blob: 344fe7535df5b9d46ae32424cc93bb4a515a8705 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dccg.h"
#include "dce/dce_hwseq.h"
#include "dcn30/dcn30_cm_common.h"
#include "reg_helper.h"
#include "abm.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "dc_dmub_srv.h"
#include "link_hwss.h"
#include "dpcd_defs.h"
#include "dcn32_hwseq.h"
#include "clk_mgr.h"
#include "dsc.h"
#include "dcn20/dcn20_optc.h"
#include "dmub_subvp_state.h"
#include "dce/dmub_hw_lock_mgr.h"
#include "dc_link_dp.h"
#include "dmub/inc/dmub_subvp_state.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#define DC_LOGGER \
dc->ctx->logger
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
void dcn32_dsc_pg_control(
struct dce_hwseq *hws,
unsigned int dsc_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
uint32_t org_ip_request_cntl = 0;
if (hws->ctx->dc->debug.disable_dsc_power_gate)
return;
REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
switch (dsc_inst) {
case 0: /* DSC0 */
REG_UPDATE(DOMAIN16_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN16_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DSC1 */
REG_UPDATE(DOMAIN17_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN17_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DSC2 */
REG_UPDATE(DOMAIN18_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN18_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DSC3 */
REG_UPDATE(DOMAIN19_PG_CONFIG,
DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN19_PG_STATUS,
DOMAIN_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
if (org_ip_request_cntl == 0)
REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
}
void dcn32_enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = true; /* disable power gating */
if (enable)
force_on = false;
/* DCHUBP0/1/2/3 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
/* DCS0/1/2/3 */
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
}
void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (REG(DOMAIN0_PG_CONFIG) == 0)
return;
switch (hubp_inst) {
case 0:
REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 1:
REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 2:
REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
case 3:
REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
{
int i;
/* First, check no-memory-request case */
for (i = 0; i < dc->current_state->stream_count; i++) {
if (dc->current_state->stream_status[i].plane_count)
/* Fail eligibility on a visible stream */
break;
}
if (i == dc->current_state->stream_count)
return true;
return false;
}
/* This function takes in the start address and surface size to be cached in CAB
* and calculates the total number of cache lines required to store the surface.
* The number of cache lines used for each surface is calculated independently of
* one another. For example, if there is a primary surface(1), meta surface(2), and
* cursor(3), this function should be called 3 times to calculate the number of cache
* lines used for each of those surfaces.
*/
static uint32_t dcn32_cache_lines_for_surface(struct dc *dc, uint32_t surface_size, uint64_t start_address)
{
uint32_t lines_used = 1;
uint32_t num_cached_bytes = 0;
uint32_t remaining_size = 0;
uint32_t cache_line_size = dc->caps.cache_line_size;
uint32_t remainder = 0;
/* 1. Calculate surface size minus the number of bytes stored
* in the first cache line (all bytes in first cache line might
* not be fully used).
*/
div_u64_rem(start_address, cache_line_size, &remainder);
num_cached_bytes = cache_line_size - remainder;
remaining_size = surface_size - num_cached_bytes;
/* 2. Calculate number of cache lines that will be fully used with
* the remaining number of bytes to be stored.
*/
lines_used += (remaining_size / cache_line_size);
/* 3. Check if we need an extra line due to the remaining size not being
* a multiple of CACHE_LINE_SIZE.
*/
if (remaining_size % cache_line_size > 0)
lines_used++;
return lines_used;
}
/* This function loops through every surface that needs to be cached in CAB for SS,
* and calculates the total number of ways required to store all surfaces (primary,
* meta, cursor).
*/
static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
{
uint8_t i, j;
struct dc_stream_state *stream = NULL;
struct dc_plane_state *plane = NULL;
uint32_t surface_size = 0;
uint32_t cursor_size = 0;
uint32_t cache_lines_used = 0;
uint32_t total_lines = 0;
uint32_t lines_per_way = 0;
uint32_t num_ways = 0;
uint32_t prev_addr_low = 0;
for (i = 0; i < ctx->stream_count; i++) {
stream = ctx->streams[i];
// Don't include PSR surface in the total surface size for CAB allocation
if (stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED)
continue;
if (ctx->stream_status[i].plane_count == 0)
continue;
// For each stream, loop through each plane to calculate the number of cache
// lines required to store the surface in CAB
for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
plane = ctx->stream_status[i].plane_states[j];
// Calculate total surface size
if (prev_addr_low != plane->address.grph.addr.u.low_part) {
/* if plane address are different from prev FB, then userspace allocated separate FBs*/
surface_size += plane->plane_size.surface_pitch *
plane->plane_size.surface_size.height *
(plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4);
prev_addr_low = plane->address.grph.addr.u.low_part;
} else {
/* We have the same fb for all the planes.
* Xorg always creates one giant fb that holds all surfaces,
* so allocating it once is sufficient.
* */
continue;
}
// Convert surface size + starting address to number of cache lines required
// (alignment accounted for)
cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
plane->address.grph.addr.quad_part);
if (plane->address.grph.meta_addr.quad_part) {
// Meta surface
cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
plane->address.grph.meta_addr.quad_part);
}
}
// Include cursor size for CAB allocation
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[j];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && pipe->plane_state && hubp)
/* Find the cursor plane and use the exact size instead of
* using the max for calculation
*/
if (hubp->curs_attr.width > 0) {
cursor_size = hubp->curs_attr.width * hubp->curs_attr.height;
break;
}
}
switch (stream->cursor_attributes.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
cursor_size *= 8;
break;
}
if (stream->cursor_position.enable && plane->address.grph.cursor_cache_addr.quad_part) {
cache_lines_used += dcn32_cache_lines_for_surface(dc, cursor_size,
plane->address.grph.cursor_cache_addr.quad_part);
}
}
// Convert number of cache lines required to number of ways
total_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
lines_per_way = total_lines / dc->caps.cache_num_ways;
num_ways = cache_lines_used / lines_per_way;
if (cache_lines_used % lines_per_way > 0)
num_ways++;
for (i = 0; i < ctx->stream_count; i++) {
stream = ctx->streams[i];
for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
plane = ctx->stream_status[i].plane_states[j];
if (stream->cursor_position.enable && plane &&
!plane->address.grph.cursor_cache_addr.quad_part &&
cursor_size > 16384) {
/* Cursor caching is not supported since it won't be on the same line.
* So we need an extra line to accommodate it. With large cursors and a single 4k monitor
* this case triggers corruption. If we're at the edge, then dont trigger display refresh
* from MALL. We only need to cache cursor if its greater that 64x64 at 4 bpp.
*/
num_ways++;
/* We only expect one cursor plane */
break;
}
}
}
return num_ways;
}
bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
{
union dmub_rb_cmd cmd;
uint8_t ways, i;
int j;
bool stereo_in_use = false;
struct dc_plane_state *plane = NULL;
if (!dc->ctx->dmub_srv)
return false;
if (enable) {
if (dc->current_state) {
/* 1. Check no memory request case for CAB.
* If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
*/
if (dcn32_check_no_memory_request_for_cab(dc)) {
/* Enable no-memory-requests case */
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
return true;
}
/* 2. Check if all surfaces can fit in CAB.
* If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
* and configure HUBP's to fetch from MALL
*/
ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
/* MALL not supported with Stereo3D. If any plane is using stereo,
* don't try to enter MALL.
*/
for (i = 0; i < dc->current_state->stream_count; i++) {
for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
plane = dc->current_state->stream_status[i].plane_states[j];
if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO) {
stereo_in_use = true;
break;
}
}
if (stereo_in_use)
break;
}
if (ways <= dc->caps.cache_num_ways && !stereo_in_use) {
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
cmd.cab.cab_alloc_ways = ways;
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
return true;
}
}
return false;
}
/* Disable CAB */
memset(&cmd, 0, sizeof(cmd));
cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
cmd.cab.header.payload_bytes =
sizeof(cmd.cab) - sizeof(cmd.cab.header);
dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
return true;
}
/* Send DMCUB message with SubVP pipe info
* - For each pipe in context, populate payload with required SubVP information
* if the pipe is using SubVP for MCLK switch
* - This function must be called while the DMUB HW lock is acquired by driver
*/
void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
{
/*
int i;
bool enable_subvp = false;
if (!dc->ctx || !dc->ctx->dmub_srv)
return;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
// There is at least 1 SubVP pipe, so enable SubVP
enable_subvp = true;
break;
}
}
dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
*/
}
/* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
* 1. Any full update for any SubVP main pipe
* 2. Any immediate flip for any SubVP pipe
* 3. Any flip for DRR pipe
* 4. If SubVP was previously in use (i.e. in old context)
*/
void dcn32_subvp_pipe_control_lock(struct dc *dc,
struct dc_state *context,
bool lock,
bool should_lock_all_pipes,
struct pipe_ctx *top_pipe_to_program,
bool subvp_prev_use)
{
unsigned int i = 0;
bool subvp_immediate_flip = false;
bool subvp_in_use = false;
struct pipe_ctx *pipe;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
subvp_in_use = true;
break;
}
}
if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
top_pipe_to_program->plane_state->flip_immediate)
subvp_immediate_flip = true;
}
// Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) {
union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
if (!lock) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
should_lock_all_pipes)
pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
}
}
hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
hw_lock_cmd.bits.lock = lock;
hw_lock_cmd.bits.should_release = !lock;
dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
}
}
static bool dcn32_set_mpc_shaper_3dlut(
struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = false;
const struct pwl_params *shaper_lut = NULL;
//get the shaper lut params
if (stream->func_shaper) {
if (stream->func_shaper->type == TF_TYPE_HWPWL)
shaper_lut = &stream->func_shaper->pwl;
else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
stream->func_shaper,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
if (stream->lut3d_func &&
stream->lut3d_func->state.bits.initialized == 1) {
result = mpc->funcs->program_3dlut(mpc,
&stream->lut3d_func->lut_3d,
mpcc_id);
result = mpc->funcs->program_shaper(mpc,
shaper_lut,
mpcc_id);
}
return result;
}
bool dcn32_set_mcm_luts(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
bool result = true;
struct pwl_params *lut_params = NULL;
// 1D LUT
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
lut_params = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->blend_tf,
&dpp_base->regamma_params, false);
lut_params = &dpp_base->regamma_params;
}
}
result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
// Shaper
if (plane_state->in_shaper_func) {
if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
lut_params = &plane_state->in_shaper_func->pwl;
else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
// TODO: dpp_base replace
ASSERT(false);
cm_helper_translate_curve_to_hw_format(
plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
lut_params = &dpp_base->shaper_params;
}
}
result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
// 3D
if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
else
result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
return result;
}
bool dcn32_set_input_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dce_hwseq *hws = dc->hwseq;
struct mpc *mpc = dc->res_pool->mpc;
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
enum dc_transfer_func_predefined tf;
bool result = true;
struct pwl_params *params = NULL;
if (mpc == NULL || plane_state == NULL)
return false;
tf = TRANSFER_FUNCTION_UNITY;
if (plane_state->in_transfer_func &&
plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
tf = plane_state->in_transfer_func->tf;
dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
if (plane_state->in_transfer_func) {
if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
params = &plane_state->in_transfer_func->pwl;
else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
&dpp_base->degamma_params, false))
params = &dpp_base->degamma_params;
}
result = dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
if (result &&
pipe_ctx->stream_res.opp &&
pipe_ctx->stream_res.opp->ctx &&
hws->funcs.set_mcm_luts)
result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
return result;
}
bool dcn32_set_output_transfer_func(struct dc *dc,
struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
bool ret = false;
/* program OGAM or 3DLUT only for the top pipe*/
if (pipe_ctx->top_pipe == NULL) {
/*program shaper and 3dlut in MPC*/
ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm3_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/* there are no ROM LUTs in OUTGAM */
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
}
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return ret;
}
/* Program P-State force value according to if pipe is using SubVP or not:
* 1. Reset P-State force on all pipes first
* 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
*/
void dcn32_subvp_update_force_pstate(struct dc *dc, struct dc_state *context)
{
int i;
int num_subvp = 0;
/* Unforce p-state for each pipe
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
num_subvp++;
}
if (num_subvp == 0)
return;
/* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
// For SubVP + DRR, also force disallow on the DRR pipe
// (We will force allow in the DMUB sequence -- some DRR timings by default won't allow P-State so we have
// to force once the vblank is stretched).
if (pipe->stream && pipe->plane_state && (pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
(pipe->stream->mall_stream_config.type == SUBVP_NONE && pipe->stream->ignore_msa_timing_param))) {
struct hubp *hubp = pipe->plane_res.hubp;
if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
}
}
}
/* Update MALL_SEL register based on if pipe / plane
* is a phantom pipe, main pipe, and if using MALL
* for SS.
*/
void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
{
int i;
unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
bool cache_cursor = false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
//Round cursor width up to next multiple of 64
int cursor_width = ((hubp->curs_attr.width + 63) / 64) * 64;
int cursor_height = hubp->curs_attr.height;
int cursor_size = cursor_width * cursor_height;
switch (hubp->curs_attr.color_format) {
case CURSOR_MODE_MONO:
cursor_size /= 2;
break;
case CURSOR_MODE_COLOR_1BIT_AND:
case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
cursor_size *= 4;
break;
case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
default:
cursor_size *= 8;
break;
}
if (cursor_size > 16384)
cache_cursor = true;
if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
hubp->funcs->hubp_update_mall_sel(hubp, 1, false);
} else {
// MALL not supported with Stereo3D
hubp->funcs->hubp_update_mall_sel(hubp,
num_ways <= dc->caps.cache_num_ways &&
pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED &&
pipe->plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO ? 2 : 0,
cache_cursor);
}
}
}
}
/* Program the sub-viewport pipe configuration after the main / phantom pipes
* have been programmed in hardware.
* 1. Update force P-State for all the main pipes (disallow P-state)
* 2. Update MALL_SEL register
* 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
*/
void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
{
int i;
struct dce_hwseq *hws = dc->hwseq;
// Don't force p-state disallow -- can't block dummy p-state
// Update MALL_SEL register for each pipe
if (hws && hws->funcs.update_mall_sel)
hws->funcs.update_mall_sel(dc, context);
// Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = pipe->plane_res.hubp;
if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
/* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
* - need to investigate single pipe MPO + SubVP case to
* see if CURSOR_REQ_MODE will be back to 1 for SubVP
* when it should be 0 for MPO
*/
if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
}
}
}
}
void dcn32_init_hw(struct dc *dc)
{
struct abm **abms = dc->res_pool->multiple_abms;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
int i;
int edp_num;
uint32_t backlight = MAX_BACKLIGHT_LEVEL;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
if (!dcb->funcs->is_accelerated_mode(dcb)) {
hws->funcs.bios_golden_init(dc);
hws->funcs.disable_vga(dc->hwseq);
}
// Set default OPTC memory power states
if (dc->debug.enable_mem_low_power.bits.optc) {
// Shutdown when unassigned and light sleep in VBLANK
REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
}
if (dc->debug.enable_mem_low_power.bits.vga) {
// Power down VGA memory
REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
}
if (dc->ctx->dc_bios->fw_info_valid) {
res_pool->ref_clocks.xtalin_clock_inKhz =
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
if (res_pool->dccg && res_pool->hubbub) {
(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
&res_pool->ref_clocks.dccg_ref_clock_inKhz);
(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
res_pool->ref_clocks.dccg_ref_clock_inKhz,
&res_pool->ref_clocks.dchub_ref_clock_inKhz);
} else {
// Not all ASICs have DCCG sw component
res_pool->ref_clocks.dccg_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
res_pool->ref_clocks.dchub_ref_clock_inKhz =
res_pool->ref_clocks.xtalin_clock_inKhz;
}
} else
ASSERT_CRITICAL(false);
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
/* Check for enabled DIG to identify enabled display */
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
link->link_status.link_active = true;
if (link->link_enc->funcs->fec_is_active &&
link->link_enc->funcs->fec_is_active(link->link_enc))
link->fec_state = dc_link_fec_enabled;
}
}
/* Power gate DSCs */
for (i = 0; i < res_pool->res_cap->num_dsc; i++)
if (hws->funcs.dsc_pg_control != NULL)
hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
/* we want to turn off all dp displays before doing detection */
dc_link_blank_all_dp_displays(dc);
/* If taking control over from VBIOS, we may want to optimize our first
* mode set, so we need to skip powering down pipes until we know which
* pipes we want to use.
* Otherwise, if taking control is not possible, we need to power
* everything down.
*/
if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
hws->funcs.init_pipes(dc, dc->current_state);
if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
}
/* In headless boot cases, DIG may be turned
* on which causes HW/SW discrepancies.
* To avoid this, power down hardware on boot
* if DIG is turned on and seamless boot not enabled
*/
if (!dc->config.seamless_boot_edp_requested) {
struct dc_link *edp_links[MAX_NUM_EDP];
struct dc_link *edp_link;
get_edp_links(dc, edp_links, &edp_num);
if (edp_num) {
for (i = 0; i < edp_num; i++) {
edp_link = edp_links[i];
if (edp_link->link_enc->funcs->is_dig_enabled &&
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
dc->hwss.edp_backlight_control &&
dc->hwss.power_down &&
dc->hwss.edp_power_control) {
dc->hwss.edp_backlight_control(edp_link, false);
dc->hwss.power_down(dc);
dc->hwss.edp_power_control(edp_link, false);
}
}
} else {
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->link_enc->funcs->is_dig_enabled &&
link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
dc->hwss.power_down) {
dc->hwss.power_down(dc);
break;
}
}
}
}
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
for (i = 0; i < dc->link_count; i++) {
struct dc_link *link = dc->links[i];
if (link->panel_cntl)
backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (abms[i] != NULL && abms[i]->funcs != NULL)
abms[i]->funcs->abm_init(abms[i], backlight);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
if (hws->funcs.enable_power_gating_plane)
hws->funcs.enable_power_gating_plane(dc->hwseq, true);
if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
if (dc->clk_mgr->funcs->notify_wm_ranges)
dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
if (dc->clk_mgr->funcs->set_hard_max_memclk)
dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
dc->res_pool->hubbub->funcs->force_pstate_change_control(
dc->res_pool->hubbub, false, false);
if (dc->res_pool->hubbub->funcs->init_crb)
dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
// Get DMCUB capabilities
if (dc->ctx->dmub_srv) {
dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv->dmub);
dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
}
}
static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
int opp_cnt)
{
bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
int flow_ctrl_cnt;
if (opp_cnt >= 2)
hblank_halved = true;
flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
stream->timing.h_border_left -
stream->timing.h_border_right;
if (hblank_halved)
flow_ctrl_cnt /= 2;
/* ODM combine 4:1 case */
if (opp_cnt == 4)
flow_ctrl_cnt /= 2;
return flow_ctrl_cnt;
}
static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
{
struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *odm_pipe;
int opp_cnt = 1;
ASSERT(dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
opp_cnt++;
if (enable) {
struct dsc_config dsc_cfg;
struct dsc_optc_config dsc_optc_cfg;
enum optc_dsc_mode optc_dsc_mode;
/* Enable DSC hw block */
dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
dsc_cfg.color_depth = stream->timing.display_color_depth;
dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
ASSERT(odm_dsc);
odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
}
dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
dsc_cfg.pic_width *= opp_cnt;
optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
/* Enable DSC in OPTC */
DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
optc_dsc_mode,
dsc_optc_cfg.bytes_per_pixel,
dsc_optc_cfg.slice_width);
} else {
/* disable DSC in OPTC */
pipe_ctx->stream_res.tg->funcs->set_dsc_config(
pipe_ctx->stream_res.tg,
OPTC_DSC_DISABLED, 0, 0);
/* disable DSC block */
dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
ASSERT(odm_pipe->stream_res.dsc);
odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
}
}
}
/*
* Given any pipe_ctx, return the total ODM combine factor, and optionally return
* the OPPids which are used
* */
static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
{
unsigned int opp_count = 1;
struct pipe_ctx *odm_pipe;
/* First get to the top pipe */
for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
;
/* First pipe is always used */
if (opp_instances)
opp_instances[0] = odm_pipe->stream_res.opp->inst;
/* Find and count odm pipes, if any */
for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
if (opp_instances)
opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
opp_count++;
}
return opp_count;
}
void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *odm_pipe;
int opp_cnt = 0;
int opp_inst[MAX_PIPES] = {0};
bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
struct mpc_dwb_flow_control flow_control;
struct mpc *mpc = dc->res_pool->mpc;
int i;
opp_cnt = get_odm_config(pipe_ctx, opp_inst);
if (opp_cnt > 1)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
opp_inst, opp_cnt,
&pipe_ctx->stream->timing);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
flow_control.flow_ctrl_mode = 0;
flow_control.flow_ctrl_cnt0 = 0x80;
flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
if (mpc->funcs->set_out_rate_control) {
for (i = 0; i < opp_cnt; ++i) {
mpc->funcs->set_out_rate_control(
mpc, opp_inst[i],
true,
rate_control_2x_pclk,
&flow_control);
}
}
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
}
// Don't program pixel clock after link is already enabled
/* if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
}*/
if (pipe_ctx->stream_res.dsc)
update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
}
unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
{
struct dc_stream_state *stream = pipe_ctx->stream;
unsigned int odm_combine_factor = 0;
struct dc *dc = pipe_ctx->stream->ctx->dc;
bool two_pix_per_container = false;
// For phantom pipes, use the same programming as the main pipes
if (pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
stream = pipe_ctx->stream->mall_stream_config.paired_stream;
}
two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
odm_combine_factor = get_odm_config(pipe_ctx, NULL);
if (is_dp_128b_132b_signal(pipe_ctx)) {
*k2_div = PIXEL_RATE_DIV_BY_1;
} else if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) || dc_is_dvi_signal(pipe_ctx->stream->signal)) {
*k1_div = PIXEL_RATE_DIV_BY_1;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
*k2_div = PIXEL_RATE_DIV_BY_2;
else
*k2_div = PIXEL_RATE_DIV_BY_4;
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (two_pix_per_container) {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_2;
} else {
*k1_div = PIXEL_RATE_DIV_BY_1;
*k2_div = PIXEL_RATE_DIV_BY_4;
if ((odm_combine_factor == 2) || dc->debug.enable_dp_dig_pixel_rate_div_policy)
*k2_div = PIXEL_RATE_DIV_BY_2;
}
}
if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
ASSERT(false);
return odm_combine_factor;
}
void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
{
uint32_t pix_per_cycle = 1;
uint32_t odm_combine_factor = 1;
if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
return;
odm_combine_factor = get_odm_config(pipe_ctx, NULL);
if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
pix_per_cycle = 2;
if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
pix_per_cycle);
}
void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = {0};
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
struct dce_hwseq *hws = link->dc->hwseq;
struct pipe_ctx *odm_pipe;
struct dc *dc = pipe_ctx->stream->ctx->dc;
uint32_t pix_per_cycle = 1;
params.opp_cnt = 1;
for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
params.opp_cnt++;
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (is_dp_128b_132b_signal(pipe_ctx)) {
/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
pipe_ctx->stream_res.hpo_dp_stream_enc,
pipe_ctx->stream_res.tg->inst);
} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
|| dc->debug.enable_dp_dig_pixel_rate_div_policy) {
params.timing.pix_clk_100hz /= 2;
pix_per_cycle = 2;
}
pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
hws->funcs.edp_backlight_control(link, true);
}
bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
if (dc_is_dp_signal(pipe_ctx->stream->signal) && !is_dp_128b_132b_signal(pipe_ctx) &&
dc->debug.enable_dp_dig_pixel_rate_div_policy)
return true;
return false;
}