|  | #ifndef _ASM_GENERIC_DIV64_H | 
|  | #define _ASM_GENERIC_DIV64_H | 
|  | /* | 
|  | * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> | 
|  | * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h | 
|  | * | 
|  | * Optimization for constant divisors on 32-bit machines: | 
|  | * Copyright (C) 2006-2015 Nicolas Pitre | 
|  | * | 
|  | * The semantics of do_div() are: | 
|  | * | 
|  | * uint32_t do_div(uint64_t *n, uint32_t base) | 
|  | * { | 
|  | * 	uint32_t remainder = *n % base; | 
|  | * 	*n = *n / base; | 
|  | * 	return remainder; | 
|  | * } | 
|  | * | 
|  | * NOTE: macro parameter n is evaluated multiple times, | 
|  | *       beware of side effects! | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/compiler.h> | 
|  |  | 
|  | #if BITS_PER_LONG == 64 | 
|  |  | 
|  | # define do_div(n,base) ({					\ | 
|  | uint32_t __base = (base);				\ | 
|  | uint32_t __rem;						\ | 
|  | __rem = ((uint64_t)(n)) % __base;			\ | 
|  | (n) = ((uint64_t)(n)) / __base;				\ | 
|  | __rem;							\ | 
|  | }) | 
|  |  | 
|  | #elif BITS_PER_LONG == 32 | 
|  |  | 
|  | #include <linux/log2.h> | 
|  |  | 
|  | /* | 
|  | * If the divisor happens to be constant, we determine the appropriate | 
|  | * inverse at compile time to turn the division into a few inline | 
|  | * multiplications which ought to be much faster. And yet only if compiling | 
|  | * with a sufficiently recent gcc version to perform proper 64-bit constant | 
|  | * propagation. | 
|  | * | 
|  | * (It is unfortunate that gcc doesn't perform all this internally.) | 
|  | */ | 
|  |  | 
|  | #ifndef __div64_const32_is_OK | 
|  | #define __div64_const32_is_OK (__GNUC__ >= 4) | 
|  | #endif | 
|  |  | 
|  | #define __div64_const32(n, ___b)					\ | 
|  | ({									\ | 
|  | /*								\ | 
|  | * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\ | 
|  | *								\ | 
|  | * We rely on the fact that most of this code gets optimized	\ | 
|  | * away at compile time due to constant propagation and only	\ | 
|  | * a few multiplication instructions should remain.		\ | 
|  | * Hence this monstrous macro (static inline doesn't always	\ | 
|  | * do the trick here).						\ | 
|  | */								\ | 
|  | uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\ | 
|  | uint32_t ___p, ___bias;						\ | 
|  | \ | 
|  | /* determine MSB of b */					\ | 
|  | ___p = 1 << ilog2(___b);					\ | 
|  | \ | 
|  | /* compute m = ((p << 64) + b - 1) / b */			\ | 
|  | ___m = (~0ULL / ___b) * ___p;					\ | 
|  | ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\ | 
|  | \ | 
|  | /* one less than the dividend with highest result */		\ | 
|  | ___x = ~0ULL / ___b * ___b - 1;					\ | 
|  | \ | 
|  | /* test our ___m with res = m * x / (p << 64) */		\ | 
|  | ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\ | 
|  | ___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\ | 
|  | ___res += (___x & 0xffffffff) * (___m >> 32);			\ | 
|  | ___t = (___res < ___t) ? (1ULL << 32) : 0;			\ | 
|  | ___res = (___res >> 32) + ___t;					\ | 
|  | ___res += (___m >> 32) * (___x >> 32);				\ | 
|  | ___res /= ___p;							\ | 
|  | \ | 
|  | /* Now sanitize and optimize what we've got. */			\ | 
|  | if (~0ULL % (___b / (___b & -___b)) == 0) {			\ | 
|  | /* special case, can be simplified to ... */		\ | 
|  | ___n /= (___b & -___b);					\ | 
|  | ___m = ~0ULL / (___b / (___b & -___b));			\ | 
|  | ___p = 1;						\ | 
|  | ___bias = 1;						\ | 
|  | } else if (___res != ___x / ___b) {				\ | 
|  | /*							\ | 
|  | * We can't get away without a bias to compensate	\ | 
|  | * for bit truncation errors.  To avoid it we'd need an	\ | 
|  | * additional bit to represent m which would overflow	\ | 
|  | * a 64-bit variable.					\ | 
|  | *							\ | 
|  | * Instead we do m = p / b and n / b = (n * m + m) / p.	\ | 
|  | */							\ | 
|  | ___bias = 1;						\ | 
|  | /* Compute m = (p << 64) / b */				\ | 
|  | ___m = (~0ULL / ___b) * ___p;				\ | 
|  | ___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\ | 
|  | } else {							\ | 
|  | /*							\ | 
|  | * Reduce m / p, and try to clear bit 31 of m when	\ | 
|  | * possible, otherwise that'll need extra overflow	\ | 
|  | * handling later.					\ | 
|  | */							\ | 
|  | uint32_t ___bits = -(___m & -___m);			\ | 
|  | ___bits |= ___m >> 32;					\ | 
|  | ___bits = (~___bits) << 1;				\ | 
|  | /*							\ | 
|  | * If ___bits == 0 then setting bit 31 is  unavoidable.	\ | 
|  | * Simply apply the maximum possible reduction in that	\ | 
|  | * case. Otherwise the MSB of ___bits indicates the	\ | 
|  | * best reduction we should apply.			\ | 
|  | */							\ | 
|  | if (!___bits) {						\ | 
|  | ___p /= (___m & -___m);				\ | 
|  | ___m /= (___m & -___m);				\ | 
|  | } else {						\ | 
|  | ___p >>= ilog2(___bits);			\ | 
|  | ___m >>= ilog2(___bits);			\ | 
|  | }							\ | 
|  | /* No bias needed. */					\ | 
|  | ___bias = 0;						\ | 
|  | }								\ | 
|  | \ | 
|  | /*								\ | 
|  | * Now we have a combination of 2 conditions:			\ | 
|  | *								\ | 
|  | * 1) whether or not we need to apply a bias, and		\ | 
|  | *								\ | 
|  | * 2) whether or not there might be an overflow in the cross	\ | 
|  | *    product determined by (___m & ((1 << 63) | (1 << 31))).	\ | 
|  | *								\ | 
|  | * Select the best way to do (m_bias + m * n) / (1 << 64).	\ | 
|  | * From now on there will be actual runtime code generated.	\ | 
|  | */								\ | 
|  | ___res = __arch_xprod_64(___m, ___n, ___bias);			\ | 
|  | \ | 
|  | ___res /= ___p;							\ | 
|  | }) | 
|  |  | 
|  | #ifndef __arch_xprod_64 | 
|  | /* | 
|  | * Default C implementation for __arch_xprod_64() | 
|  | * | 
|  | * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) | 
|  | * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64 | 
|  | * | 
|  | * The product is a 128-bit value, scaled down to 64 bits. | 
|  | * Assuming constant propagation to optimize away unused conditional code. | 
|  | * Architectures may provide their own optimized assembly implementation. | 
|  | */ | 
|  | static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) | 
|  | { | 
|  | uint32_t m_lo = m; | 
|  | uint32_t m_hi = m >> 32; | 
|  | uint32_t n_lo = n; | 
|  | uint32_t n_hi = n >> 32; | 
|  | uint64_t res, tmp; | 
|  |  | 
|  | if (!bias) { | 
|  | res = ((uint64_t)m_lo * n_lo) >> 32; | 
|  | } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { | 
|  | /* there can't be any overflow here */ | 
|  | res = (m + (uint64_t)m_lo * n_lo) >> 32; | 
|  | } else { | 
|  | res = m + (uint64_t)m_lo * n_lo; | 
|  | tmp = (res < m) ? (1ULL << 32) : 0; | 
|  | res = (res >> 32) + tmp; | 
|  | } | 
|  |  | 
|  | if (!(m & ((1ULL << 63) | (1ULL << 31)))) { | 
|  | /* there can't be any overflow here */ | 
|  | res += (uint64_t)m_lo * n_hi; | 
|  | res += (uint64_t)m_hi * n_lo; | 
|  | res >>= 32; | 
|  | } else { | 
|  | tmp = res += (uint64_t)m_lo * n_hi; | 
|  | res += (uint64_t)m_hi * n_lo; | 
|  | tmp = (res < tmp) ? (1ULL << 32) : 0; | 
|  | res = (res >> 32) + tmp; | 
|  | } | 
|  |  | 
|  | res += (uint64_t)m_hi * n_hi; | 
|  |  | 
|  | return res; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __div64_32 | 
|  | extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); | 
|  | #endif | 
|  |  | 
|  | /* The unnecessary pointer compare is there | 
|  | * to check for type safety (n must be 64bit) | 
|  | */ | 
|  | # define do_div(n,base) ({				\ | 
|  | uint32_t __base = (base);			\ | 
|  | uint32_t __rem;					\ | 
|  | (void)(((typeof((n)) *)0) == ((uint64_t *)0));	\ | 
|  | if (__builtin_constant_p(__base) &&		\ | 
|  | is_power_of_2(__base)) {			\ | 
|  | __rem = (n) & (__base - 1);		\ | 
|  | (n) >>= ilog2(__base);			\ | 
|  | } else if (__div64_const32_is_OK &&		\ | 
|  | __builtin_constant_p(__base) &&	\ | 
|  | __base != 0) {			\ | 
|  | uint32_t __res_lo, __n_lo = (n);	\ | 
|  | (n) = __div64_const32(n, __base);	\ | 
|  | /* the remainder can be computed with 32-bit regs */ \ | 
|  | __res_lo = (n);				\ | 
|  | __rem = __n_lo - __res_lo * __base;	\ | 
|  | } else if (likely(((n) >> 32) == 0)) {		\ | 
|  | __rem = (uint32_t)(n) % __base;		\ | 
|  | (n) = (uint32_t)(n) / __base;		\ | 
|  | } else 						\ | 
|  | __rem = __div64_32(&(n), __base);	\ | 
|  | __rem;						\ | 
|  | }) | 
|  |  | 
|  | #else /* BITS_PER_LONG == ?? */ | 
|  |  | 
|  | # error do_div() does not yet support the C64 | 
|  |  | 
|  | #endif /* BITS_PER_LONG */ | 
|  |  | 
|  | #endif /* _ASM_GENERIC_DIV64_H */ |