 			"lock; cmpxchg8b (%%esi)" ,		\ | 
 | 		       X86_FEATURE_CX8,				\ | 
 | 		       "=A" (__ret),				\ | 
 | 		       "S" ((ptr)), "0" (__old),		\ | 
 | 		       "b" ((unsigned int)__new),		\ | 
 | 		       "c" ((unsigned int)(__new>>32))		\ | 
 | 		       : "memory");				\ | 
 | 	__ret; }) | 
 |  | 
 |  | 
 | #define arch_cmpxchg64_local(ptr, o, n)				\ | 
 | ({								\ | 
 | 	__typeof__(*(ptr)) __ret;				\ | 
 | 	__typeof__(*(ptr)) __old = (o);				\ | 
 | 	__typeof__(*(ptr)) __new = (n);				\ | 
 | 	alternative_io("call cmpxchg8b_emu",			\ | 
 | 		       "cmpxchg8b (%%esi)" ,			\ | 
 | 		       X86_FEATURE_CX8,				\ | 
 | 		       "=A" (__ret),				\ | 
 | 		       "S" ((ptr)), "0" (__old),		\ | 
 | 		       "b" ((unsigned int)__new),		\ | 
 | 		       "c" ((unsigned int)(__new>>32))		\ | 
 | 		       : "memory");				\ | 
 | 	__ret; }) | 
 |  | 
 | #endif | 
 |  | 
 | #define system_has_cmpxchg_double() boot_cpu_has(X86_FEATURE_CX8) | 
 |  | 
 | #endif /* _ASM_X86_CMPXCHG_32_H */ |