|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * | 
|  | *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet | 
|  | *     & Swedish University of Agricultural Sciences. | 
|  | * | 
|  | *   Jens Laas <jens.laas@data.slu.se> Swedish University of | 
|  | *     Agricultural Sciences. | 
|  | * | 
|  | *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet | 
|  | * | 
|  | * This work is based on the LPC-trie which is originally described in: | 
|  | * | 
|  | * An experimental study of compression methods for dynamic tries | 
|  | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | 
|  | * https://www.csc.kth.se/~snilsson/software/dyntrie2/ | 
|  | * | 
|  | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | 
|  | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | 
|  | * | 
|  | * Code from fib_hash has been reused which includes the following header: | 
|  | * | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		IPv4 FIB: lookup engine and maintenance routines. | 
|  | * | 
|  | * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
|  | * | 
|  | * Substantial contributions to this work comes from: | 
|  | * | 
|  | *		David S. Miller, <davem@davemloft.net> | 
|  | *		Stephen Hemminger <shemminger@osdl.org> | 
|  | *		Paul E. McKenney <paulmck@us.ibm.com> | 
|  | *		Patrick McHardy <kaber@trash.net> | 
|  | */ | 
|  | #include <linux/cache.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/inetdevice.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netlink.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/protocol.h> | 
|  | #include <net/route.h> | 
|  | #include <net/tcp.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/ip_fib.h> | 
|  | #include <net/fib_notifier.h> | 
|  | #include <trace/events/fib.h> | 
|  | #include "fib_lookup.h" | 
|  |  | 
|  | static int call_fib_entry_notifier(struct notifier_block *nb, | 
|  | enum fib_event_type event_type, u32 dst, | 
|  | int dst_len, struct fib_alias *fa, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct fib_entry_notifier_info info = { | 
|  | .info.extack = extack, | 
|  | .dst = dst, | 
|  | .dst_len = dst_len, | 
|  | .fi = fa->fa_info, | 
|  | .tos = fa->fa_tos, | 
|  | .type = fa->fa_type, | 
|  | .tb_id = fa->tb_id, | 
|  | }; | 
|  | return call_fib4_notifier(nb, event_type, &info.info); | 
|  | } | 
|  |  | 
|  | static int call_fib_entry_notifiers(struct net *net, | 
|  | enum fib_event_type event_type, u32 dst, | 
|  | int dst_len, struct fib_alias *fa, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct fib_entry_notifier_info info = { | 
|  | .info.extack = extack, | 
|  | .dst = dst, | 
|  | .dst_len = dst_len, | 
|  | .fi = fa->fa_info, | 
|  | .tos = fa->fa_tos, | 
|  | .type = fa->fa_type, | 
|  | .tb_id = fa->tb_id, | 
|  | }; | 
|  | return call_fib4_notifiers(net, event_type, &info.info); | 
|  | } | 
|  |  | 
|  | #define MAX_STAT_DEPTH 32 | 
|  |  | 
|  | #define KEYLENGTH	(8*sizeof(t_key)) | 
|  | #define KEY_MAX		((t_key)~0) | 
|  |  | 
|  | typedef unsigned int t_key; | 
|  |  | 
|  | #define IS_TRIE(n)	((n)->pos >= KEYLENGTH) | 
|  | #define IS_TNODE(n)	((n)->bits) | 
|  | #define IS_LEAF(n)	(!(n)->bits) | 
|  |  | 
|  | struct key_vector { | 
|  | t_key key; | 
|  | unsigned char pos;		/* 2log(KEYLENGTH) bits needed */ | 
|  | unsigned char bits;		/* 2log(KEYLENGTH) bits needed */ | 
|  | unsigned char slen; | 
|  | union { | 
|  | /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ | 
|  | struct hlist_head leaf; | 
|  | /* This array is valid if (pos | bits) > 0 (TNODE) */ | 
|  | struct key_vector __rcu *tnode[0]; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | struct tnode { | 
|  | struct rcu_head rcu; | 
|  | t_key empty_children;		/* KEYLENGTH bits needed */ | 
|  | t_key full_children;		/* KEYLENGTH bits needed */ | 
|  | struct key_vector __rcu *parent; | 
|  | struct key_vector kv[1]; | 
|  | #define tn_bits kv[0].bits | 
|  | }; | 
|  |  | 
|  | #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n]) | 
|  | #define LEAF_SIZE	TNODE_SIZE(1) | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie_use_stats { | 
|  | unsigned int gets; | 
|  | unsigned int backtrack; | 
|  | unsigned int semantic_match_passed; | 
|  | unsigned int semantic_match_miss; | 
|  | unsigned int null_node_hit; | 
|  | unsigned int resize_node_skipped; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | struct trie_stat { | 
|  | unsigned int totdepth; | 
|  | unsigned int maxdepth; | 
|  | unsigned int tnodes; | 
|  | unsigned int leaves; | 
|  | unsigned int nullpointers; | 
|  | unsigned int prefixes; | 
|  | unsigned int nodesizes[MAX_STAT_DEPTH]; | 
|  | }; | 
|  |  | 
|  | struct trie { | 
|  | struct key_vector kv[1]; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie_use_stats __percpu *stats; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static struct key_vector *resize(struct trie *t, struct key_vector *tn); | 
|  | static unsigned int tnode_free_size; | 
|  |  | 
|  | /* | 
|  | * synchronize_rcu after call_rcu for outstanding dirty memory; it should be | 
|  | * especially useful before resizing the root node with PREEMPT_NONE configs; | 
|  | * the value was obtained experimentally, aiming to avoid visible slowdown. | 
|  | */ | 
|  | unsigned int sysctl_fib_sync_mem = 512 * 1024; | 
|  | unsigned int sysctl_fib_sync_mem_min = 64 * 1024; | 
|  | unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; | 
|  |  | 
|  | static struct kmem_cache *fn_alias_kmem __ro_after_init; | 
|  | static struct kmem_cache *trie_leaf_kmem __ro_after_init; | 
|  |  | 
|  | static inline struct tnode *tn_info(struct key_vector *kv) | 
|  | { | 
|  | return container_of(kv, struct tnode, kv[0]); | 
|  | } | 
|  |  | 
|  | /* caller must hold RTNL */ | 
|  | #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) | 
|  | #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) | 
|  |  | 
|  | /* caller must hold RCU read lock or RTNL */ | 
|  | #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) | 
|  | #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) | 
|  |  | 
|  | /* wrapper for rcu_assign_pointer */ | 
|  | static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) | 
|  | { | 
|  | if (n) | 
|  | rcu_assign_pointer(tn_info(n)->parent, tp); | 
|  | } | 
|  |  | 
|  | #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) | 
|  |  | 
|  | /* This provides us with the number of children in this node, in the case of a | 
|  | * leaf this will return 0 meaning none of the children are accessible. | 
|  | */ | 
|  | static inline unsigned long child_length(const struct key_vector *tn) | 
|  | { | 
|  | return (1ul << tn->bits) & ~(1ul); | 
|  | } | 
|  |  | 
|  | #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) | 
|  |  | 
|  | static inline unsigned long get_index(t_key key, struct key_vector *kv) | 
|  | { | 
|  | unsigned long index = key ^ kv->key; | 
|  |  | 
|  | if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) | 
|  | return 0; | 
|  |  | 
|  | return index >> kv->pos; | 
|  | } | 
|  |  | 
|  | /* To understand this stuff, an understanding of keys and all their bits is | 
|  | * necessary. Every node in the trie has a key associated with it, but not | 
|  | * all of the bits in that key are significant. | 
|  | * | 
|  | * Consider a node 'n' and its parent 'tp'. | 
|  | * | 
|  | * If n is a leaf, every bit in its key is significant. Its presence is | 
|  | * necessitated by path compression, since during a tree traversal (when | 
|  | * searching for a leaf - unless we are doing an insertion) we will completely | 
|  | * ignore all skipped bits we encounter. Thus we need to verify, at the end of | 
|  | * a potentially successful search, that we have indeed been walking the | 
|  | * correct key path. | 
|  | * | 
|  | * Note that we can never "miss" the correct key in the tree if present by | 
|  | * following the wrong path. Path compression ensures that segments of the key | 
|  | * that are the same for all keys with a given prefix are skipped, but the | 
|  | * skipped part *is* identical for each node in the subtrie below the skipped | 
|  | * bit! trie_insert() in this implementation takes care of that. | 
|  | * | 
|  | * if n is an internal node - a 'tnode' here, the various parts of its key | 
|  | * have many different meanings. | 
|  | * | 
|  | * Example: | 
|  | * _________________________________________________________________ | 
|  | * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | 
|  | * ----------------------------------------------------------------- | 
|  | *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16 | 
|  | * | 
|  | * _________________________________________________________________ | 
|  | * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | 
|  | * ----------------------------------------------------------------- | 
|  | *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0 | 
|  | * | 
|  | * tp->pos = 22 | 
|  | * tp->bits = 3 | 
|  | * n->pos = 13 | 
|  | * n->bits = 4 | 
|  | * | 
|  | * First, let's just ignore the bits that come before the parent tp, that is | 
|  | * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this | 
|  | * point we do not use them for anything. | 
|  | * | 
|  | * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | 
|  | * index into the parent's child array. That is, they will be used to find | 
|  | * 'n' among tp's children. | 
|  | * | 
|  | * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits | 
|  | * for the node n. | 
|  | * | 
|  | * All the bits we have seen so far are significant to the node n. The rest | 
|  | * of the bits are really not needed or indeed known in n->key. | 
|  | * | 
|  | * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | 
|  | * n's child array, and will of course be different for each child. | 
|  | * | 
|  | * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown | 
|  | * at this point. | 
|  | */ | 
|  |  | 
|  | static const int halve_threshold = 25; | 
|  | static const int inflate_threshold = 50; | 
|  | static const int halve_threshold_root = 15; | 
|  | static const int inflate_threshold_root = 30; | 
|  |  | 
|  | static void __alias_free_mem(struct rcu_head *head) | 
|  | { | 
|  | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); | 
|  | kmem_cache_free(fn_alias_kmem, fa); | 
|  | } | 
|  |  | 
|  | static inline void alias_free_mem_rcu(struct fib_alias *fa) | 
|  | { | 
|  | call_rcu(&fa->rcu, __alias_free_mem); | 
|  | } | 
|  |  | 
|  | #define TNODE_VMALLOC_MAX \ | 
|  | ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) | 
|  |  | 
|  | static void __node_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct tnode *n = container_of(head, struct tnode, rcu); | 
|  |  | 
|  | if (!n->tn_bits) | 
|  | kmem_cache_free(trie_leaf_kmem, n); | 
|  | else | 
|  | kvfree(n); | 
|  | } | 
|  |  | 
|  | #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) | 
|  |  | 
|  | static struct tnode *tnode_alloc(int bits) | 
|  | { | 
|  | size_t size; | 
|  |  | 
|  | /* verify bits is within bounds */ | 
|  | if (bits > TNODE_VMALLOC_MAX) | 
|  | return NULL; | 
|  |  | 
|  | /* determine size and verify it is non-zero and didn't overflow */ | 
|  | size = TNODE_SIZE(1ul << bits); | 
|  |  | 
|  | if (size <= PAGE_SIZE) | 
|  | return kzalloc(size, GFP_KERNEL); | 
|  | else | 
|  | return vzalloc(size); | 
|  | } | 
|  |  | 
|  | static inline void empty_child_inc(struct key_vector *n) | 
|  | { | 
|  | tn_info(n)->empty_children++; | 
|  |  | 
|  | if (!tn_info(n)->empty_children) | 
|  | tn_info(n)->full_children++; | 
|  | } | 
|  |  | 
|  | static inline void empty_child_dec(struct key_vector *n) | 
|  | { | 
|  | if (!tn_info(n)->empty_children) | 
|  | tn_info(n)->full_children--; | 
|  |  | 
|  | tn_info(n)->empty_children--; | 
|  | } | 
|  |  | 
|  | static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) | 
|  | { | 
|  | struct key_vector *l; | 
|  | struct tnode *kv; | 
|  |  | 
|  | kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); | 
|  | if (!kv) | 
|  | return NULL; | 
|  |  | 
|  | /* initialize key vector */ | 
|  | l = kv->kv; | 
|  | l->key = key; | 
|  | l->pos = 0; | 
|  | l->bits = 0; | 
|  | l->slen = fa->fa_slen; | 
|  |  | 
|  | /* link leaf to fib alias */ | 
|  | INIT_HLIST_HEAD(&l->leaf); | 
|  | hlist_add_head(&fa->fa_list, &l->leaf); | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static struct key_vector *tnode_new(t_key key, int pos, int bits) | 
|  | { | 
|  | unsigned int shift = pos + bits; | 
|  | struct key_vector *tn; | 
|  | struct tnode *tnode; | 
|  |  | 
|  | /* verify bits and pos their msb bits clear and values are valid */ | 
|  | BUG_ON(!bits || (shift > KEYLENGTH)); | 
|  |  | 
|  | tnode = tnode_alloc(bits); | 
|  | if (!tnode) | 
|  | return NULL; | 
|  |  | 
|  | pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), | 
|  | sizeof(struct key_vector *) << bits); | 
|  |  | 
|  | if (bits == KEYLENGTH) | 
|  | tnode->full_children = 1; | 
|  | else | 
|  | tnode->empty_children = 1ul << bits; | 
|  |  | 
|  | tn = tnode->kv; | 
|  | tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; | 
|  | tn->pos = pos; | 
|  | tn->bits = bits; | 
|  | tn->slen = pos; | 
|  |  | 
|  | return tn; | 
|  | } | 
|  |  | 
|  | /* Check whether a tnode 'n' is "full", i.e. it is an internal node | 
|  | * and no bits are skipped. See discussion in dyntree paper p. 6 | 
|  | */ | 
|  | static inline int tnode_full(struct key_vector *tn, struct key_vector *n) | 
|  | { | 
|  | return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); | 
|  | } | 
|  |  | 
|  | /* Add a child at position i overwriting the old value. | 
|  | * Update the value of full_children and empty_children. | 
|  | */ | 
|  | static void put_child(struct key_vector *tn, unsigned long i, | 
|  | struct key_vector *n) | 
|  | { | 
|  | struct key_vector *chi = get_child(tn, i); | 
|  | int isfull, wasfull; | 
|  |  | 
|  | BUG_ON(i >= child_length(tn)); | 
|  |  | 
|  | /* update emptyChildren, overflow into fullChildren */ | 
|  | if (!n && chi) | 
|  | empty_child_inc(tn); | 
|  | if (n && !chi) | 
|  | empty_child_dec(tn); | 
|  |  | 
|  | /* update fullChildren */ | 
|  | wasfull = tnode_full(tn, chi); | 
|  | isfull = tnode_full(tn, n); | 
|  |  | 
|  | if (wasfull && !isfull) | 
|  | tn_info(tn)->full_children--; | 
|  | else if (!wasfull && isfull) | 
|  | tn_info(tn)->full_children++; | 
|  |  | 
|  | if (n && (tn->slen < n->slen)) | 
|  | tn->slen = n->slen; | 
|  |  | 
|  | rcu_assign_pointer(tn->tnode[i], n); | 
|  | } | 
|  |  | 
|  | static void update_children(struct key_vector *tn) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | /* update all of the child parent pointers */ | 
|  | for (i = child_length(tn); i;) { | 
|  | struct key_vector *inode = get_child(tn, --i); | 
|  |  | 
|  | if (!inode) | 
|  | continue; | 
|  |  | 
|  | /* Either update the children of a tnode that | 
|  | * already belongs to us or update the child | 
|  | * to point to ourselves. | 
|  | */ | 
|  | if (node_parent(inode) == tn) | 
|  | update_children(inode); | 
|  | else | 
|  | node_set_parent(inode, tn); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void put_child_root(struct key_vector *tp, t_key key, | 
|  | struct key_vector *n) | 
|  | { | 
|  | if (IS_TRIE(tp)) | 
|  | rcu_assign_pointer(tp->tnode[0], n); | 
|  | else | 
|  | put_child(tp, get_index(key, tp), n); | 
|  | } | 
|  |  | 
|  | static inline void tnode_free_init(struct key_vector *tn) | 
|  | { | 
|  | tn_info(tn)->rcu.next = NULL; | 
|  | } | 
|  |  | 
|  | static inline void tnode_free_append(struct key_vector *tn, | 
|  | struct key_vector *n) | 
|  | { | 
|  | tn_info(n)->rcu.next = tn_info(tn)->rcu.next; | 
|  | tn_info(tn)->rcu.next = &tn_info(n)->rcu; | 
|  | } | 
|  |  | 
|  | static void tnode_free(struct key_vector *tn) | 
|  | { | 
|  | struct callback_head *head = &tn_info(tn)->rcu; | 
|  |  | 
|  | while (head) { | 
|  | head = head->next; | 
|  | tnode_free_size += TNODE_SIZE(1ul << tn->bits); | 
|  | node_free(tn); | 
|  |  | 
|  | tn = container_of(head, struct tnode, rcu)->kv; | 
|  | } | 
|  |  | 
|  | if (tnode_free_size >= sysctl_fib_sync_mem) { | 
|  | tnode_free_size = 0; | 
|  | synchronize_rcu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct key_vector *replace(struct trie *t, | 
|  | struct key_vector *oldtnode, | 
|  | struct key_vector *tn) | 
|  | { | 
|  | struct key_vector *tp = node_parent(oldtnode); | 
|  | unsigned long i; | 
|  |  | 
|  | /* setup the parent pointer out of and back into this node */ | 
|  | NODE_INIT_PARENT(tn, tp); | 
|  | put_child_root(tp, tn->key, tn); | 
|  |  | 
|  | /* update all of the child parent pointers */ | 
|  | update_children(tn); | 
|  |  | 
|  | /* all pointers should be clean so we are done */ | 
|  | tnode_free(oldtnode); | 
|  |  | 
|  | /* resize children now that oldtnode is freed */ | 
|  | for (i = child_length(tn); i;) { | 
|  | struct key_vector *inode = get_child(tn, --i); | 
|  |  | 
|  | /* resize child node */ | 
|  | if (tnode_full(tn, inode)) | 
|  | tn = resize(t, inode); | 
|  | } | 
|  |  | 
|  | return tp; | 
|  | } | 
|  |  | 
|  | static struct key_vector *inflate(struct trie *t, | 
|  | struct key_vector *oldtnode) | 
|  | { | 
|  | struct key_vector *tn; | 
|  | unsigned long i; | 
|  | t_key m; | 
|  |  | 
|  | pr_debug("In inflate\n"); | 
|  |  | 
|  | tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); | 
|  | if (!tn) | 
|  | goto notnode; | 
|  |  | 
|  | /* prepare oldtnode to be freed */ | 
|  | tnode_free_init(oldtnode); | 
|  |  | 
|  | /* Assemble all of the pointers in our cluster, in this case that | 
|  | * represents all of the pointers out of our allocated nodes that | 
|  | * point to existing tnodes and the links between our allocated | 
|  | * nodes. | 
|  | */ | 
|  | for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { | 
|  | struct key_vector *inode = get_child(oldtnode, --i); | 
|  | struct key_vector *node0, *node1; | 
|  | unsigned long j, k; | 
|  |  | 
|  | /* An empty child */ | 
|  | if (!inode) | 
|  | continue; | 
|  |  | 
|  | /* A leaf or an internal node with skipped bits */ | 
|  | if (!tnode_full(oldtnode, inode)) { | 
|  | put_child(tn, get_index(inode->key, tn), inode); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* drop the node in the old tnode free list */ | 
|  | tnode_free_append(oldtnode, inode); | 
|  |  | 
|  | /* An internal node with two children */ | 
|  | if (inode->bits == 1) { | 
|  | put_child(tn, 2 * i + 1, get_child(inode, 1)); | 
|  | put_child(tn, 2 * i, get_child(inode, 0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We will replace this node 'inode' with two new | 
|  | * ones, 'node0' and 'node1', each with half of the | 
|  | * original children. The two new nodes will have | 
|  | * a position one bit further down the key and this | 
|  | * means that the "significant" part of their keys | 
|  | * (see the discussion near the top of this file) | 
|  | * will differ by one bit, which will be "0" in | 
|  | * node0's key and "1" in node1's key. Since we are | 
|  | * moving the key position by one step, the bit that | 
|  | * we are moving away from - the bit at position | 
|  | * (tn->pos) - is the one that will differ between | 
|  | * node0 and node1. So... we synthesize that bit in the | 
|  | * two new keys. | 
|  | */ | 
|  | node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); | 
|  | if (!node1) | 
|  | goto nomem; | 
|  | node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); | 
|  |  | 
|  | tnode_free_append(tn, node1); | 
|  | if (!node0) | 
|  | goto nomem; | 
|  | tnode_free_append(tn, node0); | 
|  |  | 
|  | /* populate child pointers in new nodes */ | 
|  | for (k = child_length(inode), j = k / 2; j;) { | 
|  | put_child(node1, --j, get_child(inode, --k)); | 
|  | put_child(node0, j, get_child(inode, j)); | 
|  | put_child(node1, --j, get_child(inode, --k)); | 
|  | put_child(node0, j, get_child(inode, j)); | 
|  | } | 
|  |  | 
|  | /* link new nodes to parent */ | 
|  | NODE_INIT_PARENT(node1, tn); | 
|  | NODE_INIT_PARENT(node0, tn); | 
|  |  | 
|  | /* link parent to nodes */ | 
|  | put_child(tn, 2 * i + 1, node1); | 
|  | put_child(tn, 2 * i, node0); | 
|  | } | 
|  |  | 
|  | /* setup the parent pointers into and out of this node */ | 
|  | return replace(t, oldtnode, tn); | 
|  | nomem: | 
|  | /* all pointers should be clean so we are done */ | 
|  | tnode_free(tn); | 
|  | notnode: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct key_vector *halve(struct trie *t, | 
|  | struct key_vector *oldtnode) | 
|  | { | 
|  | struct key_vector *tn; | 
|  | unsigned long i; | 
|  |  | 
|  | pr_debug("In halve\n"); | 
|  |  | 
|  | tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); | 
|  | if (!tn) | 
|  | goto notnode; | 
|  |  | 
|  | /* prepare oldtnode to be freed */ | 
|  | tnode_free_init(oldtnode); | 
|  |  | 
|  | /* Assemble all of the pointers in our cluster, in this case that | 
|  | * represents all of the pointers out of our allocated nodes that | 
|  | * point to existing tnodes and the links between our allocated | 
|  | * nodes. | 
|  | */ | 
|  | for (i = child_length(oldtnode); i;) { | 
|  | struct key_vector *node1 = get_child(oldtnode, --i); | 
|  | struct key_vector *node0 = get_child(oldtnode, --i); | 
|  | struct key_vector *inode; | 
|  |  | 
|  | /* At least one of the children is empty */ | 
|  | if (!node1 || !node0) { | 
|  | put_child(tn, i / 2, node1 ? : node0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Two nonempty children */ | 
|  | inode = tnode_new(node0->key, oldtnode->pos, 1); | 
|  | if (!inode) | 
|  | goto nomem; | 
|  | tnode_free_append(tn, inode); | 
|  |  | 
|  | /* initialize pointers out of node */ | 
|  | put_child(inode, 1, node1); | 
|  | put_child(inode, 0, node0); | 
|  | NODE_INIT_PARENT(inode, tn); | 
|  |  | 
|  | /* link parent to node */ | 
|  | put_child(tn, i / 2, inode); | 
|  | } | 
|  |  | 
|  | /* setup the parent pointers into and out of this node */ | 
|  | return replace(t, oldtnode, tn); | 
|  | nomem: | 
|  | /* all pointers should be clean so we are done */ | 
|  | tnode_free(tn); | 
|  | notnode: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct key_vector *collapse(struct trie *t, | 
|  | struct key_vector *oldtnode) | 
|  | { | 
|  | struct key_vector *n, *tp; | 
|  | unsigned long i; | 
|  |  | 
|  | /* scan the tnode looking for that one child that might still exist */ | 
|  | for (n = NULL, i = child_length(oldtnode); !n && i;) | 
|  | n = get_child(oldtnode, --i); | 
|  |  | 
|  | /* compress one level */ | 
|  | tp = node_parent(oldtnode); | 
|  | put_child_root(tp, oldtnode->key, n); | 
|  | node_set_parent(n, tp); | 
|  |  | 
|  | /* drop dead node */ | 
|  | node_free(oldtnode); | 
|  |  | 
|  | return tp; | 
|  | } | 
|  |  | 
|  | static unsigned char update_suffix(struct key_vector *tn) | 
|  | { | 
|  | unsigned char slen = tn->pos; | 
|  | unsigned long stride, i; | 
|  | unsigned char slen_max; | 
|  |  | 
|  | /* only vector 0 can have a suffix length greater than or equal to | 
|  | * tn->pos + tn->bits, the second highest node will have a suffix | 
|  | * length at most of tn->pos + tn->bits - 1 | 
|  | */ | 
|  | slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); | 
|  |  | 
|  | /* search though the list of children looking for nodes that might | 
|  | * have a suffix greater than the one we currently have.  This is | 
|  | * why we start with a stride of 2 since a stride of 1 would | 
|  | * represent the nodes with suffix length equal to tn->pos | 
|  | */ | 
|  | for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { | 
|  | struct key_vector *n = get_child(tn, i); | 
|  |  | 
|  | if (!n || (n->slen <= slen)) | 
|  | continue; | 
|  |  | 
|  | /* update stride and slen based on new value */ | 
|  | stride <<= (n->slen - slen); | 
|  | slen = n->slen; | 
|  | i &= ~(stride - 1); | 
|  |  | 
|  | /* stop searching if we have hit the maximum possible value */ | 
|  | if (slen >= slen_max) | 
|  | break; | 
|  | } | 
|  |  | 
|  | tn->slen = slen; | 
|  |  | 
|  | return slen; | 
|  | } | 
|  |  | 
|  | /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of | 
|  | * the Helsinki University of Technology and Matti Tikkanen of Nokia | 
|  | * Telecommunications, page 6: | 
|  | * "A node is doubled if the ratio of non-empty children to all | 
|  | * children in the *doubled* node is at least 'high'." | 
|  | * | 
|  | * 'high' in this instance is the variable 'inflate_threshold'. It | 
|  | * is expressed as a percentage, so we multiply it with | 
|  | * child_length() and instead of multiplying by 2 (since the | 
|  | * child array will be doubled by inflate()) and multiplying | 
|  | * the left-hand side by 100 (to handle the percentage thing) we | 
|  | * multiply the left-hand side by 50. | 
|  | * | 
|  | * The left-hand side may look a bit weird: child_length(tn) | 
|  | * - tn->empty_children is of course the number of non-null children | 
|  | * in the current node. tn->full_children is the number of "full" | 
|  | * children, that is non-null tnodes with a skip value of 0. | 
|  | * All of those will be doubled in the resulting inflated tnode, so | 
|  | * we just count them one extra time here. | 
|  | * | 
|  | * A clearer way to write this would be: | 
|  | * | 
|  | * to_be_doubled = tn->full_children; | 
|  | * not_to_be_doubled = child_length(tn) - tn->empty_children - | 
|  | *     tn->full_children; | 
|  | * | 
|  | * new_child_length = child_length(tn) * 2; | 
|  | * | 
|  | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / | 
|  | *      new_child_length; | 
|  | * if (new_fill_factor >= inflate_threshold) | 
|  | * | 
|  | * ...and so on, tho it would mess up the while () loop. | 
|  | * | 
|  | * anyway, | 
|  | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | 
|  | *      inflate_threshold | 
|  | * | 
|  | * avoid a division: | 
|  | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | 
|  | *      inflate_threshold * new_child_length | 
|  | * | 
|  | * expand not_to_be_doubled and to_be_doubled, and shorten: | 
|  | * 100 * (child_length(tn) - tn->empty_children + | 
|  | *    tn->full_children) >= inflate_threshold * new_child_length | 
|  | * | 
|  | * expand new_child_length: | 
|  | * 100 * (child_length(tn) - tn->empty_children + | 
|  | *    tn->full_children) >= | 
|  | *      inflate_threshold * child_length(tn) * 2 | 
|  | * | 
|  | * shorten again: | 
|  | * 50 * (tn->full_children + child_length(tn) - | 
|  | *    tn->empty_children) >= inflate_threshold * | 
|  | *    child_length(tn) | 
|  | * | 
|  | */ | 
|  | static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) | 
|  | { | 
|  | unsigned long used = child_length(tn); | 
|  | unsigned long threshold = used; | 
|  |  | 
|  | /* Keep root node larger */ | 
|  | threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; | 
|  | used -= tn_info(tn)->empty_children; | 
|  | used += tn_info(tn)->full_children; | 
|  |  | 
|  | /* if bits == KEYLENGTH then pos = 0, and will fail below */ | 
|  |  | 
|  | return (used > 1) && tn->pos && ((50 * used) >= threshold); | 
|  | } | 
|  |  | 
|  | static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) | 
|  | { | 
|  | unsigned long used = child_length(tn); | 
|  | unsigned long threshold = used; | 
|  |  | 
|  | /* Keep root node larger */ | 
|  | threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; | 
|  | used -= tn_info(tn)->empty_children; | 
|  |  | 
|  | /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ | 
|  |  | 
|  | return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); | 
|  | } | 
|  |  | 
|  | static inline bool should_collapse(struct key_vector *tn) | 
|  | { | 
|  | unsigned long used = child_length(tn); | 
|  |  | 
|  | used -= tn_info(tn)->empty_children; | 
|  |  | 
|  | /* account for bits == KEYLENGTH case */ | 
|  | if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) | 
|  | used -= KEY_MAX; | 
|  |  | 
|  | /* One child or none, time to drop us from the trie */ | 
|  | return used < 2; | 
|  | } | 
|  |  | 
|  | #define MAX_WORK 10 | 
|  | static struct key_vector *resize(struct trie *t, struct key_vector *tn) | 
|  | { | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie_use_stats __percpu *stats = t->stats; | 
|  | #endif | 
|  | struct key_vector *tp = node_parent(tn); | 
|  | unsigned long cindex = get_index(tn->key, tp); | 
|  | int max_work = MAX_WORK; | 
|  |  | 
|  | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", | 
|  | tn, inflate_threshold, halve_threshold); | 
|  |  | 
|  | /* track the tnode via the pointer from the parent instead of | 
|  | * doing it ourselves.  This way we can let RCU fully do its | 
|  | * thing without us interfering | 
|  | */ | 
|  | BUG_ON(tn != get_child(tp, cindex)); | 
|  |  | 
|  | /* Double as long as the resulting node has a number of | 
|  | * nonempty nodes that are above the threshold. | 
|  | */ | 
|  | while (should_inflate(tp, tn) && max_work) { | 
|  | tp = inflate(t, tn); | 
|  | if (!tp) { | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->resize_node_skipped); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  |  | 
|  | max_work--; | 
|  | tn = get_child(tp, cindex); | 
|  | } | 
|  |  | 
|  | /* update parent in case inflate failed */ | 
|  | tp = node_parent(tn); | 
|  |  | 
|  | /* Return if at least one inflate is run */ | 
|  | if (max_work != MAX_WORK) | 
|  | return tp; | 
|  |  | 
|  | /* Halve as long as the number of empty children in this | 
|  | * node is above threshold. | 
|  | */ | 
|  | while (should_halve(tp, tn) && max_work) { | 
|  | tp = halve(t, tn); | 
|  | if (!tp) { | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->resize_node_skipped); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  |  | 
|  | max_work--; | 
|  | tn = get_child(tp, cindex); | 
|  | } | 
|  |  | 
|  | /* Only one child remains */ | 
|  | if (should_collapse(tn)) | 
|  | return collapse(t, tn); | 
|  |  | 
|  | /* update parent in case halve failed */ | 
|  | return node_parent(tn); | 
|  | } | 
|  |  | 
|  | static void node_pull_suffix(struct key_vector *tn, unsigned char slen) | 
|  | { | 
|  | unsigned char node_slen = tn->slen; | 
|  |  | 
|  | while ((node_slen > tn->pos) && (node_slen > slen)) { | 
|  | slen = update_suffix(tn); | 
|  | if (node_slen == slen) | 
|  | break; | 
|  |  | 
|  | tn = node_parent(tn); | 
|  | node_slen = tn->slen; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void node_push_suffix(struct key_vector *tn, unsigned char slen) | 
|  | { | 
|  | while (tn->slen < slen) { | 
|  | tn->slen = slen; | 
|  | tn = node_parent(tn); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* rcu_read_lock needs to be hold by caller from readside */ | 
|  | static struct key_vector *fib_find_node(struct trie *t, | 
|  | struct key_vector **tp, u32 key) | 
|  | { | 
|  | struct key_vector *pn, *n = t->kv; | 
|  | unsigned long index = 0; | 
|  |  | 
|  | do { | 
|  | pn = n; | 
|  | n = get_child_rcu(n, index); | 
|  |  | 
|  | if (!n) | 
|  | break; | 
|  |  | 
|  | index = get_cindex(key, n); | 
|  |  | 
|  | /* This bit of code is a bit tricky but it combines multiple | 
|  | * checks into a single check.  The prefix consists of the | 
|  | * prefix plus zeros for the bits in the cindex. The index | 
|  | * is the difference between the key and this value.  From | 
|  | * this we can actually derive several pieces of data. | 
|  | *   if (index >= (1ul << bits)) | 
|  | *     we have a mismatch in skip bits and failed | 
|  | *   else | 
|  | *     we know the value is cindex | 
|  | * | 
|  | * This check is safe even if bits == KEYLENGTH due to the | 
|  | * fact that we can only allocate a node with 32 bits if a | 
|  | * long is greater than 32 bits. | 
|  | */ | 
|  | if (index >= (1ul << n->bits)) { | 
|  | n = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* keep searching until we find a perfect match leaf or NULL */ | 
|  | } while (IS_TNODE(n)); | 
|  |  | 
|  | *tp = pn; | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Return the first fib alias matching TOS with | 
|  | * priority less than or equal to PRIO. | 
|  | * If 'find_first' is set, return the first matching | 
|  | * fib alias, regardless of TOS and priority. | 
|  | */ | 
|  | static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, | 
|  | u8 tos, u32 prio, u32 tb_id, | 
|  | bool find_first) | 
|  | { | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | if (!fah) | 
|  | return NULL; | 
|  |  | 
|  | hlist_for_each_entry(fa, fah, fa_list) { | 
|  | if (fa->fa_slen < slen) | 
|  | continue; | 
|  | if (fa->fa_slen != slen) | 
|  | break; | 
|  | if (fa->tb_id > tb_id) | 
|  | continue; | 
|  | if (fa->tb_id != tb_id) | 
|  | break; | 
|  | if (find_first) | 
|  | return fa; | 
|  | if (fa->fa_tos > tos) | 
|  | continue; | 
|  | if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) | 
|  | return fa; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct fib_alias * | 
|  | fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) | 
|  | { | 
|  | u8 slen = KEYLENGTH - fri->dst_len; | 
|  | struct key_vector *l, *tp; | 
|  | struct fib_table *tb; | 
|  | struct fib_alias *fa; | 
|  | struct trie *t; | 
|  |  | 
|  | tb = fib_get_table(net, fri->tb_id); | 
|  | if (!tb) | 
|  | return NULL; | 
|  |  | 
|  | t = (struct trie *)tb->tb_data; | 
|  | l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); | 
|  | if (!l) | 
|  | return NULL; | 
|  |  | 
|  | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | 
|  | if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && | 
|  | fa->fa_tos == fri->tos && fa->fa_info == fri->fi && | 
|  | fa->fa_type == fri->type) | 
|  | return fa; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) | 
|  | { | 
|  | struct fib_alias *fa_match; | 
|  | struct sk_buff *skb; | 
|  | int err; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | fa_match = fib_find_matching_alias(net, fri); | 
|  | if (!fa_match) | 
|  | goto out; | 
|  |  | 
|  | if (fa_match->offload == fri->offload && fa_match->trap == fri->trap && | 
|  | fa_match->offload_failed == fri->offload_failed) | 
|  | goto out; | 
|  |  | 
|  | fa_match->offload = fri->offload; | 
|  | fa_match->trap = fri->trap; | 
|  |  | 
|  | /* 2 means send notifications only if offload_failed was changed. */ | 
|  | if (net->ipv4.sysctl_fib_notify_on_flag_change == 2 && | 
|  | fa_match->offload_failed == fri->offload_failed) | 
|  | goto out; | 
|  |  | 
|  | fa_match->offload_failed = fri->offload_failed; | 
|  |  | 
|  | if (!net->ipv4.sysctl_fib_notify_on_flag_change) | 
|  | goto out; | 
|  |  | 
|  | skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); | 
|  | if (!skb) { | 
|  | err = -ENOBUFS; | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); | 
|  | if (err < 0) { | 
|  | /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ | 
|  | WARN_ON(err == -EMSGSIZE); | 
|  | kfree_skb(skb); | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); | 
|  | goto out; | 
|  |  | 
|  | errout: | 
|  | rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); | 
|  |  | 
|  | static void trie_rebalance(struct trie *t, struct key_vector *tn) | 
|  | { | 
|  | while (!IS_TRIE(tn)) | 
|  | tn = resize(t, tn); | 
|  | } | 
|  |  | 
|  | static int fib_insert_node(struct trie *t, struct key_vector *tp, | 
|  | struct fib_alias *new, t_key key) | 
|  | { | 
|  | struct key_vector *n, *l; | 
|  |  | 
|  | l = leaf_new(key, new); | 
|  | if (!l) | 
|  | goto noleaf; | 
|  |  | 
|  | /* retrieve child from parent node */ | 
|  | n = get_child(tp, get_index(key, tp)); | 
|  |  | 
|  | /* Case 2: n is a LEAF or a TNODE and the key doesn't match. | 
|  | * | 
|  | *  Add a new tnode here | 
|  | *  first tnode need some special handling | 
|  | *  leaves us in position for handling as case 3 | 
|  | */ | 
|  | if (n) { | 
|  | struct key_vector *tn; | 
|  |  | 
|  | tn = tnode_new(key, __fls(key ^ n->key), 1); | 
|  | if (!tn) | 
|  | goto notnode; | 
|  |  | 
|  | /* initialize routes out of node */ | 
|  | NODE_INIT_PARENT(tn, tp); | 
|  | put_child(tn, get_index(key, tn) ^ 1, n); | 
|  |  | 
|  | /* start adding routes into the node */ | 
|  | put_child_root(tp, key, tn); | 
|  | node_set_parent(n, tn); | 
|  |  | 
|  | /* parent now has a NULL spot where the leaf can go */ | 
|  | tp = tn; | 
|  | } | 
|  |  | 
|  | /* Case 3: n is NULL, and will just insert a new leaf */ | 
|  | node_push_suffix(tp, new->fa_slen); | 
|  | NODE_INIT_PARENT(l, tp); | 
|  | put_child_root(tp, key, l); | 
|  | trie_rebalance(t, tp); | 
|  |  | 
|  | return 0; | 
|  | notnode: | 
|  | node_free(l); | 
|  | noleaf: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int fib_insert_alias(struct trie *t, struct key_vector *tp, | 
|  | struct key_vector *l, struct fib_alias *new, | 
|  | struct fib_alias *fa, t_key key) | 
|  | { | 
|  | if (!l) | 
|  | return fib_insert_node(t, tp, new, key); | 
|  |  | 
|  | if (fa) { | 
|  | hlist_add_before_rcu(&new->fa_list, &fa->fa_list); | 
|  | } else { | 
|  | struct fib_alias *last; | 
|  |  | 
|  | hlist_for_each_entry(last, &l->leaf, fa_list) { | 
|  | if (new->fa_slen < last->fa_slen) | 
|  | break; | 
|  | if ((new->fa_slen == last->fa_slen) && | 
|  | (new->tb_id > last->tb_id)) | 
|  | break; | 
|  | fa = last; | 
|  | } | 
|  |  | 
|  | if (fa) | 
|  | hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); | 
|  | else | 
|  | hlist_add_head_rcu(&new->fa_list, &l->leaf); | 
|  | } | 
|  |  | 
|  | /* if we added to the tail node then we need to update slen */ | 
|  | if (l->slen < new->fa_slen) { | 
|  | l->slen = new->fa_slen; | 
|  | node_push_suffix(tp, new->fa_slen); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) | 
|  | { | 
|  | if (plen > KEYLENGTH) { | 
|  | NL_SET_ERR_MSG(extack, "Invalid prefix length"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if ((plen < KEYLENGTH) && (key << plen)) { | 
|  | NL_SET_ERR_MSG(extack, | 
|  | "Invalid prefix for given prefix length"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void fib_remove_alias(struct trie *t, struct key_vector *tp, | 
|  | struct key_vector *l, struct fib_alias *old); | 
|  |  | 
|  | /* Caller must hold RTNL. */ | 
|  | int fib_table_insert(struct net *net, struct fib_table *tb, | 
|  | struct fib_config *cfg, struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct fib_alias *fa, *new_fa; | 
|  | struct key_vector *l, *tp; | 
|  | u16 nlflags = NLM_F_EXCL; | 
|  | struct fib_info *fi; | 
|  | u8 plen = cfg->fc_dst_len; | 
|  | u8 slen = KEYLENGTH - plen; | 
|  | u8 tos = cfg->fc_tos; | 
|  | u32 key; | 
|  | int err; | 
|  |  | 
|  | key = ntohl(cfg->fc_dst); | 
|  |  | 
|  | if (!fib_valid_key_len(key, plen, extack)) | 
|  | return -EINVAL; | 
|  |  | 
|  | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); | 
|  |  | 
|  | fi = fib_create_info(cfg, extack); | 
|  | if (IS_ERR(fi)) { | 
|  | err = PTR_ERR(fi); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | l = fib_find_node(t, &tp, key); | 
|  | fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, | 
|  | tb->tb_id, false) : NULL; | 
|  |  | 
|  | /* Now fa, if non-NULL, points to the first fib alias | 
|  | * with the same keys [prefix,tos,priority], if such key already | 
|  | * exists or to the node before which we will insert new one. | 
|  | * | 
|  | * If fa is NULL, we will need to allocate a new one and | 
|  | * insert to the tail of the section matching the suffix length | 
|  | * of the new alias. | 
|  | */ | 
|  |  | 
|  | if (fa && fa->fa_tos == tos && | 
|  | fa->fa_info->fib_priority == fi->fib_priority) { | 
|  | struct fib_alias *fa_first, *fa_match; | 
|  |  | 
|  | err = -EEXIST; | 
|  | if (cfg->fc_nlflags & NLM_F_EXCL) | 
|  | goto out; | 
|  |  | 
|  | nlflags &= ~NLM_F_EXCL; | 
|  |  | 
|  | /* We have 2 goals: | 
|  | * 1. Find exact match for type, scope, fib_info to avoid | 
|  | * duplicate routes | 
|  | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | 
|  | */ | 
|  | fa_match = NULL; | 
|  | fa_first = fa; | 
|  | hlist_for_each_entry_from(fa, fa_list) { | 
|  | if ((fa->fa_slen != slen) || | 
|  | (fa->tb_id != tb->tb_id) || | 
|  | (fa->fa_tos != tos)) | 
|  | break; | 
|  | if (fa->fa_info->fib_priority != fi->fib_priority) | 
|  | break; | 
|  | if (fa->fa_type == cfg->fc_type && | 
|  | fa->fa_info == fi) { | 
|  | fa_match = fa; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cfg->fc_nlflags & NLM_F_REPLACE) { | 
|  | struct fib_info *fi_drop; | 
|  | u8 state; | 
|  |  | 
|  | nlflags |= NLM_F_REPLACE; | 
|  | fa = fa_first; | 
|  | if (fa_match) { | 
|  | if (fa == fa_match) | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  | err = -ENOBUFS; | 
|  | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | 
|  | if (!new_fa) | 
|  | goto out; | 
|  |  | 
|  | fi_drop = fa->fa_info; | 
|  | new_fa->fa_tos = fa->fa_tos; | 
|  | new_fa->fa_info = fi; | 
|  | new_fa->fa_type = cfg->fc_type; | 
|  | state = fa->fa_state; | 
|  | new_fa->fa_state = state & ~FA_S_ACCESSED; | 
|  | new_fa->fa_slen = fa->fa_slen; | 
|  | new_fa->tb_id = tb->tb_id; | 
|  | new_fa->fa_default = -1; | 
|  | new_fa->offload = 0; | 
|  | new_fa->trap = 0; | 
|  | new_fa->offload_failed = 0; | 
|  |  | 
|  | hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); | 
|  |  | 
|  | if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, | 
|  | tb->tb_id, true) == new_fa) { | 
|  | enum fib_event_type fib_event; | 
|  |  | 
|  | fib_event = FIB_EVENT_ENTRY_REPLACE; | 
|  | err = call_fib_entry_notifiers(net, fib_event, | 
|  | key, plen, | 
|  | new_fa, extack); | 
|  | if (err) { | 
|  | hlist_replace_rcu(&new_fa->fa_list, | 
|  | &fa->fa_list); | 
|  | goto out_free_new_fa; | 
|  | } | 
|  | } | 
|  |  | 
|  | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, | 
|  | tb->tb_id, &cfg->fc_nlinfo, nlflags); | 
|  |  | 
|  | alias_free_mem_rcu(fa); | 
|  |  | 
|  | fib_release_info(fi_drop); | 
|  | if (state & FA_S_ACCESSED) | 
|  | rt_cache_flush(cfg->fc_nlinfo.nl_net); | 
|  |  | 
|  | goto succeeded; | 
|  | } | 
|  | /* Error if we find a perfect match which | 
|  | * uses the same scope, type, and nexthop | 
|  | * information. | 
|  | */ | 
|  | if (fa_match) | 
|  | goto out; | 
|  |  | 
|  | if (cfg->fc_nlflags & NLM_F_APPEND) | 
|  | nlflags |= NLM_F_APPEND; | 
|  | else | 
|  | fa = fa_first; | 
|  | } | 
|  | err = -ENOENT; | 
|  | if (!(cfg->fc_nlflags & NLM_F_CREATE)) | 
|  | goto out; | 
|  |  | 
|  | nlflags |= NLM_F_CREATE; | 
|  | err = -ENOBUFS; | 
|  | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | 
|  | if (!new_fa) | 
|  | goto out; | 
|  |  | 
|  | new_fa->fa_info = fi; | 
|  | new_fa->fa_tos = tos; | 
|  | new_fa->fa_type = cfg->fc_type; | 
|  | new_fa->fa_state = 0; | 
|  | new_fa->fa_slen = slen; | 
|  | new_fa->tb_id = tb->tb_id; | 
|  | new_fa->fa_default = -1; | 
|  | new_fa->offload = 0; | 
|  | new_fa->trap = 0; | 
|  | new_fa->offload_failed = 0; | 
|  |  | 
|  | /* Insert new entry to the list. */ | 
|  | err = fib_insert_alias(t, tp, l, new_fa, fa, key); | 
|  | if (err) | 
|  | goto out_free_new_fa; | 
|  |  | 
|  | /* The alias was already inserted, so the node must exist. */ | 
|  | l = l ? l : fib_find_node(t, &tp, key); | 
|  | if (WARN_ON_ONCE(!l)) | 
|  | goto out_free_new_fa; | 
|  |  | 
|  | if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == | 
|  | new_fa) { | 
|  | enum fib_event_type fib_event; | 
|  |  | 
|  | fib_event = FIB_EVENT_ENTRY_REPLACE; | 
|  | err = call_fib_entry_notifiers(net, fib_event, key, plen, | 
|  | new_fa, extack); | 
|  | if (err) | 
|  | goto out_remove_new_fa; | 
|  | } | 
|  |  | 
|  | if (!plen) | 
|  | tb->tb_num_default++; | 
|  |  | 
|  | rt_cache_flush(cfg->fc_nlinfo.nl_net); | 
|  | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, | 
|  | &cfg->fc_nlinfo, nlflags); | 
|  | succeeded: | 
|  | return 0; | 
|  |  | 
|  | out_remove_new_fa: | 
|  | fib_remove_alias(t, tp, l, new_fa); | 
|  | out_free_new_fa: | 
|  | kmem_cache_free(fn_alias_kmem, new_fa); | 
|  | out: | 
|  | fib_release_info(fi); | 
|  | err: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline t_key prefix_mismatch(t_key key, struct key_vector *n) | 
|  | { | 
|  | t_key prefix = n->key; | 
|  |  | 
|  | return (key ^ prefix) & (prefix | -prefix); | 
|  | } | 
|  |  | 
|  | bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, | 
|  | const struct flowi4 *flp) | 
|  | { | 
|  | if (nhc->nhc_flags & RTNH_F_DEAD) | 
|  | return false; | 
|  |  | 
|  | if (ip_ignore_linkdown(nhc->nhc_dev) && | 
|  | nhc->nhc_flags & RTNH_F_LINKDOWN && | 
|  | !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) | 
|  | return false; | 
|  |  | 
|  | if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { | 
|  | if (flp->flowi4_oif && | 
|  | flp->flowi4_oif != nhc->nhc_oif) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* should be called with rcu_read_lock */ | 
|  | int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, | 
|  | struct fib_result *res, int fib_flags) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie_use_stats __percpu *stats = t->stats; | 
|  | #endif | 
|  | const t_key key = ntohl(flp->daddr); | 
|  | struct key_vector *n, *pn; | 
|  | struct fib_alias *fa; | 
|  | unsigned long index; | 
|  | t_key cindex; | 
|  |  | 
|  | pn = t->kv; | 
|  | cindex = 0; | 
|  |  | 
|  | n = get_child_rcu(pn, cindex); | 
|  | if (!n) { | 
|  | trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->gets); | 
|  | #endif | 
|  |  | 
|  | /* Step 1: Travel to the longest prefix match in the trie */ | 
|  | for (;;) { | 
|  | index = get_cindex(key, n); | 
|  |  | 
|  | /* This bit of code is a bit tricky but it combines multiple | 
|  | * checks into a single check.  The prefix consists of the | 
|  | * prefix plus zeros for the "bits" in the prefix. The index | 
|  | * is the difference between the key and this value.  From | 
|  | * this we can actually derive several pieces of data. | 
|  | *   if (index >= (1ul << bits)) | 
|  | *     we have a mismatch in skip bits and failed | 
|  | *   else | 
|  | *     we know the value is cindex | 
|  | * | 
|  | * This check is safe even if bits == KEYLENGTH due to the | 
|  | * fact that we can only allocate a node with 32 bits if a | 
|  | * long is greater than 32 bits. | 
|  | */ | 
|  | if (index >= (1ul << n->bits)) | 
|  | break; | 
|  |  | 
|  | /* we have found a leaf. Prefixes have already been compared */ | 
|  | if (IS_LEAF(n)) | 
|  | goto found; | 
|  |  | 
|  | /* only record pn and cindex if we are going to be chopping | 
|  | * bits later.  Otherwise we are just wasting cycles. | 
|  | */ | 
|  | if (n->slen > n->pos) { | 
|  | pn = n; | 
|  | cindex = index; | 
|  | } | 
|  |  | 
|  | n = get_child_rcu(n, index); | 
|  | if (unlikely(!n)) | 
|  | goto backtrace; | 
|  | } | 
|  |  | 
|  | /* Step 2: Sort out leaves and begin backtracing for longest prefix */ | 
|  | for (;;) { | 
|  | /* record the pointer where our next node pointer is stored */ | 
|  | struct key_vector __rcu **cptr = n->tnode; | 
|  |  | 
|  | /* This test verifies that none of the bits that differ | 
|  | * between the key and the prefix exist in the region of | 
|  | * the lsb and higher in the prefix. | 
|  | */ | 
|  | if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) | 
|  | goto backtrace; | 
|  |  | 
|  | /* exit out and process leaf */ | 
|  | if (unlikely(IS_LEAF(n))) | 
|  | break; | 
|  |  | 
|  | /* Don't bother recording parent info.  Since we are in | 
|  | * prefix match mode we will have to come back to wherever | 
|  | * we started this traversal anyway | 
|  | */ | 
|  |  | 
|  | while ((n = rcu_dereference(*cptr)) == NULL) { | 
|  | backtrace: | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | if (!n) | 
|  | this_cpu_inc(stats->null_node_hit); | 
|  | #endif | 
|  | /* If we are at cindex 0 there are no more bits for | 
|  | * us to strip at this level so we must ascend back | 
|  | * up one level to see if there are any more bits to | 
|  | * be stripped there. | 
|  | */ | 
|  | while (!cindex) { | 
|  | t_key pkey = pn->key; | 
|  |  | 
|  | /* If we don't have a parent then there is | 
|  | * nothing for us to do as we do not have any | 
|  | * further nodes to parse. | 
|  | */ | 
|  | if (IS_TRIE(pn)) { | 
|  | trace_fib_table_lookup(tb->tb_id, flp, | 
|  | NULL, -EAGAIN); | 
|  | return -EAGAIN; | 
|  | } | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->backtrack); | 
|  | #endif | 
|  | /* Get Child's index */ | 
|  | pn = node_parent_rcu(pn); | 
|  | cindex = get_index(pkey, pn); | 
|  | } | 
|  |  | 
|  | /* strip the least significant bit from the cindex */ | 
|  | cindex &= cindex - 1; | 
|  |  | 
|  | /* grab pointer for next child node */ | 
|  | cptr = &pn->tnode[cindex]; | 
|  | } | 
|  | } | 
|  |  | 
|  | found: | 
|  | /* this line carries forward the xor from earlier in the function */ | 
|  | index = key ^ n->key; | 
|  |  | 
|  | /* Step 3: Process the leaf, if that fails fall back to backtracing */ | 
|  | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  | struct fib_nh_common *nhc; | 
|  | int nhsel, err; | 
|  |  | 
|  | if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { | 
|  | if (index >= (1ul << fa->fa_slen)) | 
|  | continue; | 
|  | } | 
|  | if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) | 
|  | continue; | 
|  | if (fi->fib_dead) | 
|  | continue; | 
|  | if (fa->fa_info->fib_scope < flp->flowi4_scope) | 
|  | continue; | 
|  | fib_alias_accessed(fa); | 
|  | err = fib_props[fa->fa_type].error; | 
|  | if (unlikely(err < 0)) { | 
|  | out_reject: | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->semantic_match_passed); | 
|  | #endif | 
|  | trace_fib_table_lookup(tb->tb_id, flp, NULL, err); | 
|  | return err; | 
|  | } | 
|  | if (fi->fib_flags & RTNH_F_DEAD) | 
|  | continue; | 
|  |  | 
|  | if (unlikely(fi->nh)) { | 
|  | if (nexthop_is_blackhole(fi->nh)) { | 
|  | err = fib_props[RTN_BLACKHOLE].error; | 
|  | goto out_reject; | 
|  | } | 
|  |  | 
|  | nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, | 
|  | &nhsel); | 
|  | if (nhc) | 
|  | goto set_result; | 
|  | goto miss; | 
|  | } | 
|  |  | 
|  | for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { | 
|  | nhc = fib_info_nhc(fi, nhsel); | 
|  |  | 
|  | if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) | 
|  | continue; | 
|  | set_result: | 
|  | if (!(fib_flags & FIB_LOOKUP_NOREF)) | 
|  | refcount_inc(&fi->fib_clntref); | 
|  |  | 
|  | res->prefix = htonl(n->key); | 
|  | res->prefixlen = KEYLENGTH - fa->fa_slen; | 
|  | res->nh_sel = nhsel; | 
|  | res->nhc = nhc; | 
|  | res->type = fa->fa_type; | 
|  | res->scope = fi->fib_scope; | 
|  | res->fi = fi; | 
|  | res->table = tb; | 
|  | res->fa_head = &n->leaf; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->semantic_match_passed); | 
|  | #endif | 
|  | trace_fib_table_lookup(tb->tb_id, flp, nhc, err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | } | 
|  | miss: | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | this_cpu_inc(stats->semantic_match_miss); | 
|  | #endif | 
|  | goto backtrace; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fib_table_lookup); | 
|  |  | 
|  | static void fib_remove_alias(struct trie *t, struct key_vector *tp, | 
|  | struct key_vector *l, struct fib_alias *old) | 
|  | { | 
|  | /* record the location of the previous list_info entry */ | 
|  | struct hlist_node **pprev = old->fa_list.pprev; | 
|  | struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); | 
|  |  | 
|  | /* remove the fib_alias from the list */ | 
|  | hlist_del_rcu(&old->fa_list); | 
|  |  | 
|  | /* if we emptied the list this leaf will be freed and we can sort | 
|  | * out parent suffix lengths as a part of trie_rebalance | 
|  | */ | 
|  | if (hlist_empty(&l->leaf)) { | 
|  | if (tp->slen == l->slen) | 
|  | node_pull_suffix(tp, tp->pos); | 
|  | put_child_root(tp, l->key, NULL); | 
|  | node_free(l); | 
|  | trie_rebalance(t, tp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* only access fa if it is pointing at the last valid hlist_node */ | 
|  | if (*pprev) | 
|  | return; | 
|  |  | 
|  | /* update the trie with the latest suffix length */ | 
|  | l->slen = fa->fa_slen; | 
|  | node_pull_suffix(tp, fa->fa_slen); | 
|  | } | 
|  |  | 
|  | static void fib_notify_alias_delete(struct net *net, u32 key, | 
|  | struct hlist_head *fah, | 
|  | struct fib_alias *fa_to_delete, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct fib_alias *fa_next, *fa_to_notify; | 
|  | u32 tb_id = fa_to_delete->tb_id; | 
|  | u8 slen = fa_to_delete->fa_slen; | 
|  | enum fib_event_type fib_event; | 
|  |  | 
|  | /* Do not notify if we do not care about the route. */ | 
|  | if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) | 
|  | return; | 
|  |  | 
|  | /* Determine if the route should be replaced by the next route in the | 
|  | * list. | 
|  | */ | 
|  | fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, | 
|  | struct fib_alias, fa_list); | 
|  | if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { | 
|  | fib_event = FIB_EVENT_ENTRY_REPLACE; | 
|  | fa_to_notify = fa_next; | 
|  | } else { | 
|  | fib_event = FIB_EVENT_ENTRY_DEL; | 
|  | fa_to_notify = fa_to_delete; | 
|  | } | 
|  | call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, | 
|  | fa_to_notify, extack); | 
|  | } | 
|  |  | 
|  | /* Caller must hold RTNL. */ | 
|  | int fib_table_delete(struct net *net, struct fib_table *tb, | 
|  | struct fib_config *cfg, struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | struct fib_alias *fa, *fa_to_delete; | 
|  | struct key_vector *l, *tp; | 
|  | u8 plen = cfg->fc_dst_len; | 
|  | u8 slen = KEYLENGTH - plen; | 
|  | u8 tos = cfg->fc_tos; | 
|  | u32 key; | 
|  |  | 
|  | key = ntohl(cfg->fc_dst); | 
|  |  | 
|  | if (!fib_valid_key_len(key, plen, extack)) | 
|  | return -EINVAL; | 
|  |  | 
|  | l = fib_find_node(t, &tp, key); | 
|  | if (!l) | 
|  | return -ESRCH; | 
|  |  | 
|  | fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); | 
|  | if (!fa) | 
|  | return -ESRCH; | 
|  |  | 
|  | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); | 
|  |  | 
|  | fa_to_delete = NULL; | 
|  | hlist_for_each_entry_from(fa, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if ((fa->fa_slen != slen) || | 
|  | (fa->tb_id != tb->tb_id) || | 
|  | (fa->fa_tos != tos)) | 
|  | break; | 
|  |  | 
|  | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && | 
|  | (cfg->fc_scope == RT_SCOPE_NOWHERE || | 
|  | fa->fa_info->fib_scope == cfg->fc_scope) && | 
|  | (!cfg->fc_prefsrc || | 
|  | fi->fib_prefsrc == cfg->fc_prefsrc) && | 
|  | (!cfg->fc_protocol || | 
|  | fi->fib_protocol == cfg->fc_protocol) && | 
|  | fib_nh_match(net, cfg, fi, extack) == 0 && | 
|  | fib_metrics_match(cfg, fi)) { | 
|  | fa_to_delete = fa; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fa_to_delete) | 
|  | return -ESRCH; | 
|  |  | 
|  | fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); | 
|  | rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, | 
|  | &cfg->fc_nlinfo, 0); | 
|  |  | 
|  | if (!plen) | 
|  | tb->tb_num_default--; | 
|  |  | 
|  | fib_remove_alias(t, tp, l, fa_to_delete); | 
|  |  | 
|  | if (fa_to_delete->fa_state & FA_S_ACCESSED) | 
|  | rt_cache_flush(cfg->fc_nlinfo.nl_net); | 
|  |  | 
|  | fib_release_info(fa_to_delete->fa_info); | 
|  | alias_free_mem_rcu(fa_to_delete); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Scan for the next leaf starting at the provided key value */ | 
|  | static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) | 
|  | { | 
|  | struct key_vector *pn, *n = *tn; | 
|  | unsigned long cindex; | 
|  |  | 
|  | /* this loop is meant to try and find the key in the trie */ | 
|  | do { | 
|  | /* record parent and next child index */ | 
|  | pn = n; | 
|  | cindex = (key > pn->key) ? get_index(key, pn) : 0; | 
|  |  | 
|  | if (cindex >> pn->bits) | 
|  | break; | 
|  |  | 
|  | /* descend into the next child */ | 
|  | n = get_child_rcu(pn, cindex++); | 
|  | if (!n) | 
|  | break; | 
|  |  | 
|  | /* guarantee forward progress on the keys */ | 
|  | if (IS_LEAF(n) && (n->key >= key)) | 
|  | goto found; | 
|  | } while (IS_TNODE(n)); | 
|  |  | 
|  | /* this loop will search for the next leaf with a greater key */ | 
|  | while (!IS_TRIE(pn)) { | 
|  | /* if we exhausted the parent node we will need to climb */ | 
|  | if (cindex >= (1ul << pn->bits)) { | 
|  | t_key pkey = pn->key; | 
|  |  | 
|  | pn = node_parent_rcu(pn); | 
|  | cindex = get_index(pkey, pn) + 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* grab the next available node */ | 
|  | n = get_child_rcu(pn, cindex++); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | /* no need to compare keys since we bumped the index */ | 
|  | if (IS_LEAF(n)) | 
|  | goto found; | 
|  |  | 
|  | /* Rescan start scanning in new node */ | 
|  | pn = n; | 
|  | cindex = 0; | 
|  | } | 
|  |  | 
|  | *tn = pn; | 
|  | return NULL; /* Root of trie */ | 
|  | found: | 
|  | /* if we are at the limit for keys just return NULL for the tnode */ | 
|  | *tn = pn; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void fib_trie_free(struct fib_table *tb) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct key_vector *pn = t->kv; | 
|  | unsigned long cindex = 1; | 
|  | struct hlist_node *tmp; | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | /* walk trie in reverse order and free everything */ | 
|  | for (;;) { | 
|  | struct key_vector *n; | 
|  |  | 
|  | if (!(cindex--)) { | 
|  | t_key pkey = pn->key; | 
|  |  | 
|  | if (IS_TRIE(pn)) | 
|  | break; | 
|  |  | 
|  | n = pn; | 
|  | pn = node_parent(pn); | 
|  |  | 
|  | /* drop emptied tnode */ | 
|  | put_child_root(pn, n->key, NULL); | 
|  | node_free(n); | 
|  |  | 
|  | cindex = get_index(pkey, pn); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* grab the next available node */ | 
|  | n = get_child(pn, cindex); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | /* record pn and cindex for leaf walking */ | 
|  | pn = n; | 
|  | cindex = 1ul << n->bits; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | 
|  | hlist_del_rcu(&fa->fa_list); | 
|  | alias_free_mem_rcu(fa); | 
|  | } | 
|  |  | 
|  | put_child_root(pn, n->key, NULL); | 
|  | node_free(n); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | free_percpu(t->stats); | 
|  | #endif | 
|  | kfree(tb); | 
|  | } | 
|  |  | 
|  | struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) | 
|  | { | 
|  | struct trie *ot = (struct trie *)oldtb->tb_data; | 
|  | struct key_vector *l, *tp = ot->kv; | 
|  | struct fib_table *local_tb; | 
|  | struct fib_alias *fa; | 
|  | struct trie *lt; | 
|  | t_key key = 0; | 
|  |  | 
|  | if (oldtb->tb_data == oldtb->__data) | 
|  | return oldtb; | 
|  |  | 
|  | local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); | 
|  | if (!local_tb) | 
|  | return NULL; | 
|  |  | 
|  | lt = (struct trie *)local_tb->tb_data; | 
|  |  | 
|  | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | 
|  | struct key_vector *local_l = NULL, *local_tp; | 
|  |  | 
|  | hlist_for_each_entry(fa, &l->leaf, fa_list) { | 
|  | struct fib_alias *new_fa; | 
|  |  | 
|  | if (local_tb->tb_id != fa->tb_id) | 
|  | continue; | 
|  |  | 
|  | /* clone fa for new local table */ | 
|  | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | 
|  | if (!new_fa) | 
|  | goto out; | 
|  |  | 
|  | memcpy(new_fa, fa, sizeof(*fa)); | 
|  |  | 
|  | /* insert clone into table */ | 
|  | if (!local_l) | 
|  | local_l = fib_find_node(lt, &local_tp, l->key); | 
|  |  | 
|  | if (fib_insert_alias(lt, local_tp, local_l, new_fa, | 
|  | NULL, l->key)) { | 
|  | kmem_cache_free(fn_alias_kmem, new_fa); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* stop loop if key wrapped back to 0 */ | 
|  | key = l->key + 1; | 
|  | if (key < l->key) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return local_tb; | 
|  | out: | 
|  | fib_trie_free(local_tb); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Caller must hold RTNL */ | 
|  | void fib_table_flush_external(struct fib_table *tb) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct key_vector *pn = t->kv; | 
|  | unsigned long cindex = 1; | 
|  | struct hlist_node *tmp; | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | /* walk trie in reverse order */ | 
|  | for (;;) { | 
|  | unsigned char slen = 0; | 
|  | struct key_vector *n; | 
|  |  | 
|  | if (!(cindex--)) { | 
|  | t_key pkey = pn->key; | 
|  |  | 
|  | /* cannot resize the trie vector */ | 
|  | if (IS_TRIE(pn)) | 
|  | break; | 
|  |  | 
|  | /* update the suffix to address pulled leaves */ | 
|  | if (pn->slen > pn->pos) | 
|  | update_suffix(pn); | 
|  |  | 
|  | /* resize completed node */ | 
|  | pn = resize(t, pn); | 
|  | cindex = get_index(pkey, pn); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* grab the next available node */ | 
|  | n = get_child(pn, cindex); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | /* record pn and cindex for leaf walking */ | 
|  | pn = n; | 
|  | cindex = 1ul << n->bits; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | 
|  | /* if alias was cloned to local then we just | 
|  | * need to remove the local copy from main | 
|  | */ | 
|  | if (tb->tb_id != fa->tb_id) { | 
|  | hlist_del_rcu(&fa->fa_list); | 
|  | alias_free_mem_rcu(fa); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* record local slen */ | 
|  | slen = fa->fa_slen; | 
|  | } | 
|  |  | 
|  | /* update leaf slen */ | 
|  | n->slen = slen; | 
|  |  | 
|  | if (hlist_empty(&n->leaf)) { | 
|  | put_child_root(pn, n->key, NULL); | 
|  | node_free(n); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Caller must hold RTNL. */ | 
|  | int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct key_vector *pn = t->kv; | 
|  | unsigned long cindex = 1; | 
|  | struct hlist_node *tmp; | 
|  | struct fib_alias *fa; | 
|  | int found = 0; | 
|  |  | 
|  | /* walk trie in reverse order */ | 
|  | for (;;) { | 
|  | unsigned char slen = 0; | 
|  | struct key_vector *n; | 
|  |  | 
|  | if (!(cindex--)) { | 
|  | t_key pkey = pn->key; | 
|  |  | 
|  | /* cannot resize the trie vector */ | 
|  | if (IS_TRIE(pn)) | 
|  | break; | 
|  |  | 
|  | /* update the suffix to address pulled leaves */ | 
|  | if (pn->slen > pn->pos) | 
|  | update_suffix(pn); | 
|  |  | 
|  | /* resize completed node */ | 
|  | pn = resize(t, pn); | 
|  | cindex = get_index(pkey, pn); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* grab the next available node */ | 
|  | n = get_child(pn, cindex); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | /* record pn and cindex for leaf walking */ | 
|  | pn = n; | 
|  | cindex = 1ul << n->bits; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if (!fi || tb->tb_id != fa->tb_id || | 
|  | (!(fi->fib_flags & RTNH_F_DEAD) && | 
|  | !fib_props[fa->fa_type].error)) { | 
|  | slen = fa->fa_slen; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Do not flush error routes if network namespace is | 
|  | * not being dismantled | 
|  | */ | 
|  | if (!flush_all && fib_props[fa->fa_type].error) { | 
|  | slen = fa->fa_slen; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | fib_notify_alias_delete(net, n->key, &n->leaf, fa, | 
|  | NULL); | 
|  | hlist_del_rcu(&fa->fa_list); | 
|  | fib_release_info(fa->fa_info); | 
|  | alias_free_mem_rcu(fa); | 
|  | found++; | 
|  | } | 
|  |  | 
|  | /* update leaf slen */ | 
|  | n->slen = slen; | 
|  |  | 
|  | if (hlist_empty(&n->leaf)) { | 
|  | put_child_root(pn, n->key, NULL); | 
|  | node_free(n); | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("trie_flush found=%d\n", found); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* derived from fib_trie_free */ | 
|  | static void __fib_info_notify_update(struct net *net, struct fib_table *tb, | 
|  | struct nl_info *info) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct key_vector *pn = t->kv; | 
|  | unsigned long cindex = 1; | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | for (;;) { | 
|  | struct key_vector *n; | 
|  |  | 
|  | if (!(cindex--)) { | 
|  | t_key pkey = pn->key; | 
|  |  | 
|  | if (IS_TRIE(pn)) | 
|  | break; | 
|  |  | 
|  | pn = node_parent(pn); | 
|  | cindex = get_index(pkey, pn); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* grab the next available node */ | 
|  | n = get_child(pn, cindex); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | /* record pn and cindex for leaf walking */ | 
|  | pn = n; | 
|  | cindex = 1ul << n->bits; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry(fa, &n->leaf, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) | 
|  | continue; | 
|  |  | 
|  | rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, | 
|  | KEYLENGTH - fa->fa_slen, tb->tb_id, | 
|  | info, NLM_F_REPLACE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void fib_info_notify_update(struct net *net, struct nl_info *info) | 
|  | { | 
|  | unsigned int h; | 
|  |  | 
|  | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | hlist_for_each_entry_rcu(tb, head, tb_hlist, | 
|  | lockdep_rtnl_is_held()) | 
|  | __fib_info_notify_update(net, tb, info); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, | 
|  | struct notifier_block *nb, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct fib_alias *fa; | 
|  | int last_slen = -1; | 
|  | int err; | 
|  |  | 
|  | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if (!fi) | 
|  | continue; | 
|  |  | 
|  | /* local and main table can share the same trie, | 
|  | * so don't notify twice for the same entry. | 
|  | */ | 
|  | if (tb->tb_id != fa->tb_id) | 
|  | continue; | 
|  |  | 
|  | if (fa->fa_slen == last_slen) | 
|  | continue; | 
|  |  | 
|  | last_slen = fa->fa_slen; | 
|  | err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, | 
|  | l->key, KEYLENGTH - fa->fa_slen, | 
|  | fa, extack); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct key_vector *l, *tp = t->kv; | 
|  | t_key key = 0; | 
|  | int err; | 
|  |  | 
|  | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | 
|  | err = fib_leaf_notify(l, tb, nb, extack); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | key = l->key + 1; | 
|  | /* stop in case of wrap around */ | 
|  | if (key < l->key) | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int fib_notify(struct net *net, struct notifier_block *nb, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | unsigned int h; | 
|  | int err; | 
|  |  | 
|  | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | hlist_for_each_entry_rcu(tb, head, tb_hlist) { | 
|  | err = fib_table_notify(tb, nb, extack); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __trie_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct fib_table *tb = container_of(head, struct fib_table, rcu); | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  |  | 
|  | if (tb->tb_data == tb->__data) | 
|  | free_percpu(t->stats); | 
|  | #endif /* CONFIG_IP_FIB_TRIE_STATS */ | 
|  | kfree(tb); | 
|  | } | 
|  |  | 
|  | void fib_free_table(struct fib_table *tb) | 
|  | { | 
|  | call_rcu(&tb->rcu, __trie_free_rcu); | 
|  | } | 
|  |  | 
|  | static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, | 
|  | struct sk_buff *skb, struct netlink_callback *cb, | 
|  | struct fib_dump_filter *filter) | 
|  | { | 
|  | unsigned int flags = NLM_F_MULTI; | 
|  | __be32 xkey = htonl(l->key); | 
|  | int i, s_i, i_fa, s_fa, err; | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | if (filter->filter_set || | 
|  | !filter->dump_exceptions || !filter->dump_routes) | 
|  | flags |= NLM_F_DUMP_FILTERED; | 
|  |  | 
|  | s_i = cb->args[4]; | 
|  | s_fa = cb->args[5]; | 
|  | i = 0; | 
|  |  | 
|  | /* rcu_read_lock is hold by caller */ | 
|  | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if (i < s_i) | 
|  | goto next; | 
|  |  | 
|  | i_fa = 0; | 
|  |  | 
|  | if (tb->tb_id != fa->tb_id) | 
|  | goto next; | 
|  |  | 
|  | if (filter->filter_set) { | 
|  | if (filter->rt_type && fa->fa_type != filter->rt_type) | 
|  | goto next; | 
|  |  | 
|  | if ((filter->protocol && | 
|  | fi->fib_protocol != filter->protocol)) | 
|  | goto next; | 
|  |  | 
|  | if (filter->dev && | 
|  | !fib_info_nh_uses_dev(fi, filter->dev)) | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (filter->dump_routes) { | 
|  | if (!s_fa) { | 
|  | struct fib_rt_info fri; | 
|  |  | 
|  | fri.fi = fi; | 
|  | fri.tb_id = tb->tb_id; | 
|  | fri.dst = xkey; | 
|  | fri.dst_len = KEYLENGTH - fa->fa_slen; | 
|  | fri.tos = fa->fa_tos; | 
|  | fri.type = fa->fa_type; | 
|  | fri.offload = fa->offload; | 
|  | fri.trap = fa->trap; | 
|  | fri.offload_failed = fa->offload_failed; | 
|  | err = fib_dump_info(skb, | 
|  | NETLINK_CB(cb->skb).portid, | 
|  | cb->nlh->nlmsg_seq, | 
|  | RTM_NEWROUTE, &fri, flags); | 
|  | if (err < 0) | 
|  | goto stop; | 
|  | } | 
|  |  | 
|  | i_fa++; | 
|  | } | 
|  |  | 
|  | if (filter->dump_exceptions) { | 
|  | err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, | 
|  | &i_fa, s_fa, flags); | 
|  | if (err < 0) | 
|  | goto stop; | 
|  | } | 
|  |  | 
|  | next: | 
|  | i++; | 
|  | } | 
|  |  | 
|  | cb->args[4] = i; | 
|  | return skb->len; | 
|  |  | 
|  | stop: | 
|  | cb->args[4] = i; | 
|  | cb->args[5] = i_fa; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* rcu_read_lock needs to be hold by caller from readside */ | 
|  | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, | 
|  | struct netlink_callback *cb, struct fib_dump_filter *filter) | 
|  | { | 
|  | struct trie *t = (struct trie *)tb->tb_data; | 
|  | struct key_vector *l, *tp = t->kv; | 
|  | /* Dump starting at last key. | 
|  | * Note: 0.0.0.0/0 (ie default) is first key. | 
|  | */ | 
|  | int count = cb->args[2]; | 
|  | t_key key = cb->args[3]; | 
|  |  | 
|  | /* First time here, count and key are both always 0. Count > 0 | 
|  | * and key == 0 means the dump has wrapped around and we are done. | 
|  | */ | 
|  | if (count && !key) | 
|  | return skb->len; | 
|  |  | 
|  | while ((l = leaf_walk_rcu(&tp, key)) != NULL) { | 
|  | int err; | 
|  |  | 
|  | err = fn_trie_dump_leaf(l, tb, skb, cb, filter); | 
|  | if (err < 0) { | 
|  | cb->args[3] = key; | 
|  | cb->args[2] = count; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ++count; | 
|  | key = l->key + 1; | 
|  |  | 
|  | memset(&cb->args[4], 0, | 
|  | sizeof(cb->args) - 4*sizeof(cb->args[0])); | 
|  |  | 
|  | /* stop loop if key wrapped back to 0 */ | 
|  | if (key < l->key) | 
|  | break; | 
|  | } | 
|  |  | 
|  | cb->args[3] = key; | 
|  | cb->args[2] = count; | 
|  |  | 
|  | return skb->len; | 
|  | } | 
|  |  | 
|  | void __init fib_trie_init(void) | 
|  | { | 
|  | fn_alias_kmem = kmem_cache_create("ip_fib_alias", | 
|  | sizeof(struct fib_alias), | 
|  | 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); | 
|  |  | 
|  | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | 
|  | LEAF_SIZE, | 
|  | 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); | 
|  | } | 
|  |  | 
|  | struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) | 
|  | { | 
|  | struct fib_table *tb; | 
|  | struct trie *t; | 
|  | size_t sz = sizeof(*tb); | 
|  |  | 
|  | if (!alias) | 
|  | sz += sizeof(struct trie); | 
|  |  | 
|  | tb = kzalloc(sz, GFP_KERNEL); | 
|  | if (!tb) | 
|  | return NULL; | 
|  |  | 
|  | tb->tb_id = id; | 
|  | tb->tb_num_default = 0; | 
|  | tb->tb_data = (alias ? alias->__data : tb->__data); | 
|  |  | 
|  | if (alias) | 
|  | return tb; | 
|  |  | 
|  | t = (struct trie *) tb->tb_data; | 
|  | t->kv[0].pos = KEYLENGTH; | 
|  | t->kv[0].slen = KEYLENGTH; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | t->stats = alloc_percpu(struct trie_use_stats); | 
|  | if (!t->stats) { | 
|  | kfree(tb); | 
|  | tb = NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /* Depth first Trie walk iterator */ | 
|  | struct fib_trie_iter { | 
|  | struct seq_net_private p; | 
|  | struct fib_table *tb; | 
|  | struct key_vector *tnode; | 
|  | unsigned int index; | 
|  | unsigned int depth; | 
|  | }; | 
|  |  | 
|  | static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) | 
|  | { | 
|  | unsigned long cindex = iter->index; | 
|  | struct key_vector *pn = iter->tnode; | 
|  | t_key pkey; | 
|  |  | 
|  | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", | 
|  | iter->tnode, iter->index, iter->depth); | 
|  |  | 
|  | while (!IS_TRIE(pn)) { | 
|  | while (cindex < child_length(pn)) { | 
|  | struct key_vector *n = get_child_rcu(pn, cindex++); | 
|  |  | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (IS_LEAF(n)) { | 
|  | iter->tnode = pn; | 
|  | iter->index = cindex; | 
|  | } else { | 
|  | /* push down one level */ | 
|  | iter->tnode = n; | 
|  | iter->index = 0; | 
|  | ++iter->depth; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Current node exhausted, pop back up */ | 
|  | pkey = pn->key; | 
|  | pn = node_parent_rcu(pn); | 
|  | cindex = get_index(pkey, pn) + 1; | 
|  | --iter->depth; | 
|  | } | 
|  |  | 
|  | /* record root node so further searches know we are done */ | 
|  | iter->tnode = pn; | 
|  | iter->index = 0; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, | 
|  | struct trie *t) | 
|  | { | 
|  | struct key_vector *n, *pn; | 
|  |  | 
|  | if (!t) | 
|  | return NULL; | 
|  |  | 
|  | pn = t->kv; | 
|  | n = rcu_dereference(pn->tnode[0]); | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | iter->tnode = n; | 
|  | iter->index = 0; | 
|  | iter->depth = 1; | 
|  | } else { | 
|  | iter->tnode = pn; | 
|  | iter->index = 0; | 
|  | iter->depth = 0; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void trie_collect_stats(struct trie *t, struct trie_stat *s) | 
|  | { | 
|  | struct key_vector *n; | 
|  | struct fib_trie_iter iter; | 
|  |  | 
|  | memset(s, 0, sizeof(*s)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { | 
|  | if (IS_LEAF(n)) { | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | s->leaves++; | 
|  | s->totdepth += iter.depth; | 
|  | if (iter.depth > s->maxdepth) | 
|  | s->maxdepth = iter.depth; | 
|  |  | 
|  | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) | 
|  | ++s->prefixes; | 
|  | } else { | 
|  | s->tnodes++; | 
|  | if (n->bits < MAX_STAT_DEPTH) | 
|  | s->nodesizes[n->bits]++; | 
|  | s->nullpointers += tn_info(n)->empty_children; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This outputs /proc/net/fib_triestats | 
|  | */ | 
|  | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | 
|  | { | 
|  | unsigned int i, max, pointers, bytes, avdepth; | 
|  |  | 
|  | if (stat->leaves) | 
|  | avdepth = stat->totdepth*100 / stat->leaves; | 
|  | else | 
|  | avdepth = 0; | 
|  |  | 
|  | seq_printf(seq, "\tAver depth:     %u.%02d\n", | 
|  | avdepth / 100, avdepth % 100); | 
|  | seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth); | 
|  |  | 
|  | seq_printf(seq, "\tLeaves:         %u\n", stat->leaves); | 
|  | bytes = LEAF_SIZE * stat->leaves; | 
|  |  | 
|  | seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes); | 
|  | bytes += sizeof(struct fib_alias) * stat->prefixes; | 
|  |  | 
|  | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); | 
|  | bytes += TNODE_SIZE(0) * stat->tnodes; | 
|  |  | 
|  | max = MAX_STAT_DEPTH; | 
|  | while (max > 0 && stat->nodesizes[max-1] == 0) | 
|  | max--; | 
|  |  | 
|  | pointers = 0; | 
|  | for (i = 1; i < max; i++) | 
|  | if (stat->nodesizes[i] != 0) { | 
|  | seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]); | 
|  | pointers += (1<<i) * stat->nodesizes[i]; | 
|  | } | 
|  | seq_putc(seq, '\n'); | 
|  | seq_printf(seq, "\tPointers: %u\n", pointers); | 
|  |  | 
|  | bytes += sizeof(struct key_vector *) * pointers; | 
|  | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); | 
|  | seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | static void trie_show_usage(struct seq_file *seq, | 
|  | const struct trie_use_stats __percpu *stats) | 
|  | { | 
|  | struct trie_use_stats s = { 0 }; | 
|  | int cpu; | 
|  |  | 
|  | /* loop through all of the CPUs and gather up the stats */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); | 
|  |  | 
|  | s.gets += pcpu->gets; | 
|  | s.backtrack += pcpu->backtrack; | 
|  | s.semantic_match_passed += pcpu->semantic_match_passed; | 
|  | s.semantic_match_miss += pcpu->semantic_match_miss; | 
|  | s.null_node_hit += pcpu->null_node_hit; | 
|  | s.resize_node_skipped += pcpu->resize_node_skipped; | 
|  | } | 
|  |  | 
|  | seq_printf(seq, "\nCounters:\n---------\n"); | 
|  | seq_printf(seq, "gets = %u\n", s.gets); | 
|  | seq_printf(seq, "backtracks = %u\n", s.backtrack); | 
|  | seq_printf(seq, "semantic match passed = %u\n", | 
|  | s.semantic_match_passed); | 
|  | seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); | 
|  | seq_printf(seq, "null node hit= %u\n", s.null_node_hit); | 
|  | seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); | 
|  | } | 
|  | #endif /*  CONFIG_IP_FIB_TRIE_STATS */ | 
|  |  | 
|  | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) | 
|  | { | 
|  | if (tb->tb_id == RT_TABLE_LOCAL) | 
|  | seq_puts(seq, "Local:\n"); | 
|  | else if (tb->tb_id == RT_TABLE_MAIN) | 
|  | seq_puts(seq, "Main:\n"); | 
|  | else | 
|  | seq_printf(seq, "Id %d:\n", tb->tb_id); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int fib_triestat_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct net *net = (struct net *)seq->private; | 
|  | unsigned int h; | 
|  |  | 
|  | seq_printf(seq, | 
|  | "Basic info: size of leaf:" | 
|  | " %zd bytes, size of tnode: %zd bytes.\n", | 
|  | LEAF_SIZE, TNODE_SIZE(0)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | hlist_for_each_entry_rcu(tb, head, tb_hlist) { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | struct trie_stat stat; | 
|  |  | 
|  | if (!t) | 
|  | continue; | 
|  |  | 
|  | fib_table_print(seq, tb); | 
|  |  | 
|  | trie_collect_stats(t, &stat); | 
|  | trie_show_stats(seq, &stat); | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | trie_show_usage(seq, t->stats); | 
|  | #endif | 
|  | } | 
|  | cond_resched_rcu(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) | 
|  | { | 
|  | struct fib_trie_iter *iter = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  | loff_t idx = 0; | 
|  | unsigned int h; | 
|  |  | 
|  | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | hlist_for_each_entry_rcu(tb, head, tb_hlist) { | 
|  | struct key_vector *n; | 
|  |  | 
|  | for (n = fib_trie_get_first(iter, | 
|  | (struct trie *) tb->tb_data); | 
|  | n; n = fib_trie_get_next(iter)) | 
|  | if (pos == idx++) { | 
|  | iter->tb = tb; | 
|  | return n; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | __acquires(RCU) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | return fib_trie_get_idx(seq, *pos); | 
|  | } | 
|  |  | 
|  | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct fib_trie_iter *iter = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  | struct fib_table *tb = iter->tb; | 
|  | struct hlist_node *tb_node; | 
|  | unsigned int h; | 
|  | struct key_vector *n; | 
|  |  | 
|  | ++*pos; | 
|  | /* next node in same table */ | 
|  | n = fib_trie_get_next(iter); | 
|  | if (n) | 
|  | return n; | 
|  |  | 
|  | /* walk rest of this hash chain */ | 
|  | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | 
|  | while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { | 
|  | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); | 
|  | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | 
|  | if (n) | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* new hash chain */ | 
|  | while (++h < FIB_TABLE_HASHSZ) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | hlist_for_each_entry_rcu(tb, head, tb_hlist) { | 
|  | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | 
|  | if (n) | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | iter->tb = tb; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void fib_trie_seq_stop(struct seq_file *seq, void *v) | 
|  | __releases(RCU) | 
|  | { | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void seq_indent(struct seq_file *seq, int n) | 
|  | { | 
|  | while (n-- > 0) | 
|  | seq_puts(seq, "   "); | 
|  | } | 
|  |  | 
|  | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) | 
|  | { | 
|  | switch (s) { | 
|  | case RT_SCOPE_UNIVERSE: return "universe"; | 
|  | case RT_SCOPE_SITE:	return "site"; | 
|  | case RT_SCOPE_LINK:	return "link"; | 
|  | case RT_SCOPE_HOST:	return "host"; | 
|  | case RT_SCOPE_NOWHERE:	return "nowhere"; | 
|  | default: | 
|  | snprintf(buf, len, "scope=%d", s); | 
|  | return buf; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *const rtn_type_names[__RTN_MAX] = { | 
|  | [RTN_UNSPEC] = "UNSPEC", | 
|  | [RTN_UNICAST] = "UNICAST", | 
|  | [RTN_LOCAL] = "LOCAL", | 
|  | [RTN_BROADCAST] = "BROADCAST", | 
|  | [RTN_ANYCAST] = "ANYCAST", | 
|  | [RTN_MULTICAST] = "MULTICAST", | 
|  | [RTN_BLACKHOLE] = "BLACKHOLE", | 
|  | [RTN_UNREACHABLE] = "UNREACHABLE", | 
|  | [RTN_PROHIBIT] = "PROHIBIT", | 
|  | [RTN_THROW] = "THROW", | 
|  | [RTN_NAT] = "NAT", | 
|  | [RTN_XRESOLVE] = "XRESOLVE", | 
|  | }; | 
|  |  | 
|  | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) | 
|  | { | 
|  | if (t < __RTN_MAX && rtn_type_names[t]) | 
|  | return rtn_type_names[t]; | 
|  | snprintf(buf, len, "type %u", t); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* Pretty print the trie */ | 
|  | static int fib_trie_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | const struct fib_trie_iter *iter = seq->private; | 
|  | struct key_vector *n = v; | 
|  |  | 
|  | if (IS_TRIE(node_parent_rcu(n))) | 
|  | fib_table_print(seq, iter->tb); | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | __be32 prf = htonl(n->key); | 
|  |  | 
|  | seq_indent(seq, iter->depth-1); | 
|  | seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n", | 
|  | &prf, KEYLENGTH - n->pos - n->bits, n->bits, | 
|  | tn_info(n)->full_children, | 
|  | tn_info(n)->empty_children); | 
|  | } else { | 
|  | __be32 val = htonl(n->key); | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | seq_indent(seq, iter->depth); | 
|  | seq_printf(seq, "  |-- %pI4\n", &val); | 
|  |  | 
|  | hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { | 
|  | char buf1[32], buf2[32]; | 
|  |  | 
|  | seq_indent(seq, iter->depth + 1); | 
|  | seq_printf(seq, "  /%zu %s %s", | 
|  | KEYLENGTH - fa->fa_slen, | 
|  | rtn_scope(buf1, sizeof(buf1), | 
|  | fa->fa_info->fib_scope), | 
|  | rtn_type(buf2, sizeof(buf2), | 
|  | fa->fa_type)); | 
|  | if (fa->fa_tos) | 
|  | seq_printf(seq, " tos=%d", fa->fa_tos); | 
|  | seq_putc(seq, '\n'); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations fib_trie_seq_ops = { | 
|  | .start  = fib_trie_seq_start, | 
|  | .next   = fib_trie_seq_next, | 
|  | .stop   = fib_trie_seq_stop, | 
|  | .show   = fib_trie_seq_show, | 
|  | }; | 
|  |  | 
|  | struct fib_route_iter { | 
|  | struct seq_net_private p; | 
|  | struct fib_table *main_tb; | 
|  | struct key_vector *tnode; | 
|  | loff_t	pos; | 
|  | t_key	key; | 
|  | }; | 
|  |  | 
|  | static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, | 
|  | loff_t pos) | 
|  | { | 
|  | struct key_vector *l, **tp = &iter->tnode; | 
|  | t_key key; | 
|  |  | 
|  | /* use cached location of previously found key */ | 
|  | if (iter->pos > 0 && pos >= iter->pos) { | 
|  | key = iter->key; | 
|  | } else { | 
|  | iter->pos = 1; | 
|  | key = 0; | 
|  | } | 
|  |  | 
|  | pos -= iter->pos; | 
|  |  | 
|  | while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { | 
|  | key = l->key + 1; | 
|  | iter->pos++; | 
|  | l = NULL; | 
|  |  | 
|  | /* handle unlikely case of a key wrap */ | 
|  | if (!key) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (l) | 
|  | iter->key = l->key;	/* remember it */ | 
|  | else | 
|  | iter->pos = 0;		/* forget it */ | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | __acquires(RCU) | 
|  | { | 
|  | struct fib_route_iter *iter = seq->private; | 
|  | struct fib_table *tb; | 
|  | struct trie *t; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); | 
|  | if (!tb) | 
|  | return NULL; | 
|  |  | 
|  | iter->main_tb = tb; | 
|  | t = (struct trie *)tb->tb_data; | 
|  | iter->tnode = t->kv; | 
|  |  | 
|  | if (*pos != 0) | 
|  | return fib_route_get_idx(iter, *pos); | 
|  |  | 
|  | iter->pos = 0; | 
|  | iter->key = KEY_MAX; | 
|  |  | 
|  | return SEQ_START_TOKEN; | 
|  | } | 
|  |  | 
|  | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct fib_route_iter *iter = seq->private; | 
|  | struct key_vector *l = NULL; | 
|  | t_key key = iter->key + 1; | 
|  |  | 
|  | ++*pos; | 
|  |  | 
|  | /* only allow key of 0 for start of sequence */ | 
|  | if ((v == SEQ_START_TOKEN) || key) | 
|  | l = leaf_walk_rcu(&iter->tnode, key); | 
|  |  | 
|  | if (l) { | 
|  | iter->key = l->key; | 
|  | iter->pos++; | 
|  | } else { | 
|  | iter->pos = 0; | 
|  | } | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static void fib_route_seq_stop(struct seq_file *seq, void *v) | 
|  | __releases(RCU) | 
|  | { | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) | 
|  | { | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) | 
|  | flags = RTF_REJECT; | 
|  | if (fi) { | 
|  | const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); | 
|  |  | 
|  | if (nhc->nhc_gw.ipv4) | 
|  | flags |= RTF_GATEWAY; | 
|  | } | 
|  | if (mask == htonl(0xFFFFFFFF)) | 
|  | flags |= RTF_HOST; | 
|  | flags |= RTF_UP; | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This outputs /proc/net/route. | 
|  | *	The format of the file is not supposed to be changed | 
|  | *	and needs to be same as fib_hash output to avoid breaking | 
|  | *	legacy utilities | 
|  | */ | 
|  | static int fib_route_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct fib_route_iter *iter = seq->private; | 
|  | struct fib_table *tb = iter->main_tb; | 
|  | struct fib_alias *fa; | 
|  | struct key_vector *l = v; | 
|  | __be32 prefix; | 
|  |  | 
|  | if (v == SEQ_START_TOKEN) { | 
|  | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | 
|  | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | 
|  | "\tWindow\tIRTT"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | prefix = htonl(l->key); | 
|  |  | 
|  | hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  | __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); | 
|  | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); | 
|  |  | 
|  | if ((fa->fa_type == RTN_BROADCAST) || | 
|  | (fa->fa_type == RTN_MULTICAST)) | 
|  | continue; | 
|  |  | 
|  | if (fa->tb_id != tb->tb_id) | 
|  | continue; | 
|  |  | 
|  | seq_setwidth(seq, 127); | 
|  |  | 
|  | if (fi) { | 
|  | struct fib_nh_common *nhc = fib_info_nhc(fi, 0); | 
|  | __be32 gw = 0; | 
|  |  | 
|  | if (nhc->nhc_gw_family == AF_INET) | 
|  | gw = nhc->nhc_gw.ipv4; | 
|  |  | 
|  | seq_printf(seq, | 
|  | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | 
|  | "%d\t%08X\t%d\t%u\t%u", | 
|  | nhc->nhc_dev ? nhc->nhc_dev->name : "*", | 
|  | prefix, gw, flags, 0, 0, | 
|  | fi->fib_priority, | 
|  | mask, | 
|  | (fi->fib_advmss ? | 
|  | fi->fib_advmss + 40 : 0), | 
|  | fi->fib_window, | 
|  | fi->fib_rtt >> 3); | 
|  | } else { | 
|  | seq_printf(seq, | 
|  | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | 
|  | "%d\t%08X\t%d\t%u\t%u", | 
|  | prefix, 0, flags, 0, 0, 0, | 
|  | mask, 0, 0, 0); | 
|  | } | 
|  | seq_pad(seq, '\n'); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations fib_route_seq_ops = { | 
|  | .start  = fib_route_seq_start, | 
|  | .next   = fib_route_seq_next, | 
|  | .stop   = fib_route_seq_stop, | 
|  | .show   = fib_route_seq_show, | 
|  | }; | 
|  |  | 
|  | int __net_init fib_proc_init(struct net *net) | 
|  | { | 
|  | if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, | 
|  | sizeof(struct fib_trie_iter))) | 
|  | goto out1; | 
|  |  | 
|  | if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, | 
|  | fib_triestat_seq_show, NULL)) | 
|  | goto out2; | 
|  |  | 
|  | if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, | 
|  | sizeof(struct fib_route_iter))) | 
|  | goto out3; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out3: | 
|  | remove_proc_entry("fib_triestat", net->proc_net); | 
|  | out2: | 
|  | remove_proc_entry("fib_trie", net->proc_net); | 
|  | out1: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void __net_exit fib_proc_exit(struct net *net) | 
|  | { | 
|  | remove_proc_entry("fib_trie", net->proc_net); | 
|  | remove_proc_entry("fib_triestat", net->proc_net); | 
|  | remove_proc_entry("route", net->proc_net); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PROC_FS */ |