| /* SPDX-License-Identifier: GPL-2.0+ */ | 
 | /* | 
 |  * Read-Copy Update mechanism for mutual exclusion (tree-based version) | 
 |  * Internal non-public definitions that provide either classic | 
 |  * or preemptible semantics. | 
 |  * | 
 |  * Copyright Red Hat, 2009 | 
 |  * Copyright IBM Corporation, 2009 | 
 |  * | 
 |  * Author: Ingo Molnar <mingo@elte.hu> | 
 |  *	   Paul E. McKenney <paulmck@linux.ibm.com> | 
 |  */ | 
 |  | 
 | #include "../locking/rtmutex_common.h" | 
 |  | 
 | #ifdef CONFIG_RCU_NOCB_CPU | 
 | static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */ | 
 | static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */ | 
 | #endif /* #ifdef CONFIG_RCU_NOCB_CPU */ | 
 |  | 
 | /* | 
 |  * Check the RCU kernel configuration parameters and print informative | 
 |  * messages about anything out of the ordinary. | 
 |  */ | 
 | static void __init rcu_bootup_announce_oddness(void) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_RCU_TRACE)) | 
 | 		pr_info("\tRCU event tracing is enabled.\n"); | 
 | 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) || | 
 | 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32)) | 
 | 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n", | 
 | 			RCU_FANOUT); | 
 | 	if (rcu_fanout_exact) | 
 | 		pr_info("\tHierarchical RCU autobalancing is disabled.\n"); | 
 | 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ)) | 
 | 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n"); | 
 | 	if (IS_ENABLED(CONFIG_PROVE_RCU)) | 
 | 		pr_info("\tRCU lockdep checking is enabled.\n"); | 
 | 	if (RCU_NUM_LVLS >= 4) | 
 | 		pr_info("\tFour(or more)-level hierarchy is enabled.\n"); | 
 | 	if (RCU_FANOUT_LEAF != 16) | 
 | 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n", | 
 | 			RCU_FANOUT_LEAF); | 
 | 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF) | 
 | 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", | 
 | 			rcu_fanout_leaf); | 
 | 	if (nr_cpu_ids != NR_CPUS) | 
 | 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids); | 
 | #ifdef CONFIG_RCU_BOOST | 
 | 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", | 
 | 		kthread_prio, CONFIG_RCU_BOOST_DELAY); | 
 | #endif | 
 | 	if (blimit != DEFAULT_RCU_BLIMIT) | 
 | 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit); | 
 | 	if (qhimark != DEFAULT_RCU_QHIMARK) | 
 | 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark); | 
 | 	if (qlowmark != DEFAULT_RCU_QLOMARK) | 
 | 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark); | 
 | 	if (qovld != DEFAULT_RCU_QOVLD) | 
 | 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld); | 
 | 	if (jiffies_till_first_fqs != ULONG_MAX) | 
 | 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs); | 
 | 	if (jiffies_till_next_fqs != ULONG_MAX) | 
 | 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs); | 
 | 	if (jiffies_till_sched_qs != ULONG_MAX) | 
 | 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs); | 
 | 	if (rcu_kick_kthreads) | 
 | 		pr_info("\tKick kthreads if too-long grace period.\n"); | 
 | 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD)) | 
 | 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n"); | 
 | 	if (gp_preinit_delay) | 
 | 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay); | 
 | 	if (gp_init_delay) | 
 | 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay); | 
 | 	if (gp_cleanup_delay) | 
 | 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay); | 
 | 	if (!use_softirq) | 
 | 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n"); | 
 | 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG)) | 
 | 		pr_info("\tRCU debug extended QS entry/exit.\n"); | 
 | 	rcupdate_announce_bootup_oddness(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT_RCU | 
 |  | 
 | static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake); | 
 | static void rcu_read_unlock_special(struct task_struct *t); | 
 |  | 
 | /* | 
 |  * Tell them what RCU they are running. | 
 |  */ | 
 | static void __init rcu_bootup_announce(void) | 
 | { | 
 | 	pr_info("Preemptible hierarchical RCU implementation.\n"); | 
 | 	rcu_bootup_announce_oddness(); | 
 | } | 
 |  | 
 | /* Flags for rcu_preempt_ctxt_queue() decision table. */ | 
 | #define RCU_GP_TASKS	0x8 | 
 | #define RCU_EXP_TASKS	0x4 | 
 | #define RCU_GP_BLKD	0x2 | 
 | #define RCU_EXP_BLKD	0x1 | 
 |  | 
 | /* | 
 |  * Queues a task preempted within an RCU-preempt read-side critical | 
 |  * section into the appropriate location within the ->blkd_tasks list, | 
 |  * depending on the states of any ongoing normal and expedited grace | 
 |  * periods.  The ->gp_tasks pointer indicates which element the normal | 
 |  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer | 
 |  * indicates which element the expedited grace period is waiting on (again, | 
 |  * NULL if none).  If a grace period is waiting on a given element in the | 
 |  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus, | 
 |  * adding a task to the tail of the list blocks any grace period that is | 
 |  * already waiting on one of the elements.  In contrast, adding a task | 
 |  * to the head of the list won't block any grace period that is already | 
 |  * waiting on one of the elements. | 
 |  * | 
 |  * This queuing is imprecise, and can sometimes make an ongoing grace | 
 |  * period wait for a task that is not strictly speaking blocking it. | 
 |  * Given the choice, we needlessly block a normal grace period rather than | 
 |  * blocking an expedited grace period. | 
 |  * | 
 |  * Note that an endless sequence of expedited grace periods still cannot | 
 |  * indefinitely postpone a normal grace period.  Eventually, all of the | 
 |  * fixed number of preempted tasks blocking the normal grace period that are | 
 |  * not also blocking the expedited grace period will resume and complete | 
 |  * their RCU read-side critical sections.  At that point, the ->gp_tasks | 
 |  * pointer will equal the ->exp_tasks pointer, at which point the end of | 
 |  * the corresponding expedited grace period will also be the end of the | 
 |  * normal grace period. | 
 |  */ | 
 | static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) | 
 | 	__releases(rnp->lock) /* But leaves rrupts disabled. */ | 
 | { | 
 | 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) + | 
 | 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) + | 
 | 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) + | 
 | 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0); | 
 | 	struct task_struct *t = current; | 
 |  | 
 | 	raw_lockdep_assert_held_rcu_node(rnp); | 
 | 	WARN_ON_ONCE(rdp->mynode != rnp); | 
 | 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); | 
 | 	/* RCU better not be waiting on newly onlined CPUs! */ | 
 | 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask & | 
 | 		     rdp->grpmask); | 
 |  | 
 | 	/* | 
 | 	 * Decide where to queue the newly blocked task.  In theory, | 
 | 	 * this could be an if-statement.  In practice, when I tried | 
 | 	 * that, it was quite messy. | 
 | 	 */ | 
 | 	switch (blkd_state) { | 
 | 	case 0: | 
 | 	case                RCU_EXP_TASKS: | 
 | 	case                RCU_EXP_TASKS + RCU_GP_BLKD: | 
 | 	case RCU_GP_TASKS: | 
 | 	case RCU_GP_TASKS + RCU_EXP_TASKS: | 
 |  | 
 | 		/* | 
 | 		 * Blocking neither GP, or first task blocking the normal | 
 | 		 * GP but not blocking the already-waiting expedited GP. | 
 | 		 * Queue at the head of the list to avoid unnecessarily | 
 | 		 * blocking the already-waiting GPs. | 
 | 		 */ | 
 | 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks); | 
 | 		break; | 
 |  | 
 | 	case                                              RCU_EXP_BLKD: | 
 | 	case                                RCU_GP_BLKD: | 
 | 	case                                RCU_GP_BLKD + RCU_EXP_BLKD: | 
 | 	case RCU_GP_TASKS +                               RCU_EXP_BLKD: | 
 | 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD: | 
 | 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | 
 |  | 
 | 		/* | 
 | 		 * First task arriving that blocks either GP, or first task | 
 | 		 * arriving that blocks the expedited GP (with the normal | 
 | 		 * GP already waiting), or a task arriving that blocks | 
 | 		 * both GPs with both GPs already waiting.  Queue at the | 
 | 		 * tail of the list to avoid any GP waiting on any of the | 
 | 		 * already queued tasks that are not blocking it. | 
 | 		 */ | 
 | 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks); | 
 | 		break; | 
 |  | 
 | 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD: | 
 | 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD: | 
 | 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD: | 
 |  | 
 | 		/* | 
 | 		 * Second or subsequent task blocking the expedited GP. | 
 | 		 * The task either does not block the normal GP, or is the | 
 | 		 * first task blocking the normal GP.  Queue just after | 
 | 		 * the first task blocking the expedited GP. | 
 | 		 */ | 
 | 		list_add(&t->rcu_node_entry, rnp->exp_tasks); | 
 | 		break; | 
 |  | 
 | 	case RCU_GP_TASKS +                 RCU_GP_BLKD: | 
 | 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD: | 
 |  | 
 | 		/* | 
 | 		 * Second or subsequent task blocking the normal GP. | 
 | 		 * The task does not block the expedited GP. Queue just | 
 | 		 * after the first task blocking the normal GP. | 
 | 		 */ | 
 | 		list_add(&t->rcu_node_entry, rnp->gp_tasks); | 
 | 		break; | 
 |  | 
 | 	default: | 
 |  | 
 | 		/* Yet another exercise in excessive paranoia. */ | 
 | 		WARN_ON_ONCE(1); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have now queued the task.  If it was the first one to | 
 | 	 * block either grace period, update the ->gp_tasks and/or | 
 | 	 * ->exp_tasks pointers, respectively, to reference the newly | 
 | 	 * blocked tasks. | 
 | 	 */ | 
 | 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) { | 
 | 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry); | 
 | 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq); | 
 | 	} | 
 | 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) | 
 | 		rnp->exp_tasks = &t->rcu_node_entry; | 
 | 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) != | 
 | 		     !(rnp->qsmask & rdp->grpmask)); | 
 | 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) != | 
 | 		     !(rnp->expmask & rdp->grpmask)); | 
 | 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ | 
 |  | 
 | 	/* | 
 | 	 * Report the quiescent state for the expedited GP.  This expedited | 
 | 	 * GP should not be able to end until we report, so there should be | 
 | 	 * no need to check for a subsequent expedited GP.  (Though we are | 
 | 	 * still in a quiescent state in any case.) | 
 | 	 */ | 
 | 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs) | 
 | 		rcu_report_exp_rdp(rdp); | 
 | 	else | 
 | 		WARN_ON_ONCE(rdp->exp_deferred_qs); | 
 | } | 
 |  | 
 | /* | 
 |  * Record a preemptible-RCU quiescent state for the specified CPU. | 
 |  * Note that this does not necessarily mean that the task currently running | 
 |  * on the CPU is in a quiescent state:  Instead, it means that the current | 
 |  * grace period need not wait on any RCU read-side critical section that | 
 |  * starts later on this CPU.  It also means that if the current task is | 
 |  * in an RCU read-side critical section, it has already added itself to | 
 |  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the | 
 |  * current task, there might be any number of other tasks blocked while | 
 |  * in an RCU read-side critical section. | 
 |  * | 
 |  * Callers to this function must disable preemption. | 
 |  */ | 
 | static void rcu_qs(void) | 
 | { | 
 | 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n"); | 
 | 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) { | 
 | 		trace_rcu_grace_period(TPS("rcu_preempt"), | 
 | 				       __this_cpu_read(rcu_data.gp_seq), | 
 | 				       TPS("cpuqs")); | 
 | 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | 
 | 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */ | 
 | 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We have entered the scheduler, and the current task might soon be | 
 |  * context-switched away from.  If this task is in an RCU read-side | 
 |  * critical section, we will no longer be able to rely on the CPU to | 
 |  * record that fact, so we enqueue the task on the blkd_tasks list. | 
 |  * The task will dequeue itself when it exits the outermost enclosing | 
 |  * RCU read-side critical section.  Therefore, the current grace period | 
 |  * cannot be permitted to complete until the blkd_tasks list entries | 
 |  * predating the current grace period drain, in other words, until | 
 |  * rnp->gp_tasks becomes NULL. | 
 |  * | 
 |  * Caller must disable interrupts. | 
 |  */ | 
 | void rcu_note_context_switch(bool preempt) | 
 | { | 
 | 	struct task_struct *t = current; | 
 | 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
 | 	struct rcu_node *rnp; | 
 |  | 
 | 	trace_rcu_utilization(TPS("Start context switch")); | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0); | 
 | 	if (rcu_preempt_depth() > 0 && | 
 | 	    !t->rcu_read_unlock_special.b.blocked) { | 
 |  | 
 | 		/* Possibly blocking in an RCU read-side critical section. */ | 
 | 		rnp = rdp->mynode; | 
 | 		raw_spin_lock_rcu_node(rnp); | 
 | 		t->rcu_read_unlock_special.b.blocked = true; | 
 | 		t->rcu_blocked_node = rnp; | 
 |  | 
 | 		/* | 
 | 		 * Verify the CPU's sanity, trace the preemption, and | 
 | 		 * then queue the task as required based on the states | 
 | 		 * of any ongoing and expedited grace periods. | 
 | 		 */ | 
 | 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0); | 
 | 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | 
 | 		trace_rcu_preempt_task(rcu_state.name, | 
 | 				       t->pid, | 
 | 				       (rnp->qsmask & rdp->grpmask) | 
 | 				       ? rnp->gp_seq | 
 | 				       : rcu_seq_snap(&rnp->gp_seq)); | 
 | 		rcu_preempt_ctxt_queue(rnp, rdp); | 
 | 	} else { | 
 | 		rcu_preempt_deferred_qs(t); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Either we were not in an RCU read-side critical section to | 
 | 	 * begin with, or we have now recorded that critical section | 
 | 	 * globally.  Either way, we can now note a quiescent state | 
 | 	 * for this CPU.  Again, if we were in an RCU read-side critical | 
 | 	 * section, and if that critical section was blocking the current | 
 | 	 * grace period, then the fact that the task has been enqueued | 
 | 	 * means that we continue to block the current grace period. | 
 | 	 */ | 
 | 	rcu_qs(); | 
 | 	if (rdp->exp_deferred_qs) | 
 | 		rcu_report_exp_rdp(rdp); | 
 | 	trace_rcu_utilization(TPS("End context switch")); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
 |  | 
 | /* | 
 |  * Check for preempted RCU readers blocking the current grace period | 
 |  * for the specified rcu_node structure.  If the caller needs a reliable | 
 |  * answer, it must hold the rcu_node's ->lock. | 
 |  */ | 
 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
 | { | 
 | 	return READ_ONCE(rnp->gp_tasks) != NULL; | 
 | } | 
 |  | 
 | /* Bias and limit values for ->rcu_read_lock_nesting. */ | 
 | #define RCU_NEST_BIAS INT_MAX | 
 | #define RCU_NEST_NMAX (-INT_MAX / 2) | 
 | #define RCU_NEST_PMAX (INT_MAX / 2) | 
 |  | 
 | static void rcu_preempt_read_enter(void) | 
 | { | 
 | 	current->rcu_read_lock_nesting++; | 
 | } | 
 |  | 
 | static void rcu_preempt_read_exit(void) | 
 | { | 
 | 	current->rcu_read_lock_nesting--; | 
 | } | 
 |  | 
 | static void rcu_preempt_depth_set(int val) | 
 | { | 
 | 	current->rcu_read_lock_nesting = val; | 
 | } | 
 |  | 
 | /* | 
 |  * Preemptible RCU implementation for rcu_read_lock(). | 
 |  * Just increment ->rcu_read_lock_nesting, shared state will be updated | 
 |  * if we block. | 
 |  */ | 
 | void __rcu_read_lock(void) | 
 | { | 
 | 	rcu_preempt_read_enter(); | 
 | 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) | 
 | 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX); | 
 | 	barrier();  /* critical section after entry code. */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 
 |  | 
 | /* | 
 |  * Preemptible RCU implementation for rcu_read_unlock(). | 
 |  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost | 
 |  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | 
 |  * invoke rcu_read_unlock_special() to clean up after a context switch | 
 |  * in an RCU read-side critical section and other special cases. | 
 |  */ | 
 | void __rcu_read_unlock(void) | 
 | { | 
 | 	struct task_struct *t = current; | 
 |  | 
 | 	if (rcu_preempt_depth() != 1) { | 
 | 		rcu_preempt_read_exit(); | 
 | 	} else { | 
 | 		barrier();  /* critical section before exit code. */ | 
 | 		rcu_preempt_depth_set(-RCU_NEST_BIAS); | 
 | 		barrier();  /* assign before ->rcu_read_unlock_special load */ | 
 | 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s))) | 
 | 			rcu_read_unlock_special(t); | 
 | 		barrier();  /* ->rcu_read_unlock_special load before assign */ | 
 | 		rcu_preempt_depth_set(0); | 
 | 	} | 
 | 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { | 
 | 		int rrln = rcu_preempt_depth(); | 
 |  | 
 | 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | 
 |  | 
 | /* | 
 |  * Advance a ->blkd_tasks-list pointer to the next entry, instead | 
 |  * returning NULL if at the end of the list. | 
 |  */ | 
 | static struct list_head *rcu_next_node_entry(struct task_struct *t, | 
 | 					     struct rcu_node *rnp) | 
 | { | 
 | 	struct list_head *np; | 
 |  | 
 | 	np = t->rcu_node_entry.next; | 
 | 	if (np == &rnp->blkd_tasks) | 
 | 		np = NULL; | 
 | 	return np; | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if the specified rcu_node structure has tasks that were | 
 |  * preempted within an RCU read-side critical section. | 
 |  */ | 
 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | 
 | { | 
 | 	return !list_empty(&rnp->blkd_tasks); | 
 | } | 
 |  | 
 | /* | 
 |  * Report deferred quiescent states.  The deferral time can | 
 |  * be quite short, for example, in the case of the call from | 
 |  * rcu_read_unlock_special(). | 
 |  */ | 
 | static void | 
 | rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags) | 
 | { | 
 | 	bool empty_exp; | 
 | 	bool empty_norm; | 
 | 	bool empty_exp_now; | 
 | 	struct list_head *np; | 
 | 	bool drop_boost_mutex = false; | 
 | 	struct rcu_data *rdp; | 
 | 	struct rcu_node *rnp; | 
 | 	union rcu_special special; | 
 |  | 
 | 	/* | 
 | 	 * If RCU core is waiting for this CPU to exit its critical section, | 
 | 	 * report the fact that it has exited.  Because irqs are disabled, | 
 | 	 * t->rcu_read_unlock_special cannot change. | 
 | 	 */ | 
 | 	special = t->rcu_read_unlock_special; | 
 | 	rdp = this_cpu_ptr(&rcu_data); | 
 | 	if (!special.s && !rdp->exp_deferred_qs) { | 
 | 		local_irq_restore(flags); | 
 | 		return; | 
 | 	} | 
 | 	t->rcu_read_unlock_special.s = 0; | 
 | 	if (special.b.need_qs) | 
 | 		rcu_qs(); | 
 |  | 
 | 	/* | 
 | 	 * Respond to a request by an expedited grace period for a | 
 | 	 * quiescent state from this CPU.  Note that requests from | 
 | 	 * tasks are handled when removing the task from the | 
 | 	 * blocked-tasks list below. | 
 | 	 */ | 
 | 	if (rdp->exp_deferred_qs) | 
 | 		rcu_report_exp_rdp(rdp); | 
 |  | 
 | 	/* Clean up if blocked during RCU read-side critical section. */ | 
 | 	if (special.b.blocked) { | 
 |  | 
 | 		/* | 
 | 		 * Remove this task from the list it blocked on.  The task | 
 | 		 * now remains queued on the rcu_node corresponding to the | 
 | 		 * CPU it first blocked on, so there is no longer any need | 
 | 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia. | 
 | 		 */ | 
 | 		rnp = t->rcu_blocked_node; | 
 | 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | 
 | 		WARN_ON_ONCE(rnp != t->rcu_blocked_node); | 
 | 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp)); | 
 | 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp); | 
 | 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq && | 
 | 			     (!empty_norm || rnp->qsmask)); | 
 | 		empty_exp = sync_rcu_exp_done(rnp); | 
 | 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */ | 
 | 		np = rcu_next_node_entry(t, rnp); | 
 | 		list_del_init(&t->rcu_node_entry); | 
 | 		t->rcu_blocked_node = NULL; | 
 | 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"), | 
 | 						rnp->gp_seq, t->pid); | 
 | 		if (&t->rcu_node_entry == rnp->gp_tasks) | 
 | 			WRITE_ONCE(rnp->gp_tasks, np); | 
 | 		if (&t->rcu_node_entry == rnp->exp_tasks) | 
 | 			rnp->exp_tasks = np; | 
 | 		if (IS_ENABLED(CONFIG_RCU_BOOST)) { | 
 | 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */ | 
 | 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t; | 
 | 			if (&t->rcu_node_entry == rnp->boost_tasks) | 
 | 				rnp->boost_tasks = np; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If this was the last task on the current list, and if | 
 | 		 * we aren't waiting on any CPUs, report the quiescent state. | 
 | 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock, | 
 | 		 * so we must take a snapshot of the expedited state. | 
 | 		 */ | 
 | 		empty_exp_now = sync_rcu_exp_done(rnp); | 
 | 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) { | 
 | 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"), | 
 | 							 rnp->gp_seq, | 
 | 							 0, rnp->qsmask, | 
 | 							 rnp->level, | 
 | 							 rnp->grplo, | 
 | 							 rnp->grphi, | 
 | 							 !!rnp->gp_tasks); | 
 | 			rcu_report_unblock_qs_rnp(rnp, flags); | 
 | 		} else { | 
 | 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 		} | 
 |  | 
 | 		/* Unboost if we were boosted. */ | 
 | 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex) | 
 | 			rt_mutex_futex_unlock(&rnp->boost_mtx); | 
 |  | 
 | 		/* | 
 | 		 * If this was the last task on the expedited lists, | 
 | 		 * then we need to report up the rcu_node hierarchy. | 
 | 		 */ | 
 | 		if (!empty_exp && empty_exp_now) | 
 | 			rcu_report_exp_rnp(rnp, true); | 
 | 	} else { | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Is a deferred quiescent-state pending, and are we also not in | 
 |  * an RCU read-side critical section?  It is the caller's responsibility | 
 |  * to ensure it is otherwise safe to report any deferred quiescent | 
 |  * states.  The reason for this is that it is safe to report a | 
 |  * quiescent state during context switch even though preemption | 
 |  * is disabled.  This function cannot be expected to understand these | 
 |  * nuances, so the caller must handle them. | 
 |  */ | 
 | static bool rcu_preempt_need_deferred_qs(struct task_struct *t) | 
 | { | 
 | 	return (__this_cpu_read(rcu_data.exp_deferred_qs) || | 
 | 		READ_ONCE(t->rcu_read_unlock_special.s)) && | 
 | 	       rcu_preempt_depth() <= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Report a deferred quiescent state if needed and safe to do so. | 
 |  * As with rcu_preempt_need_deferred_qs(), "safe" involves only | 
 |  * not being in an RCU read-side critical section.  The caller must | 
 |  * evaluate safety in terms of interrupt, softirq, and preemption | 
 |  * disabling. | 
 |  */ | 
 | static void rcu_preempt_deferred_qs(struct task_struct *t) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool couldrecurse = rcu_preempt_depth() >= 0; | 
 |  | 
 | 	if (!rcu_preempt_need_deferred_qs(t)) | 
 | 		return; | 
 | 	if (couldrecurse) | 
 | 		rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS); | 
 | 	local_irq_save(flags); | 
 | 	rcu_preempt_deferred_qs_irqrestore(t, flags); | 
 | 	if (couldrecurse) | 
 | 		rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS); | 
 | } | 
 |  | 
 | /* | 
 |  * Minimal handler to give the scheduler a chance to re-evaluate. | 
 |  */ | 
 | static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp) | 
 | { | 
 | 	struct rcu_data *rdp; | 
 |  | 
 | 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw); | 
 | 	rdp->defer_qs_iw_pending = false; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle special cases during rcu_read_unlock(), such as needing to | 
 |  * notify RCU core processing or task having blocked during the RCU | 
 |  * read-side critical section. | 
 |  */ | 
 | static void rcu_read_unlock_special(struct task_struct *t) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool preempt_bh_were_disabled = | 
 | 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)); | 
 | 	bool irqs_were_disabled; | 
 |  | 
 | 	/* NMI handlers cannot block and cannot safely manipulate state. */ | 
 | 	if (in_nmi()) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	irqs_were_disabled = irqs_disabled_flags(flags); | 
 | 	if (preempt_bh_were_disabled || irqs_were_disabled) { | 
 | 		bool exp; | 
 | 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
 | 		struct rcu_node *rnp = rdp->mynode; | 
 |  | 
 | 		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) || | 
 | 		      (rdp->grpmask & READ_ONCE(rnp->expmask)) || | 
 | 		      tick_nohz_full_cpu(rdp->cpu); | 
 | 		// Need to defer quiescent state until everything is enabled. | 
 | 		if (irqs_were_disabled && use_softirq && | 
 | 		    (in_interrupt() || | 
 | 		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) { | 
 | 			// Using softirq, safe to awaken, and we get | 
 | 			// no help from enabling irqs, unlike bh/preempt. | 
 | 			raise_softirq_irqoff(RCU_SOFTIRQ); | 
 | 		} else { | 
 | 			// Enabling BH or preempt does reschedule, so... | 
 | 			// Also if no expediting or NO_HZ_FULL, slow is OK. | 
 | 			set_tsk_need_resched(current); | 
 | 			set_preempt_need_resched(); | 
 | 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && | 
 | 			    !rdp->defer_qs_iw_pending && exp) { | 
 | 				// Get scheduler to re-evaluate and call hooks. | 
 | 				// If !IRQ_WORK, FQS scan will eventually IPI. | 
 | 				init_irq_work(&rdp->defer_qs_iw, | 
 | 					      rcu_preempt_deferred_qs_handler); | 
 | 				rdp->defer_qs_iw_pending = true; | 
 | 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu); | 
 | 			} | 
 | 		} | 
 | 		t->rcu_read_unlock_special.b.deferred_qs = true; | 
 | 		local_irq_restore(flags); | 
 | 		return; | 
 | 	} | 
 | 	rcu_preempt_deferred_qs_irqrestore(t, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that the list of blocked tasks for the newly completed grace | 
 |  * period is in fact empty.  It is a serious bug to complete a grace | 
 |  * period that still has RCU readers blocked!  This function must be | 
 |  * invoked -before- updating this rnp's ->gp_seq. | 
 |  * | 
 |  * Also, if there are blocked tasks on the list, they automatically | 
 |  * block the newly created grace period, so set up ->gp_tasks accordingly. | 
 |  */ | 
 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n"); | 
 | 	raw_lockdep_assert_held_rcu_node(rnp); | 
 | 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) | 
 | 		dump_blkd_tasks(rnp, 10); | 
 | 	if (rcu_preempt_has_tasks(rnp) && | 
 | 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) { | 
 | 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next); | 
 | 		t = container_of(rnp->gp_tasks, struct task_struct, | 
 | 				 rcu_node_entry); | 
 | 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"), | 
 | 						rnp->gp_seq, t->pid); | 
 | 	} | 
 | 	WARN_ON_ONCE(rnp->qsmask); | 
 | } | 
 |  | 
 | /* | 
 |  * Check for a quiescent state from the current CPU, including voluntary | 
 |  * context switches for Tasks RCU.  When a task blocks, the task is | 
 |  * recorded in the corresponding CPU's rcu_node structure, which is checked | 
 |  * elsewhere, hence this function need only check for quiescent states | 
 |  * related to the current CPU, not to those related to tasks. | 
 |  */ | 
 | static void rcu_flavor_sched_clock_irq(int user) | 
 | { | 
 | 	struct task_struct *t = current; | 
 |  | 
 | 	if (user || rcu_is_cpu_rrupt_from_idle()) { | 
 | 		rcu_note_voluntary_context_switch(current); | 
 | 	} | 
 | 	if (rcu_preempt_depth() > 0 || | 
 | 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) { | 
 | 		/* No QS, force context switch if deferred. */ | 
 | 		if (rcu_preempt_need_deferred_qs(t)) { | 
 | 			set_tsk_need_resched(t); | 
 | 			set_preempt_need_resched(); | 
 | 		} | 
 | 	} else if (rcu_preempt_need_deferred_qs(t)) { | 
 | 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */ | 
 | 		return; | 
 | 	} else if (!rcu_preempt_depth()) { | 
 | 		rcu_qs(); /* Report immediate QS. */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */ | 
 | 	if (rcu_preempt_depth() > 0 && | 
 | 	    __this_cpu_read(rcu_data.core_needs_qs) && | 
 | 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) && | 
 | 	    !t->rcu_read_unlock_special.b.need_qs && | 
 | 	    time_after(jiffies, rcu_state.gp_start + HZ)) | 
 | 		t->rcu_read_unlock_special.b.need_qs = true; | 
 | } | 
 |  | 
 | /* | 
 |  * Check for a task exiting while in a preemptible-RCU read-side | 
 |  * critical section, clean up if so.  No need to issue warnings, as | 
 |  * debug_check_no_locks_held() already does this if lockdep is enabled. | 
 |  * Besides, if this function does anything other than just immediately | 
 |  * return, there was a bug of some sort.  Spewing warnings from this | 
 |  * function is like as not to simply obscure important prior warnings. | 
 |  */ | 
 | void exit_rcu(void) | 
 | { | 
 | 	struct task_struct *t = current; | 
 |  | 
 | 	if (unlikely(!list_empty(¤t->rcu_node_entry))) { | 
 | 		rcu_preempt_depth_set(1); | 
 | 		barrier(); | 
 | 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true); | 
 | 	} else if (unlikely(rcu_preempt_depth())) { | 
 | 		rcu_preempt_depth_set(1); | 
 | 	} else { | 
 | 		return; | 
 | 	} | 
 | 	__rcu_read_unlock(); | 
 | 	rcu_preempt_deferred_qs(current); | 
 | } | 
 |  | 
 | /* | 
 |  * Dump the blocked-tasks state, but limit the list dump to the | 
 |  * specified number of elements. | 
 |  */ | 
 | static void | 
 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) | 
 | { | 
 | 	int cpu; | 
 | 	int i; | 
 | 	struct list_head *lhp; | 
 | 	bool onl; | 
 | 	struct rcu_data *rdp; | 
 | 	struct rcu_node *rnp1; | 
 |  | 
 | 	raw_lockdep_assert_held_rcu_node(rnp); | 
 | 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", | 
 | 		__func__, rnp->grplo, rnp->grphi, rnp->level, | 
 | 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs); | 
 | 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) | 
 | 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n", | 
 | 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext); | 
 | 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n", | 
 | 		__func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks, | 
 | 		rnp->exp_tasks); | 
 | 	pr_info("%s: ->blkd_tasks", __func__); | 
 | 	i = 0; | 
 | 	list_for_each(lhp, &rnp->blkd_tasks) { | 
 | 		pr_cont(" %p", lhp); | 
 | 		if (++i >= ncheck) | 
 | 			break; | 
 | 	} | 
 | 	pr_cont("\n"); | 
 | 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { | 
 | 		rdp = per_cpu_ptr(&rcu_data, cpu); | 
 | 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); | 
 | 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n", | 
 | 			cpu, ".o"[onl], | 
 | 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, | 
 | 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); | 
 | 	} | 
 | } | 
 |  | 
 | #else /* #ifdef CONFIG_PREEMPT_RCU */ | 
 |  | 
 | /* | 
 |  * Tell them what RCU they are running. | 
 |  */ | 
 | static void __init rcu_bootup_announce(void) | 
 | { | 
 | 	pr_info("Hierarchical RCU implementation.\n"); | 
 | 	rcu_bootup_announce_oddness(); | 
 | } | 
 |  | 
 | /* | 
 |  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know | 
 |  * how many quiescent states passed, just if there was at least one since | 
 |  * the start of the grace period, this just sets a flag.  The caller must | 
 |  * have disabled preemption. | 
 |  */ | 
 | static void rcu_qs(void) | 
 | { | 
 | 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!"); | 
 | 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s)) | 
 | 		return; | 
 | 	trace_rcu_grace_period(TPS("rcu_sched"), | 
 | 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs")); | 
 | 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false); | 
 | 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp)) | 
 | 		return; | 
 | 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false); | 
 | 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); | 
 | } | 
 |  | 
 | /* | 
 |  * Register an urgently needed quiescent state.  If there is an | 
 |  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight | 
 |  * dyntick-idle quiescent state visible to other CPUs, which will in | 
 |  * some cases serve for expedited as well as normal grace periods. | 
 |  * Either way, register a lightweight quiescent state. | 
 |  */ | 
 | void rcu_all_qs(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs)) | 
 | 		return; | 
 | 	preempt_disable(); | 
 | 	/* Load rcu_urgent_qs before other flags. */ | 
 | 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { | 
 | 		preempt_enable(); | 
 | 		return; | 
 | 	} | 
 | 	this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
 | 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) { | 
 | 		local_irq_save(flags); | 
 | 		rcu_momentary_dyntick_idle(); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | 	rcu_qs(); | 
 | 	preempt_enable(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_all_qs); | 
 |  | 
 | /* | 
 |  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts. | 
 |  */ | 
 | void rcu_note_context_switch(bool preempt) | 
 | { | 
 | 	trace_rcu_utilization(TPS("Start context switch")); | 
 | 	rcu_qs(); | 
 | 	/* Load rcu_urgent_qs before other flags. */ | 
 | 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) | 
 | 		goto out; | 
 | 	this_cpu_write(rcu_data.rcu_urgent_qs, false); | 
 | 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) | 
 | 		rcu_momentary_dyntick_idle(); | 
 | 	if (!preempt) | 
 | 		rcu_tasks_qs(current); | 
 | out: | 
 | 	trace_rcu_utilization(TPS("End context switch")); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
 |  | 
 | /* | 
 |  * Because preemptible RCU does not exist, there are never any preempted | 
 |  * RCU readers. | 
 |  */ | 
 | static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Because there is no preemptible RCU, there can be no readers blocked. | 
 |  */ | 
 | static bool rcu_preempt_has_tasks(struct rcu_node *rnp) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Because there is no preemptible RCU, there can be no deferred quiescent | 
 |  * states. | 
 |  */ | 
 | static bool rcu_preempt_need_deferred_qs(struct task_struct *t) | 
 | { | 
 | 	return false; | 
 | } | 
 | static void rcu_preempt_deferred_qs(struct task_struct *t) { } | 
 |  | 
 | /* | 
 |  * Because there is no preemptible RCU, there can be no readers blocked, | 
 |  * so there is no need to check for blocked tasks.  So check only for | 
 |  * bogus qsmask values. | 
 |  */ | 
 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | 
 | { | 
 | 	WARN_ON_ONCE(rnp->qsmask); | 
 | } | 
 |  | 
 | /* | 
 |  * Check to see if this CPU is in a non-context-switch quiescent state, | 
 |  * namely user mode and idle loop. | 
 |  */ | 
 | static void rcu_flavor_sched_clock_irq(int user) | 
 | { | 
 | 	if (user || rcu_is_cpu_rrupt_from_idle()) { | 
 |  | 
 | 		/* | 
 | 		 * Get here if this CPU took its interrupt from user | 
 | 		 * mode or from the idle loop, and if this is not a | 
 | 		 * nested interrupt.  In this case, the CPU is in | 
 | 		 * a quiescent state, so note it. | 
 | 		 * | 
 | 		 * No memory barrier is required here because rcu_qs() | 
 | 		 * references only CPU-local variables that other CPUs | 
 | 		 * neither access nor modify, at least not while the | 
 | 		 * corresponding CPU is online. | 
 | 		 */ | 
 |  | 
 | 		rcu_qs(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Because preemptible RCU does not exist, tasks cannot possibly exit | 
 |  * while in preemptible RCU read-side critical sections. | 
 |  */ | 
 | void exit_rcu(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify. | 
 |  */ | 
 | static void | 
 | dump_blkd_tasks(struct rcu_node *rnp, int ncheck) | 
 | { | 
 | 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks)); | 
 | } | 
 |  | 
 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ | 
 |  | 
 | /* | 
 |  * If boosting, set rcuc kthreads to realtime priority. | 
 |  */ | 
 | static void rcu_cpu_kthread_setup(unsigned int cpu) | 
 | { | 
 | #ifdef CONFIG_RCU_BOOST | 
 | 	struct sched_param sp; | 
 |  | 
 | 	sp.sched_priority = kthread_prio; | 
 | 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); | 
 | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_RCU_BOOST | 
 |  | 
 | /* | 
 |  * Carry out RCU priority boosting on the task indicated by ->exp_tasks | 
 |  * or ->boost_tasks, advancing the pointer to the next task in the | 
 |  * ->blkd_tasks list. | 
 |  * | 
 |  * Note that irqs must be enabled: boosting the task can block. | 
 |  * Returns 1 if there are more tasks needing to be boosted. | 
 |  */ | 
 | static int rcu_boost(struct rcu_node *rnp) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct task_struct *t; | 
 | 	struct list_head *tb; | 
 |  | 
 | 	if (READ_ONCE(rnp->exp_tasks) == NULL && | 
 | 	    READ_ONCE(rnp->boost_tasks) == NULL) | 
 | 		return 0;  /* Nothing left to boost. */ | 
 |  | 
 | 	raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
 |  | 
 | 	/* | 
 | 	 * Recheck under the lock: all tasks in need of boosting | 
 | 	 * might exit their RCU read-side critical sections on their own. | 
 | 	 */ | 
 | 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { | 
 | 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Preferentially boost tasks blocking expedited grace periods. | 
 | 	 * This cannot starve the normal grace periods because a second | 
 | 	 * expedited grace period must boost all blocked tasks, including | 
 | 	 * those blocking the pre-existing normal grace period. | 
 | 	 */ | 
 | 	if (rnp->exp_tasks != NULL) | 
 | 		tb = rnp->exp_tasks; | 
 | 	else | 
 | 		tb = rnp->boost_tasks; | 
 |  | 
 | 	/* | 
 | 	 * We boost task t by manufacturing an rt_mutex that appears to | 
 | 	 * be held by task t.  We leave a pointer to that rt_mutex where | 
 | 	 * task t can find it, and task t will release the mutex when it | 
 | 	 * exits its outermost RCU read-side critical section.  Then | 
 | 	 * simply acquiring this artificial rt_mutex will boost task | 
 | 	 * t's priority.  (Thanks to tglx for suggesting this approach!) | 
 | 	 * | 
 | 	 * Note that task t must acquire rnp->lock to remove itself from | 
 | 	 * the ->blkd_tasks list, which it will do from exit() if from | 
 | 	 * nowhere else.  We therefore are guaranteed that task t will | 
 | 	 * stay around at least until we drop rnp->lock.  Note that | 
 | 	 * rnp->lock also resolves races between our priority boosting | 
 | 	 * and task t's exiting its outermost RCU read-side critical | 
 | 	 * section. | 
 | 	 */ | 
 | 	t = container_of(tb, struct task_struct, rcu_node_entry); | 
 | 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); | 
 | 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 	/* Lock only for side effect: boosts task t's priority. */ | 
 | 	rt_mutex_lock(&rnp->boost_mtx); | 
 | 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */ | 
 |  | 
 | 	return READ_ONCE(rnp->exp_tasks) != NULL || | 
 | 	       READ_ONCE(rnp->boost_tasks) != NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Priority-boosting kthread, one per leaf rcu_node. | 
 |  */ | 
 | static int rcu_boost_kthread(void *arg) | 
 | { | 
 | 	struct rcu_node *rnp = (struct rcu_node *)arg; | 
 | 	int spincnt = 0; | 
 | 	int more2boost; | 
 |  | 
 | 	trace_rcu_utilization(TPS("Start boost kthread@init")); | 
 | 	for (;;) { | 
 | 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING); | 
 | 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait")); | 
 | 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks); | 
 | 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait")); | 
 | 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING); | 
 | 		more2boost = rcu_boost(rnp); | 
 | 		if (more2boost) | 
 | 			spincnt++; | 
 | 		else | 
 | 			spincnt = 0; | 
 | 		if (spincnt > 10) { | 
 | 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING); | 
 | 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield")); | 
 | 			schedule_timeout_interruptible(2); | 
 | 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield")); | 
 | 			spincnt = 0; | 
 | 		} | 
 | 	} | 
 | 	/* NOTREACHED */ | 
 | 	trace_rcu_utilization(TPS("End boost kthread@notreached")); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check to see if it is time to start boosting RCU readers that are | 
 |  * blocking the current grace period, and, if so, tell the per-rcu_node | 
 |  * kthread to start boosting them.  If there is an expedited grace | 
 |  * period in progress, it is always time to boost. | 
 |  * | 
 |  * The caller must hold rnp->lock, which this function releases. | 
 |  * The ->boost_kthread_task is immortal, so we don't need to worry | 
 |  * about it going away. | 
 |  */ | 
 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
 | 	__releases(rnp->lock) | 
 | { | 
 | 	raw_lockdep_assert_held_rcu_node(rnp); | 
 | 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { | 
 | 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 		return; | 
 | 	} | 
 | 	if (rnp->exp_tasks != NULL || | 
 | 	    (rnp->gp_tasks != NULL && | 
 | 	     rnp->boost_tasks == NULL && | 
 | 	     rnp->qsmask == 0 && | 
 | 	     (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) { | 
 | 		if (rnp->exp_tasks == NULL) | 
 | 			rnp->boost_tasks = rnp->gp_tasks; | 
 | 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 		rcu_wake_cond(rnp->boost_kthread_task, | 
 | 			      READ_ONCE(rnp->boost_kthread_status)); | 
 | 	} else { | 
 | 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Is the current CPU running the RCU-callbacks kthread? | 
 |  * Caller must have preemption disabled. | 
 |  */ | 
 | static bool rcu_is_callbacks_kthread(void) | 
 | { | 
 | 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current; | 
 | } | 
 |  | 
 | #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000) | 
 |  | 
 | /* | 
 |  * Do priority-boost accounting for the start of a new grace period. | 
 |  */ | 
 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
 | { | 
 | 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES; | 
 | } | 
 |  | 
 | /* | 
 |  * Create an RCU-boost kthread for the specified node if one does not | 
 |  * already exist.  We only create this kthread for preemptible RCU. | 
 |  * Returns zero if all is well, a negated errno otherwise. | 
 |  */ | 
 | static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp) | 
 | { | 
 | 	int rnp_index = rnp - rcu_get_root(); | 
 | 	unsigned long flags; | 
 | 	struct sched_param sp; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU)) | 
 | 		return; | 
 |  | 
 | 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0) | 
 | 		return; | 
 |  | 
 | 	rcu_state.boost = 1; | 
 |  | 
 | 	if (rnp->boost_kthread_task != NULL) | 
 | 		return; | 
 |  | 
 | 	t = kthread_create(rcu_boost_kthread, (void *)rnp, | 
 | 			   "rcub/%d", rnp_index); | 
 | 	if (WARN_ON_ONCE(IS_ERR(t))) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock_irqsave_rcu_node(rnp, flags); | 
 | 	rnp->boost_kthread_task = t; | 
 | 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | 	sp.sched_priority = kthread_prio; | 
 | 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); | 
 | 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ | 
 | } | 
 |  | 
 | /* | 
 |  * Set the per-rcu_node kthread's affinity to cover all CPUs that are | 
 |  * served by the rcu_node in question.  The CPU hotplug lock is still | 
 |  * held, so the value of rnp->qsmaskinit will be stable. | 
 |  * | 
 |  * We don't include outgoingcpu in the affinity set, use -1 if there is | 
 |  * no outgoing CPU.  If there are no CPUs left in the affinity set, | 
 |  * this function allows the kthread to execute on any CPU. | 
 |  */ | 
 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | 
 | { | 
 | 	struct task_struct *t = rnp->boost_kthread_task; | 
 | 	unsigned long mask = rcu_rnp_online_cpus(rnp); | 
 | 	cpumask_var_t cm; | 
 | 	int cpu; | 
 |  | 
 | 	if (!t) | 
 | 		return; | 
 | 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL)) | 
 | 		return; | 
 | 	for_each_leaf_node_possible_cpu(rnp, cpu) | 
 | 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) && | 
 | 		    cpu != outgoingcpu) | 
 | 			cpumask_set_cpu(cpu, cm); | 
 | 	if (cpumask_weight(cm) == 0) | 
 | 		cpumask_setall(cm); | 
 | 	set_cpus_allowed_ptr(t, cm); | 
 | 	free_cpumask_var(cm); | 
 | } | 
 |  | 
 | /* | 
 |  * Spawn boost kthreads -- called as soon as the scheduler is running. | 
 |  */ | 
 | static void __init rcu_spawn_boost_kthreads(void) | 
 | { | 
 | 	struct rcu_node *rnp; | 
 |  | 
 | 	rcu_for_each_leaf_node(rnp) | 
 | 		rcu_spawn_one_boost_kthread(rnp); | 
 | } | 
 |  | 
 | static void rcu_prepare_kthreads(int cpu) | 
 | { | 
 | 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
 | 	struct rcu_node *rnp = rdp->mynode; | 
 |  | 
 | 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */ | 
 | 	if (rcu_scheduler_fully_active) | 
 | 		rcu_spawn_one_boost_kthread(rnp); | 
 | } | 
 |  | 
 | #else /* #ifdef CONFIG_RCU_BOOST */ | 
 |  | 
 | static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) | 
 | 	__releases(rnp->lock) | 
 | { | 
 | 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags); | 
 | } | 
 |  | 
 | static bool rcu_is_callbacks_kthread(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static void rcu_preempt_boost_start_gp(struct rcu_node *rnp) | 
 | { | 
 | } | 
 |  | 
 | static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu) | 
 | { | 
 | } | 
 |  | 
 | static void __init rcu_spawn_boost_kthreads(void) | 
 | { | 
 | } | 
 |  | 
 | static void rcu_prepare_kthreads(int cpu) | 
 | { | 
 | } | 
 |  | 
 | #endif /* #else #ifdef CONFIG_RCU_BOOST */ | 
 |  | 
 | #if !defined(CONFIG_RCU_FAST_NO_HZ) | 
 |  | 
 | /* | 
 |  * Check to see if any future non-offloaded RCU-related work will need | 
 |  * to be done by the current CPU, even if none need be done immediately, | 
 |  * returning 1 if so.  This function is part of the RCU implementation; | 
 |  * it is -not- an exported member of the RCU API. | 
 |  * | 
 |  * Because we not have RCU_FAST_NO_HZ, just check whether or not this | 
 |  * CPU has RCU callbacks queued. | 
 |  */ | 
 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) | 
 | { | 
 | 	*nextevt = KTIME_MAX; | 
 | 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && | 
 | 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist); | 
 | } | 
 |  | 
 | /* | 
 |  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up | 
 |  * after it. | 
 |  */ | 
 | static void rcu_cleanup_after_idle(void) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n, | 
 |  * is nothing. | 
 |  */ | 
 | static void rcu_prepare_for_idle(void) | 
 | { | 
 | } | 
 |  | 
 | #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */ | 
 |  | 
 | /* | 
 |  * This code is invoked when a CPU goes idle, at which point we want | 
 |  * to have the CPU do everything required for RCU so that it can enter | 
 |  * the energy-efficient dyntick-idle mode. | 
 |  * | 
 |  * The following preprocessor symbol controls this: | 
 |  * | 
 |  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted | 
 |  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This | 
 |  *	is sized to be roughly one RCU grace period.  Those energy-efficiency | 
 |  *	benchmarkers who might otherwise be tempted to set this to a large | 
 |  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your | 
 |  *	system.  And if you are -that- concerned about energy efficiency, | 
 |  *	just power the system down and be done with it! | 
 |  * | 
 |  * The value below works well in practice.  If future workloads require | 
 |  * adjustment, they can be converted into kernel config parameters, though | 
 |  * making the state machine smarter might be a better option. | 
 |  */ | 
 | #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */ | 
 |  | 
 | static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY; | 
 | module_param(rcu_idle_gp_delay, int, 0644); | 
 |  | 
 | /* | 
 |  * Try to advance callbacks on the current CPU, but only if it has been | 
 |  * awhile since the last time we did so.  Afterwards, if there are any | 
 |  * callbacks ready for immediate invocation, return true. | 
 |  */ | 
 | static bool __maybe_unused rcu_try_advance_all_cbs(void) | 
 | { | 
 | 	bool cbs_ready = false; | 
 | 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
 | 	struct rcu_node *rnp; | 
 |  | 
 | 	/* Exit early if we advanced recently. */ | 
 | 	if (jiffies == rdp->last_advance_all) | 
 | 		return false; | 
 | 	rdp->last_advance_all = jiffies; | 
 |  | 
 | 	rnp = rdp->mynode; | 
 |  | 
 | 	/* | 
 | 	 * Don't bother checking unless a grace period has | 
 | 	 * completed since we last checked and there are | 
 | 	 * callbacks not yet ready to invoke. | 
 | 	 */ | 
 | 	if ((rcu_seq_completed_gp(rdp->gp_seq, | 
 | 				  rcu_seq_current(&rnp->gp_seq)) || | 
 | 	     unlikely(READ_ONCE(rdp->gpwrap))) && | 
 | 	    rcu_segcblist_pend_cbs(&rdp->cblist)) | 
 | 		note_gp_changes(rdp); | 
 |  | 
 | 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) | 
 | 		cbs_ready = true; | 
 | 	return cbs_ready; | 
 | } | 
 |  | 
 | /* | 
 |  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready | 
 |  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the | 
 |  * caller about what to set the timeout. | 
 |  * | 
 |  * The caller must have disabled interrupts. | 
 |  */ | 
 | int rcu_needs_cpu(u64 basemono, u64 *nextevt) | 
 | { | 
 | 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
 | 	unsigned long dj; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */ | 
 | 	if (rcu_segcblist_empty(&rdp->cblist) || | 
 | 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) { | 
 | 		*nextevt = KTIME_MAX; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Attempt to advance callbacks. */ | 
 | 	if (rcu_try_advance_all_cbs()) { | 
 | 		/* Some ready to invoke, so initiate later invocation. */ | 
 | 		invoke_rcu_core(); | 
 | 		return 1; | 
 | 	} | 
 | 	rdp->last_accelerate = jiffies; | 
 |  | 
 | 	/* Request timer and round. */ | 
 | 	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies; | 
 |  | 
 | 	*nextevt = basemono + dj * TICK_NSEC; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Prepare a CPU for idle from an RCU perspective.  The first major task is to | 
 |  * sense whether nohz mode has been enabled or disabled via sysfs.  The second | 
 |  * major task is to accelerate (that is, assign grace-period numbers to) any | 
 |  * recently arrived callbacks. | 
 |  * | 
 |  * The caller must have disabled interrupts. | 
 |  */ | 
 | static void rcu_prepare_for_idle(void) | 
 | { | 
 | 	bool needwake; | 
 | 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
 | 	struct rcu_node *rnp; | 
 | 	int tne; | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) | 
 | 		return; | 
 |  | 
 | 	/* Handle nohz enablement switches conservatively. */ | 
 | 	tne = READ_ONCE(tick_nohz_active); | 
 | 	if (tne != rdp->tick_nohz_enabled_snap) { | 
 | 		if (!rcu_segcblist_empty(&rdp->cblist)) | 
 | 			invoke_rcu_core(); /* force nohz to see update. */ | 
 | 		rdp->tick_nohz_enabled_snap = tne; | 
 | 		return; | 
 | 	} | 
 | 	if (!tne) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If we have not yet accelerated this jiffy, accelerate all | 
 | 	 * callbacks on this CPU. | 
 | 	 */ | 
 | 	if (rdp->last_accelerate == jiffies) | 
 | 		return; | 
 | 	rdp->last_accelerate = jiffies; | 
 | 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) { | 
 | 		rnp = rdp->mynode; | 
 | 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ | 
 | 		needwake = rcu_accelerate_cbs(rnp, rdp); | 
 | 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ | 
 | 		if (needwake) | 
 | 			rcu_gp_kthread_wake(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Clean up for exit from idle.  Attempt to advance callbacks based on | 
 |  * any grace periods that elapsed while the CPU was idle, and if any | 
 |  * callbacks are now ready to invoke, initiate invocation. | 
 |  */ | 
 | static void rcu_cleanup_after_idle(void) | 
 | { | 
 | 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data); | 
 |  | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) | 
 | 		return; | 
 | 	if (rcu_try_advance_all_cbs()) | 
 | 		invoke_rcu_core(); | 
 | } | 
 |  | 
 | #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */ | 
 |  | 
 | #ifdef CONFIG_RCU_NOCB_CPU | 
 |  | 
 | /* | 
 |  * Offload callback processing from the boot-time-specified set of CPUs | 
 |  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads | 
 |  * created that pull the callbacks from the corresponding CPU, wait for | 
 |  * a grace period to elapse, and invoke the callbacks.  These kthreads | 
 |  * are organized into GP kthreads, which manage incoming callbacks, wait for | 
 |  * grace periods, and awaken CB kthreads, and the CB kthreads, which only | 
 |  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs | 
 |  * do a wake_up() on their GP kthread when they insert a callback into any | 
 |  * empty list, unless the rcu_nocb_poll boot parameter has been specified, | 
 |  * in which case each kthread actively polls its CPU.  (Which isn't so great | 
 |  * for energy efficiency, but which does reduce RCU's overhead on that CPU.) | 
 |  * | 
 |  * This is intended to be used in conjunction with Frederic Weisbecker's | 
 |  * adaptive-idle work, which would seriously reduce OS jitter on CPUs | 
 |  * running CPU-bound user-mode computations. | 
 |  * | 
 |  * Offloading of callbacks can also be used as an energy-efficiency | 
 |  * measure because CPUs with no RCU callbacks queued are more aggressive | 
 |  * about entering dyntick-idle mode. | 
 |  */ | 
 |  | 
 |  | 
 | /* | 
 |  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. | 
 |  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a | 
 |  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is | 
 |  * given, a warning is emitted and all CPUs are offloaded. | 
 |  */ | 
 | static int __init rcu_nocb_setup(char *str) | 
 | { | 
 | 	alloc_bootmem_cpumask_var(&rcu_nocb_mask); | 
 | 	if (!strcasecmp(str, "all")) | 
 | 		cpumask_setall(rcu_nocb_mask); | 
 | 	else | 
 | 		if (cpulist_parse(str, rcu_nocb_mask)) { | 
 | 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n"); | 
 | 			cpumask_setall(rcu_nocb_mask); | 
 | 		} | 
 | 	return 1; | 
 | } | 
 | __setup("rcu_nocbs=", rcu_nocb_setup); | 
 |  | 
 | static int __init parse_rcu_nocb_poll(char *arg) | 
 | { | 
 | 	rcu_nocb_poll = true; | 
 | 	return 0; | 
 | } | 
 | early_param("rcu_nocb_poll", parse_rcu_nocb_poll); | 
 |  | 
 | /* | 
 |  * Don't bother bypassing ->cblist if the call_rcu() rate is low. | 
 |  * After all, the main point of bypassing is to avoid lock contention | 
 |  * on ->nocb_lock, which only can happen at high call_rcu() rates. | 
 |  */ | 
 | int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ; | 
 | module_param(nocb_nobypass_lim_per_jiffy, int, 0); | 
 |  | 
 | /* | 
 |  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the | 
 |  * lock isn't immediately available, increment ->nocb_lock_contended to | 
 |  * flag the contention. | 
 |  */ | 
 | static void rcu_nocb_bypass_lock(struct rcu_data *rdp) | 
 | 	__acquires(&rdp->nocb_bypass_lock) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	if (raw_spin_trylock(&rdp->nocb_bypass_lock)) | 
 | 		return; | 
 | 	atomic_inc(&rdp->nocb_lock_contended); | 
 | 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu); | 
 | 	smp_mb__after_atomic(); /* atomic_inc() before lock. */ | 
 | 	raw_spin_lock(&rdp->nocb_bypass_lock); | 
 | 	smp_mb__before_atomic(); /* atomic_dec() after lock. */ | 
 | 	atomic_dec(&rdp->nocb_lock_contended); | 
 | } | 
 |  | 
 | /* | 
 |  * Spinwait until the specified rcu_data structure's ->nocb_lock is | 
 |  * not contended.  Please note that this is extremely special-purpose, | 
 |  * relying on the fact that at most two kthreads and one CPU contend for | 
 |  * this lock, and also that the two kthreads are guaranteed to have frequent | 
 |  * grace-period-duration time intervals between successive acquisitions | 
 |  * of the lock.  This allows us to use an extremely simple throttling | 
 |  * mechanism, and further to apply it only to the CPU doing floods of | 
 |  * call_rcu() invocations.  Don't try this at home! | 
 |  */ | 
 | static void rcu_nocb_wait_contended(struct rcu_data *rdp) | 
 | { | 
 | 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu); | 
 | 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended))) | 
 | 		cpu_relax(); | 
 | } | 
 |  | 
 | /* | 
 |  * Conditionally acquire the specified rcu_data structure's | 
 |  * ->nocb_bypass_lock. | 
 |  */ | 
 | static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	return raw_spin_trylock(&rdp->nocb_bypass_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Release the specified rcu_data structure's ->nocb_bypass_lock. | 
 |  */ | 
 | static void rcu_nocb_bypass_unlock(struct rcu_data *rdp) | 
 | 	__releases(&rdp->nocb_bypass_lock) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	raw_spin_unlock(&rdp->nocb_bypass_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Acquire the specified rcu_data structure's ->nocb_lock, but only | 
 |  * if it corresponds to a no-CBs CPU. | 
 |  */ | 
 | static void rcu_nocb_lock(struct rcu_data *rdp) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) | 
 | 		return; | 
 | 	raw_spin_lock(&rdp->nocb_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Release the specified rcu_data structure's ->nocb_lock, but only | 
 |  * if it corresponds to a no-CBs CPU. | 
 |  */ | 
 | static void rcu_nocb_unlock(struct rcu_data *rdp) | 
 | { | 
 | 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) { | 
 | 		lockdep_assert_irqs_disabled(); | 
 | 		raw_spin_unlock(&rdp->nocb_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Release the specified rcu_data structure's ->nocb_lock and restore | 
 |  * interrupts, but only if it corresponds to a no-CBs CPU. | 
 |  */ | 
 | static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, | 
 | 				       unsigned long flags) | 
 | { | 
 | 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) { | 
 | 		lockdep_assert_irqs_disabled(); | 
 | 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags); | 
 | 	} else { | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | } | 
 |  | 
 | /* Lockdep check that ->cblist may be safely accessed. */ | 
 | static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 | 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) | 
 | 		lockdep_assert_held(&rdp->nocb_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended | 
 |  * grace period. | 
 |  */ | 
 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) | 
 | { | 
 | 	swake_up_all(sq); | 
 | } | 
 |  | 
 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) | 
 | { | 
 | 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1]; | 
 | } | 
 |  | 
 | static void rcu_init_one_nocb(struct rcu_node *rnp) | 
 | { | 
 | 	init_swait_queue_head(&rnp->nocb_gp_wq[0]); | 
 | 	init_swait_queue_head(&rnp->nocb_gp_wq[1]); | 
 | } | 
 |  | 
 | /* Is the specified CPU a no-CBs CPU? */ | 
 | bool rcu_is_nocb_cpu(int cpu) | 
 | { | 
 | 	if (cpumask_available(rcu_nocb_mask)) | 
 | 		return cpumask_test_cpu(cpu, rcu_nocb_mask); | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock | 
 |  * and this function releases it. | 
 |  */ | 
 | static void wake_nocb_gp(struct rcu_data *rdp, bool force, | 
 | 			   unsigned long flags) | 
 | 	__releases(rdp->nocb_lock) | 
 | { | 
 | 	bool needwake = false; | 
 | 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp; | 
 |  | 
 | 	lockdep_assert_held(&rdp->nocb_lock); | 
 | 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) { | 
 | 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 				    TPS("AlreadyAwake")); | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		return; | 
 | 	} | 
 | 	del_timer(&rdp->nocb_timer); | 
 | 	rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags); | 
 | 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) { | 
 | 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false); | 
 | 		needwake = true; | 
 | 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake")); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags); | 
 | 	if (needwake) | 
 | 		wake_up_process(rdp_gp->nocb_gp_kthread); | 
 | } | 
 |  | 
 | /* | 
 |  * Arrange to wake the GP kthread for this NOCB group at some future | 
 |  * time when it is safe to do so. | 
 |  */ | 
 | static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype, | 
 | 			       const char *reason) | 
 | { | 
 | 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) | 
 | 		mod_timer(&rdp->nocb_timer, jiffies + 1); | 
 | 	if (rdp->nocb_defer_wakeup < waketype) | 
 | 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype); | 
 | 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. | 
 |  * However, if there is a callback to be enqueued and if ->nocb_bypass | 
 |  * proves to be initially empty, just return false because the no-CB GP | 
 |  * kthread may need to be awakened in this case. | 
 |  * | 
 |  * Note that this function always returns true if rhp is NULL. | 
 |  */ | 
 | static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | 
 | 				     unsigned long j) | 
 | { | 
 | 	struct rcu_cblist rcl; | 
 |  | 
 | 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist)); | 
 | 	rcu_lockdep_assert_cblist_protected(rdp); | 
 | 	lockdep_assert_held(&rdp->nocb_bypass_lock); | 
 | 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) { | 
 | 		raw_spin_unlock(&rdp->nocb_bypass_lock); | 
 | 		return false; | 
 | 	} | 
 | 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */ | 
 | 	if (rhp) | 
 | 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ | 
 | 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp); | 
 | 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl); | 
 | 	WRITE_ONCE(rdp->nocb_bypass_first, j); | 
 | 	rcu_nocb_bypass_unlock(rdp); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL. | 
 |  * However, if there is a callback to be enqueued and if ->nocb_bypass | 
 |  * proves to be initially empty, just return false because the no-CB GP | 
 |  * kthread may need to be awakened in this case. | 
 |  * | 
 |  * Note that this function always returns true if rhp is NULL. | 
 |  */ | 
 | static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | 
 | 				  unsigned long j) | 
 | { | 
 | 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) | 
 | 		return true; | 
 | 	rcu_lockdep_assert_cblist_protected(rdp); | 
 | 	rcu_nocb_bypass_lock(rdp); | 
 | 	return rcu_nocb_do_flush_bypass(rdp, rhp, j); | 
 | } | 
 |  | 
 | /* | 
 |  * If the ->nocb_bypass_lock is immediately available, flush the | 
 |  * ->nocb_bypass queue into ->cblist. | 
 |  */ | 
 | static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j) | 
 | { | 
 | 	rcu_lockdep_assert_cblist_protected(rdp); | 
 | 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) || | 
 | 	    !rcu_nocb_bypass_trylock(rdp)) | 
 | 		return; | 
 | 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j)); | 
 | } | 
 |  | 
 | /* | 
 |  * See whether it is appropriate to use the ->nocb_bypass list in order | 
 |  * to control contention on ->nocb_lock.  A limited number of direct | 
 |  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass | 
 |  * is non-empty, further callbacks must be placed into ->nocb_bypass, | 
 |  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch | 
 |  * back to direct use of ->cblist.  However, ->nocb_bypass should not be | 
 |  * used if ->cblist is empty, because otherwise callbacks can be stranded | 
 |  * on ->nocb_bypass because we cannot count on the current CPU ever again | 
 |  * invoking call_rcu().  The general rule is that if ->nocb_bypass is | 
 |  * non-empty, the corresponding no-CBs grace-period kthread must not be | 
 |  * in an indefinite sleep state. | 
 |  * | 
 |  * Finally, it is not permitted to use the bypass during early boot, | 
 |  * as doing so would confuse the auto-initialization code.  Besides | 
 |  * which, there is no point in worrying about lock contention while | 
 |  * there is only one CPU in operation. | 
 |  */ | 
 | static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | 
 | 				bool *was_alldone, unsigned long flags) | 
 | { | 
 | 	unsigned long c; | 
 | 	unsigned long cur_gp_seq; | 
 | 	unsigned long j = jiffies; | 
 | 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | 
 |  | 
 | 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) { | 
 | 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | 
 | 		return false; /* Not offloaded, no bypassing. */ | 
 | 	} | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	// Don't use ->nocb_bypass during early boot. | 
 | 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) { | 
 | 		rcu_nocb_lock(rdp); | 
 | 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); | 
 | 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	// If we have advanced to a new jiffy, reset counts to allow | 
 | 	// moving back from ->nocb_bypass to ->cblist. | 
 | 	if (j == rdp->nocb_nobypass_last) { | 
 | 		c = rdp->nocb_nobypass_count + 1; | 
 | 	} else { | 
 | 		WRITE_ONCE(rdp->nocb_nobypass_last, j); | 
 | 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy; | 
 | 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count, | 
 | 				 nocb_nobypass_lim_per_jiffy)) | 
 | 			c = 0; | 
 | 		else if (c > nocb_nobypass_lim_per_jiffy) | 
 | 			c = nocb_nobypass_lim_per_jiffy; | 
 | 	} | 
 | 	WRITE_ONCE(rdp->nocb_nobypass_count, c); | 
 |  | 
 | 	// If there hasn't yet been all that many ->cblist enqueues | 
 | 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush | 
 | 	// ->nocb_bypass first. | 
 | 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) { | 
 | 		rcu_nocb_lock(rdp); | 
 | 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | 
 | 		if (*was_alldone) | 
 | 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 					    TPS("FirstQ")); | 
 | 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j)); | 
 | 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); | 
 | 		return false; // Caller must enqueue the callback. | 
 | 	} | 
 |  | 
 | 	// If ->nocb_bypass has been used too long or is too full, | 
 | 	// flush ->nocb_bypass to ->cblist. | 
 | 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) || | 
 | 	    ncbs >= qhimark) { | 
 | 		rcu_nocb_lock(rdp); | 
 | 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) { | 
 | 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist); | 
 | 			if (*was_alldone) | 
 | 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 						    TPS("FirstQ")); | 
 | 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass)); | 
 | 			return false; // Caller must enqueue the callback. | 
 | 		} | 
 | 		if (j != rdp->nocb_gp_adv_time && | 
 | 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | 
 | 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { | 
 | 			rcu_advance_cbs_nowake(rdp->mynode, rdp); | 
 | 			rdp->nocb_gp_adv_time = j; | 
 | 		} | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		return true; // Callback already enqueued. | 
 | 	} | 
 |  | 
 | 	// We need to use the bypass. | 
 | 	rcu_nocb_wait_contended(rdp); | 
 | 	rcu_nocb_bypass_lock(rdp); | 
 | 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | 
 | 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */ | 
 | 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp); | 
 | 	if (!ncbs) { | 
 | 		WRITE_ONCE(rdp->nocb_bypass_first, j); | 
 | 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ")); | 
 | 	} | 
 | 	rcu_nocb_bypass_unlock(rdp); | 
 | 	smp_mb(); /* Order enqueue before wake. */ | 
 | 	if (ncbs) { | 
 | 		local_irq_restore(flags); | 
 | 	} else { | 
 | 		// No-CBs GP kthread might be indefinitely asleep, if so, wake. | 
 | 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood. | 
 | 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) { | 
 | 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 					    TPS("FirstBQwake")); | 
 | 			__call_rcu_nocb_wake(rdp, true, flags); | 
 | 		} else { | 
 | 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 					    TPS("FirstBQnoWake")); | 
 | 			rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		} | 
 | 	} | 
 | 	return true; // Callback already enqueued. | 
 | } | 
 |  | 
 | /* | 
 |  * Awaken the no-CBs grace-period kthead if needed, either due to it | 
 |  * legitimately being asleep or due to overload conditions. | 
 |  * | 
 |  * If warranted, also wake up the kthread servicing this CPUs queues. | 
 |  */ | 
 | static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone, | 
 | 				 unsigned long flags) | 
 | 				 __releases(rdp->nocb_lock) | 
 | { | 
 | 	unsigned long cur_gp_seq; | 
 | 	unsigned long j; | 
 | 	long len; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	// If we are being polled or there is no kthread, just leave. | 
 | 	t = READ_ONCE(rdp->nocb_gp_kthread); | 
 | 	if (rcu_nocb_poll || !t) { | 
 | 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 				    TPS("WakeNotPoll")); | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		return; | 
 | 	} | 
 | 	// Need to actually to a wakeup. | 
 | 	len = rcu_segcblist_n_cbs(&rdp->cblist); | 
 | 	if (was_alldone) { | 
 | 		rdp->qlen_last_fqs_check = len; | 
 | 		if (!irqs_disabled_flags(flags)) { | 
 | 			/* ... if queue was empty ... */ | 
 | 			wake_nocb_gp(rdp, false, flags); | 
 | 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 					    TPS("WakeEmpty")); | 
 | 		} else { | 
 | 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE, | 
 | 					   TPS("WakeEmptyIsDeferred")); | 
 | 			rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		} | 
 | 	} else if (len > rdp->qlen_last_fqs_check + qhimark) { | 
 | 		/* ... or if many callbacks queued. */ | 
 | 		rdp->qlen_last_fqs_check = len; | 
 | 		j = jiffies; | 
 | 		if (j != rdp->nocb_gp_adv_time && | 
 | 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | 
 | 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) { | 
 | 			rcu_advance_cbs_nowake(rdp->mynode, rdp); | 
 | 			rdp->nocb_gp_adv_time = j; | 
 | 		} | 
 | 		smp_mb(); /* Enqueue before timer_pending(). */ | 
 | 		if ((rdp->nocb_cb_sleep || | 
 | 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) && | 
 | 		    !timer_pending(&rdp->nocb_bypass_timer)) | 
 | 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE, | 
 | 					   TPS("WakeOvfIsDeferred")); | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 	} else { | 
 | 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot")); | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 	} | 
 | 	return; | 
 | } | 
 |  | 
 | /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */ | 
 | static void do_nocb_bypass_wakeup_timer(struct timer_list *t) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer); | 
 |  | 
 | 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer")); | 
 | 	rcu_nocb_lock_irqsave(rdp, flags); | 
 | 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */ | 
 | 	__call_rcu_nocb_wake(rdp, true, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * No-CBs GP kthreads come here to wait for additional callbacks to show up | 
 |  * or for grace periods to end. | 
 |  */ | 
 | static void nocb_gp_wait(struct rcu_data *my_rdp) | 
 | { | 
 | 	bool bypass = false; | 
 | 	long bypass_ncbs; | 
 | 	int __maybe_unused cpu = my_rdp->cpu; | 
 | 	unsigned long cur_gp_seq; | 
 | 	unsigned long flags; | 
 | 	bool gotcbs = false; | 
 | 	unsigned long j = jiffies; | 
 | 	bool needwait_gp = false; // This prevents actual uninitialized use. | 
 | 	bool needwake; | 
 | 	bool needwake_gp; | 
 | 	struct rcu_data *rdp; | 
 | 	struct rcu_node *rnp; | 
 | 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning. | 
 | 	bool wasempty = false; | 
 |  | 
 | 	/* | 
 | 	 * Each pass through the following loop checks for CBs and for the | 
 | 	 * nearest grace period (if any) to wait for next.  The CB kthreads | 
 | 	 * and the global grace-period kthread are awakened if needed. | 
 | 	 */ | 
 | 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) { | 
 | 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check")); | 
 | 		rcu_nocb_lock_irqsave(rdp, flags); | 
 | 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | 
 | 		if (bypass_ncbs && | 
 | 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) || | 
 | 		     bypass_ncbs > 2 * qhimark)) { | 
 | 			// Bypass full or old, so flush it. | 
 | 			(void)rcu_nocb_try_flush_bypass(rdp, j); | 
 | 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass); | 
 | 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) { | 
 | 			rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 			continue; /* No callbacks here, try next. */ | 
 | 		} | 
 | 		if (bypass_ncbs) { | 
 | 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 					    TPS("Bypass")); | 
 | 			bypass = true; | 
 | 		} | 
 | 		rnp = rdp->mynode; | 
 | 		if (bypass) {  // Avoid race with first bypass CB. | 
 | 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, | 
 | 				   RCU_NOCB_WAKE_NOT); | 
 | 			del_timer(&my_rdp->nocb_timer); | 
 | 		} | 
 | 		// Advance callbacks if helpful and low contention. | 
 | 		needwake_gp = false; | 
 | 		if (!rcu_segcblist_restempty(&rdp->cblist, | 
 | 					     RCU_NEXT_READY_TAIL) || | 
 | 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | 
 | 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) { | 
 | 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ | 
 | 			needwake_gp = rcu_advance_cbs(rnp, rdp); | 
 | 			wasempty = rcu_segcblist_restempty(&rdp->cblist, | 
 | 							   RCU_NEXT_READY_TAIL); | 
 | 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */ | 
 | 		} | 
 | 		// Need to wait on some grace period? | 
 | 		WARN_ON_ONCE(wasempty && | 
 | 			     !rcu_segcblist_restempty(&rdp->cblist, | 
 | 						      RCU_NEXT_READY_TAIL)); | 
 | 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) { | 
 | 			if (!needwait_gp || | 
 | 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq)) | 
 | 				wait_gp_seq = cur_gp_seq; | 
 | 			needwait_gp = true; | 
 | 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, | 
 | 					    TPS("NeedWaitGP")); | 
 | 		} | 
 | 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) { | 
 | 			needwake = rdp->nocb_cb_sleep; | 
 | 			WRITE_ONCE(rdp->nocb_cb_sleep, false); | 
 | 			smp_mb(); /* CB invocation -after- GP end. */ | 
 | 		} else { | 
 | 			needwake = false; | 
 | 		} | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		if (needwake) { | 
 | 			swake_up_one(&rdp->nocb_cb_wq); | 
 | 			gotcbs = true; | 
 | 		} | 
 | 		if (needwake_gp) | 
 | 			rcu_gp_kthread_wake(); | 
 | 	} | 
 |  | 
 | 	my_rdp->nocb_gp_bypass = bypass; | 
 | 	my_rdp->nocb_gp_gp = needwait_gp; | 
 | 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0; | 
 | 	if (bypass && !rcu_nocb_poll) { | 
 | 		// At least one child with non-empty ->nocb_bypass, so set | 
 | 		// timer in order to avoid stranding its callbacks. | 
 | 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); | 
 | 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2); | 
 | 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); | 
 | 	} | 
 | 	if (rcu_nocb_poll) { | 
 | 		/* Polling, so trace if first poll in the series. */ | 
 | 		if (gotcbs) | 
 | 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll")); | 
 | 		schedule_timeout_interruptible(1); | 
 | 	} else if (!needwait_gp) { | 
 | 		/* Wait for callbacks to appear. */ | 
 | 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep")); | 
 | 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq, | 
 | 				!READ_ONCE(my_rdp->nocb_gp_sleep)); | 
 | 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep")); | 
 | 	} else { | 
 | 		rnp = my_rdp->mynode; | 
 | 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait")); | 
 | 		swait_event_interruptible_exclusive( | 
 | 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1], | 
 | 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) || | 
 | 			!READ_ONCE(my_rdp->nocb_gp_sleep)); | 
 | 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait")); | 
 | 	} | 
 | 	if (!rcu_nocb_poll) { | 
 | 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags); | 
 | 		if (bypass) | 
 | 			del_timer(&my_rdp->nocb_bypass_timer); | 
 | 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true); | 
 | 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags); | 
 | 	} | 
 | 	my_rdp->nocb_gp_seq = -1; | 
 | 	WARN_ON(signal_pending(current)); | 
 | } | 
 |  | 
 | /* | 
 |  * No-CBs grace-period-wait kthread.  There is one of these per group | 
 |  * of CPUs, but only once at least one CPU in that group has come online | 
 |  * at least once since boot.  This kthread checks for newly posted | 
 |  * callbacks from any of the CPUs it is responsible for, waits for a | 
 |  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances | 
 |  * that then have callback-invocation work to do. | 
 |  */ | 
 | static int rcu_nocb_gp_kthread(void *arg) | 
 | { | 
 | 	struct rcu_data *rdp = arg; | 
 |  | 
 | 	for (;;) { | 
 | 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1); | 
 | 		nocb_gp_wait(rdp); | 
 | 		cond_resched_tasks_rcu_qs(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Invoke any ready callbacks from the corresponding no-CBs CPU, | 
 |  * then, if there are no more, wait for more to appear. | 
 |  */ | 
 | static void nocb_cb_wait(struct rcu_data *rdp) | 
 | { | 
 | 	unsigned long cur_gp_seq; | 
 | 	unsigned long flags; | 
 | 	bool needwake_gp = false; | 
 | 	struct rcu_node *rnp = rdp->mynode; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	rcu_momentary_dyntick_idle(); | 
 | 	local_irq_restore(flags); | 
 | 	local_bh_disable(); | 
 | 	rcu_do_batch(rdp); | 
 | 	local_bh_enable(); | 
 | 	lockdep_assert_irqs_enabled(); | 
 | 	rcu_nocb_lock_irqsave(rdp, flags); | 
 | 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) && | 
 | 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) && | 
 | 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */ | 
 | 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp); | 
 | 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ | 
 | 	} | 
 | 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) { | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		if (needwake_gp) | 
 | 			rcu_gp_kthread_wake(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep")); | 
 | 	WRITE_ONCE(rdp->nocb_cb_sleep, true); | 
 | 	rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 	if (needwake_gp) | 
 | 		rcu_gp_kthread_wake(); | 
 | 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq, | 
 | 				 !READ_ONCE(rdp->nocb_cb_sleep)); | 
 | 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */ | 
 | 		/* ^^^ Ensure CB invocation follows _sleep test. */ | 
 | 		return; | 
 | 	} | 
 | 	WARN_ON(signal_pending(current)); | 
 | 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty")); | 
 | } | 
 |  | 
 | /* | 
 |  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke | 
 |  * nocb_cb_wait() to do the dirty work. | 
 |  */ | 
 | static int rcu_nocb_cb_kthread(void *arg) | 
 | { | 
 | 	struct rcu_data *rdp = arg; | 
 |  | 
 | 	// Each pass through this loop does one callback batch, and, | 
 | 	// if there are no more ready callbacks, waits for them. | 
 | 	for (;;) { | 
 | 		nocb_cb_wait(rdp); | 
 | 		cond_resched_tasks_rcu_qs(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Is a deferred wakeup of rcu_nocb_kthread() required? */ | 
 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) | 
 | { | 
 | 	return READ_ONCE(rdp->nocb_defer_wakeup); | 
 | } | 
 |  | 
 | /* Do a deferred wakeup of rcu_nocb_kthread(). */ | 
 | static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ndw; | 
 |  | 
 | 	rcu_nocb_lock_irqsave(rdp, flags); | 
 | 	if (!rcu_nocb_need_deferred_wakeup(rdp)) { | 
 | 		rcu_nocb_unlock_irqrestore(rdp, flags); | 
 | 		return; | 
 | 	} | 
 | 	ndw = READ_ONCE(rdp->nocb_defer_wakeup); | 
 | 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT); | 
 | 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags); | 
 | 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake")); | 
 | } | 
 |  | 
 | /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */ | 
 | static void do_nocb_deferred_wakeup_timer(struct timer_list *t) | 
 | { | 
 | 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer); | 
 |  | 
 | 	do_nocb_deferred_wakeup_common(rdp); | 
 | } | 
 |  | 
 | /* | 
 |  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath. | 
 |  * This means we do an inexact common-case check.  Note that if | 
 |  * we miss, ->nocb_timer will eventually clean things up. | 
 |  */ | 
 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) | 
 | { | 
 | 	if (rcu_nocb_need_deferred_wakeup(rdp)) | 
 | 		do_nocb_deferred_wakeup_common(rdp); | 
 | } | 
 |  | 
 | void __init rcu_init_nohz(void) | 
 | { | 
 | 	int cpu; | 
 | 	bool need_rcu_nocb_mask = false; | 
 | 	struct rcu_data *rdp; | 
 |  | 
 | #if defined(CONFIG_NO_HZ_FULL) | 
 | 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask)) | 
 | 		need_rcu_nocb_mask = true; | 
 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ | 
 |  | 
 | 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) { | 
 | 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) { | 
 | 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n"); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	if (!cpumask_available(rcu_nocb_mask)) | 
 | 		return; | 
 |  | 
 | #if defined(CONFIG_NO_HZ_FULL) | 
 | 	if (tick_nohz_full_running) | 
 | 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask); | 
 | #endif /* #if defined(CONFIG_NO_HZ_FULL) */ | 
 |  | 
 | 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) { | 
 | 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n"); | 
 | 		cpumask_and(rcu_nocb_mask, cpu_possible_mask, | 
 | 			    rcu_nocb_mask); | 
 | 	} | 
 | 	if (cpumask_empty(rcu_nocb_mask)) | 
 | 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n"); | 
 | 	else | 
 | 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n", | 
 | 			cpumask_pr_args(rcu_nocb_mask)); | 
 | 	if (rcu_nocb_poll) | 
 | 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n"); | 
 |  | 
 | 	for_each_cpu(cpu, rcu_nocb_mask) { | 
 | 		rdp = per_cpu_ptr(&rcu_data, cpu); | 
 | 		if (rcu_segcblist_empty(&rdp->cblist)) | 
 | 			rcu_segcblist_init(&rdp->cblist); | 
 | 		rcu_segcblist_offload(&rdp->cblist); | 
 | 	} | 
 | 	rcu_organize_nocb_kthreads(); | 
 | } | 
 |  | 
 | /* Initialize per-rcu_data variables for no-CBs CPUs. */ | 
 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) | 
 | { | 
 | 	init_swait_queue_head(&rdp->nocb_cb_wq); | 
 | 	init_swait_queue_head(&rdp->nocb_gp_wq); | 
 | 	raw_spin_lock_init(&rdp->nocb_lock); | 
 | 	raw_spin_lock_init(&rdp->nocb_bypass_lock); | 
 | 	raw_spin_lock_init(&rdp->nocb_gp_lock); | 
 | 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0); | 
 | 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0); | 
 | 	rcu_cblist_init(&rdp->nocb_bypass); | 
 | } | 
 |  | 
 | /* | 
 |  * If the specified CPU is a no-CBs CPU that does not already have its | 
 |  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread | 
 |  * for this CPU's group has not yet been created, spawn it as well. | 
 |  */ | 
 | static void rcu_spawn_one_nocb_kthread(int cpu) | 
 | { | 
 | 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); | 
 | 	struct rcu_data *rdp_gp; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	/* | 
 | 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread, | 
 | 	 * then nothing to do. | 
 | 	 */ | 
 | 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread) | 
 | 		return; | 
 |  | 
 | 	/* If we didn't spawn the GP kthread first, reorganize! */ | 
 | 	rdp_gp = rdp->nocb_gp_rdp; | 
 | 	if (!rdp_gp->nocb_gp_kthread) { | 
 | 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp, | 
 | 				"rcuog/%d", rdp_gp->cpu); | 
 | 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) | 
 | 			return; | 
 | 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t); | 
 | 	} | 
 |  | 
 | 	/* Spawn the kthread for this CPU. */ | 
 | 	t = kthread_run(rcu_nocb_cb_kthread, rdp, | 
 | 			"rcuo%c/%d", rcu_state.abbr, cpu); | 
 | 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__)) | 
 | 		return; | 
 | 	WRITE_ONCE(rdp->nocb_cb_kthread, t); | 
 | 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread); | 
 | } | 
 |  | 
 | /* | 
 |  * If the specified CPU is a no-CBs CPU that does not already have its | 
 |  * rcuo kthread, spawn it. | 
 |  */ | 
 | static void rcu_spawn_cpu_nocb_kthread(int cpu) | 
 | { | 
 | 	if (rcu_scheduler_fully_active) | 
 | 		rcu_spawn_one_nocb_kthread(cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Once the scheduler is running, spawn rcuo kthreads for all online | 
 |  * no-CBs CPUs.  This assumes that the early_initcall()s happen before | 
 |  * non-boot CPUs come online -- if this changes, we will need to add | 
 |  * some mutual exclusion. | 
 |  */ | 
 | static void __init rcu_spawn_nocb_kthreads(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		rcu_spawn_cpu_nocb_kthread(cpu); | 
 | } | 
 |  | 
 | /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */ | 
 | static int rcu_nocb_gp_stride = -1; | 
 | module_param(rcu_nocb_gp_stride, int, 0444); | 
 |  | 
 | /* | 
 |  * Initialize GP-CB relationships for all no-CBs CPU. | 
 |  */ | 
 | static void __init rcu_organize_nocb_kthreads(void) | 
 | { | 
 | 	int cpu; | 
 | 	bool firsttime = true; | 
 | 	bool gotnocbs = false; | 
 | 	bool gotnocbscbs = true; | 
 | 	int ls = rcu_nocb_gp_stride; | 
 | 	int nl = 0;  /* Next GP kthread. */ | 
 | 	struct rcu_data *rdp; | 
 | 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */ | 
 | 	struct rcu_data *rdp_prev = NULL; | 
 |  | 
 | 	if (!cpumask_available(rcu_nocb_mask)) | 
 | 		return; | 
 | 	if (ls == -1) { | 
 | 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids); | 
 | 		rcu_nocb_gp_stride = ls; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Each pass through this loop sets up one rcu_data structure. | 
 | 	 * Should the corresponding CPU come online in the future, then | 
 | 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads. | 
 | 	 */ | 
 | 	for_each_cpu(cpu, rcu_nocb_mask) { | 
 | 		rdp = per_cpu_ptr(&rcu_data, cpu); | 
 | 		if (rdp->cpu >= nl) { | 
 | 			/* New GP kthread, set up for CBs & next GP. */ | 
 | 			gotnocbs = true; | 
 | 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls; | 
 | 			rdp->nocb_gp_rdp = rdp; | 
 | 			rdp_gp = rdp; | 
 | 			if (dump_tree) { | 
 | 				if (!firsttime) | 
 | 					pr_cont("%s\n", gotnocbscbs | 
 | 							? "" : " (self only)"); | 
 | 				gotnocbscbs = false; | 
 | 				firsttime = false; | 
 | 				pr_alert("%s: No-CB GP kthread CPU %d:", | 
 | 					 __func__, cpu); | 
 | 			} | 
 | 		} else { | 
 | 			/* Another CB kthread, link to previous GP kthread. */ | 
 | 			gotnocbscbs = true; | 
 | 			rdp->nocb_gp_rdp = rdp_gp; | 
 | 			rdp_prev->nocb_next_cb_rdp = rdp; | 
 | 			if (dump_tree) | 
 | 				pr_cont(" %d", cpu); | 
 | 		} | 
 | 		rdp_prev = rdp; | 
 | 	} | 
 | 	if (gotnocbs && dump_tree) | 
 | 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)"); | 
 | } | 
 |  | 
 | /* | 
 |  * Bind the current task to the offloaded CPUs.  If there are no offloaded | 
 |  * CPUs, leave the task unbound.  Splat if the bind attempt fails. | 
 |  */ | 
 | void rcu_bind_current_to_nocb(void) | 
 | { | 
 | 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask)) | 
 | 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb); | 
 |  | 
 | /* | 
 |  * Dump out nocb grace-period kthread state for the specified rcu_data | 
 |  * structure. | 
 |  */ | 
 | static void show_rcu_nocb_gp_state(struct rcu_data *rdp) | 
 | { | 
 | 	struct rcu_node *rnp = rdp->mynode; | 
 |  | 
 | 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n", | 
 | 		rdp->cpu, | 
 | 		"kK"[!!rdp->nocb_gp_kthread], | 
 | 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)], | 
 | 		"dD"[!!rdp->nocb_defer_wakeup], | 
 | 		"tT"[timer_pending(&rdp->nocb_timer)], | 
 | 		"bB"[timer_pending(&rdp->nocb_bypass_timer)], | 
 | 		"sS"[!!rdp->nocb_gp_sleep], | 
 | 		".W"[swait_active(&rdp->nocb_gp_wq)], | 
 | 		".W"[swait_active(&rnp->nocb_gp_wq[0])], | 
 | 		".W"[swait_active(&rnp->nocb_gp_wq[1])], | 
 | 		".B"[!!rdp->nocb_gp_bypass], | 
 | 		".G"[!!rdp->nocb_gp_gp], | 
 | 		(long)rdp->nocb_gp_seq, | 
 | 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops)); | 
 | } | 
 |  | 
 | /* Dump out nocb kthread state for the specified rcu_data structure. */ | 
 | static void show_rcu_nocb_state(struct rcu_data *rdp) | 
 | { | 
 | 	struct rcu_segcblist *rsclp = &rdp->cblist; | 
 | 	bool waslocked; | 
 | 	bool wastimer; | 
 | 	bool wassleep; | 
 |  | 
 | 	if (rdp->nocb_gp_rdp == rdp) | 
 | 		show_rcu_nocb_gp_state(rdp); | 
 |  | 
 | 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n", | 
 | 		rdp->cpu, rdp->nocb_gp_rdp->cpu, | 
 | 		"kK"[!!rdp->nocb_cb_kthread], | 
 | 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)], | 
 | 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)], | 
 | 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)], | 
 | 		"sS"[!!rdp->nocb_cb_sleep], | 
 | 		".W"[swait_active(&rdp->nocb_cb_wq)], | 
 | 		jiffies - rdp->nocb_bypass_first, | 
 | 		jiffies - rdp->nocb_nobypass_last, | 
 | 		rdp->nocb_nobypass_count, | 
 | 		".D"[rcu_segcblist_ready_cbs(rsclp)], | 
 | 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)], | 
 | 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)], | 
 | 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)], | 
 | 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)], | 
 | 		rcu_segcblist_n_cbs(&rdp->cblist)); | 
 |  | 
 | 	/* It is OK for GP kthreads to have GP state. */ | 
 | 	if (rdp->nocb_gp_rdp == rdp) | 
 | 		return; | 
 |  | 
 | 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock); | 
 | 	wastimer = timer_pending(&rdp->nocb_timer); | 
 | 	wassleep = swait_active(&rdp->nocb_gp_wq); | 
 | 	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep && | 
 | 	    !waslocked && !wastimer && !wassleep) | 
 | 		return;  /* Nothing untowards. */ | 
 |  | 
 | 	pr_info("   !!! %c%c%c%c %c\n", | 
 | 		"lL"[waslocked], | 
 | 		"dD"[!!rdp->nocb_defer_wakeup], | 
 | 		"tT"[wastimer], | 
 | 		"sS"[!!rdp->nocb_gp_sleep], | 
 | 		".W"[wassleep]); | 
 | } | 
 |  | 
 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ | 
 |  | 
 | /* No ->nocb_lock to acquire.  */ | 
 | static void rcu_nocb_lock(struct rcu_data *rdp) | 
 | { | 
 | } | 
 |  | 
 | /* No ->nocb_lock to release.  */ | 
 | static void rcu_nocb_unlock(struct rcu_data *rdp) | 
 | { | 
 | } | 
 |  | 
 | /* No ->nocb_lock to release.  */ | 
 | static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp, | 
 | 				       unsigned long flags) | 
 | { | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Lockdep check that ->cblist may be safely accessed. */ | 
 | static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp) | 
 | { | 
 | 	lockdep_assert_irqs_disabled(); | 
 | } | 
 |  | 
 | static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq) | 
 | { | 
 | } | 
 |  | 
 | static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void rcu_init_one_nocb(struct rcu_node *rnp) | 
 | { | 
 | } | 
 |  | 
 | static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | 
 | 				  unsigned long j) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp, | 
 | 				bool *was_alldone, unsigned long flags) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty, | 
 | 				 unsigned long flags) | 
 | { | 
 | 	WARN_ON_ONCE(1);  /* Should be dead code! */ | 
 | } | 
 |  | 
 | static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp) | 
 | { | 
 | } | 
 |  | 
 | static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static void do_nocb_deferred_wakeup(struct rcu_data *rdp) | 
 | { | 
 | } | 
 |  | 
 | static void rcu_spawn_cpu_nocb_kthread(int cpu) | 
 | { | 
 | } | 
 |  | 
 | static void __init rcu_spawn_nocb_kthreads(void) | 
 | { | 
 | } | 
 |  | 
 | static void show_rcu_nocb_state(struct rcu_data *rdp) | 
 | { | 
 | } | 
 |  | 
 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ | 
 |  | 
 | /* | 
 |  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the | 
 |  * grace-period kthread will do force_quiescent_state() processing? | 
 |  * The idea is to avoid waking up RCU core processing on such a | 
 |  * CPU unless the grace period has extended for too long. | 
 |  * | 
 |  * This code relies on the fact that all NO_HZ_FULL CPUs are also | 
 |  * CONFIG_RCU_NOCB_CPU CPUs. | 
 |  */ | 
 | static bool rcu_nohz_full_cpu(void) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_FULL | 
 | 	if (tick_nohz_full_cpu(smp_processor_id()) && | 
 | 	    (!rcu_gp_in_progress() || | 
 | 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ))) | 
 | 		return true; | 
 | #endif /* #ifdef CONFIG_NO_HZ_FULL */ | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Bind the RCU grace-period kthreads to the housekeeping CPU. | 
 |  */ | 
 | static void rcu_bind_gp_kthread(void) | 
 | { | 
 | 	if (!tick_nohz_full_enabled()) | 
 | 		return; | 
 | 	housekeeping_affine(current, HK_FLAG_RCU); | 
 | } | 
 |  | 
 | /* Record the current task on dyntick-idle entry. */ | 
 | static void rcu_dynticks_task_enter(void) | 
 | { | 
 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) | 
 | 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); | 
 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ | 
 | } | 
 |  | 
 | /* Record no current task on dyntick-idle exit. */ | 
 | static void rcu_dynticks_task_exit(void) | 
 | { | 
 | #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) | 
 | 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); | 
 | #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ | 
 | } |