|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * mm/percpu-debug.c | 
|  | * | 
|  | * Copyright (C) 2017		Facebook Inc. | 
|  | * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org> | 
|  | * | 
|  | * Prints statistics about the percpu allocator and backing chunks. | 
|  | */ | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/vmalloc.h> | 
|  |  | 
|  | #include "percpu-internal.h" | 
|  |  | 
|  | #define P(X, Y) \ | 
|  | seq_printf(m, "  %-20s: %12lld\n", X, (long long int)Y) | 
|  |  | 
|  | struct percpu_stats pcpu_stats; | 
|  | struct pcpu_alloc_info pcpu_stats_ai; | 
|  |  | 
|  | static int cmpint(const void *a, const void *b) | 
|  | { | 
|  | return *(int *)a - *(int *)b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterates over all chunks to find the max nr_alloc entries. | 
|  | */ | 
|  | static int find_max_nr_alloc(void) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  | int slot, max_nr_alloc; | 
|  |  | 
|  | max_nr_alloc = 0; | 
|  | for (slot = 0; slot < pcpu_nr_slots; slot++) | 
|  | list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) | 
|  | max_nr_alloc = max(max_nr_alloc, chunk->nr_alloc); | 
|  |  | 
|  | return max_nr_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prints out chunk state. Fragmentation is considered between | 
|  | * the beginning of the chunk to the last allocation. | 
|  | * | 
|  | * All statistics are in bytes unless stated otherwise. | 
|  | */ | 
|  | static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk, | 
|  | int *buffer) | 
|  | { | 
|  | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | 
|  | int i, last_alloc, as_len, start, end; | 
|  | int *alloc_sizes, *p; | 
|  | /* statistics */ | 
|  | int sum_frag = 0, max_frag = 0; | 
|  | int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0; | 
|  |  | 
|  | alloc_sizes = buffer; | 
|  |  | 
|  | /* | 
|  | * find_last_bit returns the start value if nothing found. | 
|  | * Therefore, we must determine if it is a failure of find_last_bit | 
|  | * and set the appropriate value. | 
|  | */ | 
|  | last_alloc = find_last_bit(chunk->alloc_map, | 
|  | pcpu_chunk_map_bits(chunk) - | 
|  | chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1); | 
|  | last_alloc = test_bit(last_alloc, chunk->alloc_map) ? | 
|  | last_alloc + 1 : 0; | 
|  |  | 
|  | as_len = 0; | 
|  | start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; | 
|  |  | 
|  | /* | 
|  | * If a bit is set in the allocation map, the bound_map identifies | 
|  | * where the allocation ends.  If the allocation is not set, the | 
|  | * bound_map does not identify free areas as it is only kept accurate | 
|  | * on allocation, not free. | 
|  | * | 
|  | * Positive values are allocations and negative values are free | 
|  | * fragments. | 
|  | */ | 
|  | while (start < last_alloc) { | 
|  | if (test_bit(start, chunk->alloc_map)) { | 
|  | end = find_next_bit(chunk->bound_map, last_alloc, | 
|  | start + 1); | 
|  | alloc_sizes[as_len] = 1; | 
|  | } else { | 
|  | end = find_next_bit(chunk->alloc_map, last_alloc, | 
|  | start + 1); | 
|  | alloc_sizes[as_len] = -1; | 
|  | } | 
|  |  | 
|  | alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE; | 
|  |  | 
|  | start = end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The negative values are free fragments and thus sorting gives the | 
|  | * free fragments at the beginning in largest first order. | 
|  | */ | 
|  | if (as_len > 0) { | 
|  | sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL); | 
|  |  | 
|  | /* iterate through the unallocated fragments */ | 
|  | for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) { | 
|  | sum_frag -= *p; | 
|  | max_frag = max(max_frag, -1 * (*p)); | 
|  | } | 
|  |  | 
|  | cur_min_alloc = alloc_sizes[i]; | 
|  | cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2]; | 
|  | cur_max_alloc = alloc_sizes[as_len - 1]; | 
|  | } | 
|  |  | 
|  | P("nr_alloc", chunk->nr_alloc); | 
|  | P("max_alloc_size", chunk->max_alloc_size); | 
|  | P("empty_pop_pages", chunk->nr_empty_pop_pages); | 
|  | P("first_bit", chunk_md->first_free); | 
|  | P("free_bytes", chunk->free_bytes); | 
|  | P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); | 
|  | P("sum_frag", sum_frag); | 
|  | P("max_frag", max_frag); | 
|  | P("cur_min_alloc", cur_min_alloc); | 
|  | P("cur_med_alloc", cur_med_alloc); | 
|  | P("cur_max_alloc", cur_max_alloc); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static int percpu_stats_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  | int slot, max_nr_alloc; | 
|  | int *buffer; | 
|  |  | 
|  | alloc_buffer: | 
|  | spin_lock_irq(&pcpu_lock); | 
|  | max_nr_alloc = find_max_nr_alloc(); | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  |  | 
|  | /* there can be at most this many free and allocated fragments */ | 
|  | buffer = vmalloc(array_size(sizeof(int), (2 * max_nr_alloc + 1))); | 
|  | if (!buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_irq(&pcpu_lock); | 
|  |  | 
|  | /* if the buffer allocated earlier is too small */ | 
|  | if (max_nr_alloc < find_max_nr_alloc()) { | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  | vfree(buffer); | 
|  | goto alloc_buffer; | 
|  | } | 
|  |  | 
|  | #define PL(X)								\ | 
|  | seq_printf(m, "  %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X) | 
|  |  | 
|  | seq_printf(m, | 
|  | "Percpu Memory Statistics\n" | 
|  | "Allocation Info:\n" | 
|  | "----------------------------------------\n"); | 
|  | PL(unit_size); | 
|  | PL(static_size); | 
|  | PL(reserved_size); | 
|  | PL(dyn_size); | 
|  | PL(atom_size); | 
|  | PL(alloc_size); | 
|  | seq_putc(m, '\n'); | 
|  |  | 
|  | #undef PL | 
|  |  | 
|  | #define PU(X) \ | 
|  | seq_printf(m, "  %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X) | 
|  |  | 
|  | seq_printf(m, | 
|  | "Global Stats:\n" | 
|  | "----------------------------------------\n"); | 
|  | PU(nr_alloc); | 
|  | PU(nr_dealloc); | 
|  | PU(nr_cur_alloc); | 
|  | PU(nr_max_alloc); | 
|  | PU(nr_chunks); | 
|  | PU(nr_max_chunks); | 
|  | PU(min_alloc_size); | 
|  | PU(max_alloc_size); | 
|  | P("empty_pop_pages", pcpu_nr_empty_pop_pages); | 
|  | seq_putc(m, '\n'); | 
|  |  | 
|  | #undef PU | 
|  |  | 
|  | seq_printf(m, | 
|  | "Per Chunk Stats:\n" | 
|  | "----------------------------------------\n"); | 
|  |  | 
|  | if (pcpu_reserved_chunk) { | 
|  | seq_puts(m, "Chunk: <- Reserved Chunk\n"); | 
|  | chunk_map_stats(m, pcpu_reserved_chunk, buffer); | 
|  | } | 
|  |  | 
|  | for (slot = 0; slot < pcpu_nr_slots; slot++) { | 
|  | list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { | 
|  | if (chunk == pcpu_first_chunk) | 
|  | seq_puts(m, "Chunk: <- First Chunk\n"); | 
|  | else if (slot == pcpu_to_depopulate_slot) | 
|  | seq_puts(m, "Chunk (to_depopulate)\n"); | 
|  | else if (slot == pcpu_sidelined_slot) | 
|  | seq_puts(m, "Chunk (sidelined):\n"); | 
|  | else | 
|  | seq_puts(m, "Chunk:\n"); | 
|  | chunk_map_stats(m, chunk, buffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  |  | 
|  | vfree(buffer); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(percpu_stats); | 
|  |  | 
|  | static int __init init_percpu_stats_debugfs(void) | 
|  | { | 
|  | debugfs_create_file("percpu_stats", 0444, NULL, NULL, | 
|  | &percpu_stats_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(init_percpu_stats_debugfs); |