| /* SPDX-License-Identifier: GPL-2.0 | 
 |  * | 
 |  * IO cost model based controller. | 
 |  * | 
 |  * Copyright (C) 2019 Tejun Heo <tj@kernel.org> | 
 |  * Copyright (C) 2019 Andy Newell <newella@fb.com> | 
 |  * Copyright (C) 2019 Facebook | 
 |  * | 
 |  * One challenge of controlling IO resources is the lack of trivially | 
 |  * observable cost metric.  This is distinguished from CPU and memory where | 
 |  * wallclock time and the number of bytes can serve as accurate enough | 
 |  * approximations. | 
 |  * | 
 |  * Bandwidth and iops are the most commonly used metrics for IO devices but | 
 |  * depending on the type and specifics of the device, different IO patterns | 
 |  * easily lead to multiple orders of magnitude variations rendering them | 
 |  * useless for the purpose of IO capacity distribution.  While on-device | 
 |  * time, with a lot of clutches, could serve as a useful approximation for | 
 |  * non-queued rotational devices, this is no longer viable with modern | 
 |  * devices, even the rotational ones. | 
 |  * | 
 |  * While there is no cost metric we can trivially observe, it isn't a | 
 |  * complete mystery.  For example, on a rotational device, seek cost | 
 |  * dominates while a contiguous transfer contributes a smaller amount | 
 |  * proportional to the size.  If we can characterize at least the relative | 
 |  * costs of these different types of IOs, it should be possible to | 
 |  * implement a reasonable work-conserving proportional IO resource | 
 |  * distribution. | 
 |  * | 
 |  * 1. IO Cost Model | 
 |  * | 
 |  * IO cost model estimates the cost of an IO given its basic parameters and | 
 |  * history (e.g. the end sector of the last IO).  The cost is measured in | 
 |  * device time.  If a given IO is estimated to cost 10ms, the device should | 
 |  * be able to process ~100 of those IOs in a second. | 
 |  * | 
 |  * Currently, there's only one builtin cost model - linear.  Each IO is | 
 |  * classified as sequential or random and given a base cost accordingly. | 
 |  * On top of that, a size cost proportional to the length of the IO is | 
 |  * added.  While simple, this model captures the operational | 
 |  * characteristics of a wide varienty of devices well enough.  Default | 
 |  * parameters for several different classes of devices are provided and the | 
 |  * parameters can be configured from userspace via | 
 |  * /sys/fs/cgroup/io.cost.model. | 
 |  * | 
 |  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate | 
 |  * device-specific coefficients. | 
 |  * | 
 |  * 2. Control Strategy | 
 |  * | 
 |  * The device virtual time (vtime) is used as the primary control metric. | 
 |  * The control strategy is composed of the following three parts. | 
 |  * | 
 |  * 2-1. Vtime Distribution | 
 |  * | 
 |  * When a cgroup becomes active in terms of IOs, its hierarchical share is | 
 |  * calculated.  Please consider the following hierarchy where the numbers | 
 |  * inside parentheses denote the configured weights. | 
 |  * | 
 |  *           root | 
 |  *         /       \ | 
 |  *      A (w:100)  B (w:300) | 
 |  *      /       \ | 
 |  *  A0 (w:100)  A1 (w:100) | 
 |  * | 
 |  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are | 
 |  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B | 
 |  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, | 
 |  * 12.5% each.  The distribution mechanism only cares about these flattened | 
 |  * shares.  They're called hweights (hierarchical weights) and always add | 
 |  * upto 1 (WEIGHT_ONE). | 
 |  * | 
 |  * A given cgroup's vtime runs slower in inverse proportion to its hweight. | 
 |  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) | 
 |  * against the device vtime - an IO which takes 10ms on the underlying | 
 |  * device is considered to take 80ms on A0. | 
 |  * | 
 |  * This constitutes the basis of IO capacity distribution.  Each cgroup's | 
 |  * vtime is running at a rate determined by its hweight.  A cgroup tracks | 
 |  * the vtime consumed by past IOs and can issue a new IO if doing so | 
 |  * wouldn't outrun the current device vtime.  Otherwise, the IO is | 
 |  * suspended until the vtime has progressed enough to cover it. | 
 |  * | 
 |  * 2-2. Vrate Adjustment | 
 |  * | 
 |  * It's unrealistic to expect the cost model to be perfect.  There are too | 
 |  * many devices and even on the same device the overall performance | 
 |  * fluctuates depending on numerous factors such as IO mixture and device | 
 |  * internal garbage collection.  The controller needs to adapt dynamically. | 
 |  * | 
 |  * This is achieved by adjusting the overall IO rate according to how busy | 
 |  * the device is.  If the device becomes overloaded, we're sending down too | 
 |  * many IOs and should generally slow down.  If there are waiting issuers | 
 |  * but the device isn't saturated, we're issuing too few and should | 
 |  * generally speed up. | 
 |  * | 
 |  * To slow down, we lower the vrate - the rate at which the device vtime | 
 |  * passes compared to the wall clock.  For example, if the vtime is running | 
 |  * at the vrate of 75%, all cgroups added up would only be able to issue | 
 |  * 750ms worth of IOs per second, and vice-versa for speeding up. | 
 |  * | 
 |  * Device business is determined using two criteria - rq wait and | 
 |  * completion latencies. | 
 |  * | 
 |  * When a device gets saturated, the on-device and then the request queues | 
 |  * fill up and a bio which is ready to be issued has to wait for a request | 
 |  * to become available.  When this delay becomes noticeable, it's a clear | 
 |  * indication that the device is saturated and we lower the vrate.  This | 
 |  * saturation signal is fairly conservative as it only triggers when both | 
 |  * hardware and software queues are filled up, and is used as the default | 
 |  * busy signal. | 
 |  * | 
 |  * As devices can have deep queues and be unfair in how the queued commands | 
 |  * are executed, soley depending on rq wait may not result in satisfactory | 
 |  * control quality.  For a better control quality, completion latency QoS | 
 |  * parameters can be configured so that the device is considered saturated | 
 |  * if N'th percentile completion latency rises above the set point. | 
 |  * | 
 |  * The completion latency requirements are a function of both the | 
 |  * underlying device characteristics and the desired IO latency quality of | 
 |  * service.  There is an inherent trade-off - the tighter the latency QoS, | 
 |  * the higher the bandwidth lossage.  Latency QoS is disabled by default | 
 |  * and can be set through /sys/fs/cgroup/io.cost.qos. | 
 |  * | 
 |  * 2-3. Work Conservation | 
 |  * | 
 |  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO | 
 |  * periodically while B is sending out enough parallel IOs to saturate the | 
 |  * device on its own.  Let's say A's usage amounts to 100ms worth of IO | 
 |  * cost per second, i.e., 10% of the device capacity.  The naive | 
 |  * distribution of half and half would lead to 60% utilization of the | 
 |  * device, a significant reduction in the total amount of work done | 
 |  * compared to free-for-all competition.  This is too high a cost to pay | 
 |  * for IO control. | 
 |  * | 
 |  * To conserve the total amount of work done, we keep track of how much | 
 |  * each active cgroup is actually using and yield part of its weight if | 
 |  * there are other cgroups which can make use of it.  In the above case, | 
 |  * A's weight will be lowered so that it hovers above the actual usage and | 
 |  * B would be able to use the rest. | 
 |  * | 
 |  * As we don't want to penalize a cgroup for donating its weight, the | 
 |  * surplus weight adjustment factors in a margin and has an immediate | 
 |  * snapback mechanism in case the cgroup needs more IO vtime for itself. | 
 |  * | 
 |  * Note that adjusting down surplus weights has the same effects as | 
 |  * accelerating vtime for other cgroups and work conservation can also be | 
 |  * implemented by adjusting vrate dynamically.  However, squaring who can | 
 |  * donate and should take back how much requires hweight propagations | 
 |  * anyway making it easier to implement and understand as a separate | 
 |  * mechanism. | 
 |  * | 
 |  * 3. Monitoring | 
 |  * | 
 |  * Instead of debugfs or other clumsy monitoring mechanisms, this | 
 |  * controller uses a drgn based monitoring script - | 
 |  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see | 
 |  * https://github.com/osandov/drgn.  The output looks like the following. | 
 |  * | 
 |  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% | 
 |  *                 active      weight      hweight% inflt% dbt  delay usages% | 
 |  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033 | 
 |  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077 | 
 |  * | 
 |  * - per	: Timer period | 
 |  * - cur_per	: Internal wall and device vtime clock | 
 |  * - vrate	: Device virtual time rate against wall clock | 
 |  * - weight	: Surplus-adjusted and configured weights | 
 |  * - hweight	: Surplus-adjusted and configured hierarchical weights | 
 |  * - inflt	: The percentage of in-flight IO cost at the end of last period | 
 |  * - del_ms	: Deferred issuer delay induction level and duration | 
 |  * - usages	: Usage history | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/time64.h> | 
 | #include <linux/parser.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/blk-cgroup.h> | 
 | #include <asm/local.h> | 
 | #include <asm/local64.h> | 
 | #include "blk-rq-qos.h" | 
 | #include "blk-stat.h" | 
 | #include "blk-wbt.h" | 
 |  | 
 | #ifdef CONFIG_TRACEPOINTS | 
 |  | 
 | /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ | 
 | #define TRACE_IOCG_PATH_LEN 1024 | 
 | static DEFINE_SPINLOCK(trace_iocg_path_lock); | 
 | static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; | 
 |  | 
 | #define TRACE_IOCG_PATH(type, iocg, ...)					\ | 
 | 	do {									\ | 
 | 		unsigned long flags;						\ | 
 | 		if (trace_iocost_##type##_enabled()) {				\ | 
 | 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\ | 
 | 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\ | 
 | 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\ | 
 | 			trace_iocost_##type(iocg, trace_iocg_path,		\ | 
 | 					      ##__VA_ARGS__);			\ | 
 | 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\ | 
 | 		}								\ | 
 | 	} while (0) | 
 |  | 
 | #else	/* CONFIG_TRACE_POINTS */ | 
 | #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0) | 
 | #endif	/* CONFIG_TRACE_POINTS */ | 
 |  | 
 | enum { | 
 | 	MILLION			= 1000000, | 
 |  | 
 | 	/* timer period is calculated from latency requirements, bound it */ | 
 | 	MIN_PERIOD		= USEC_PER_MSEC, | 
 | 	MAX_PERIOD		= USEC_PER_SEC, | 
 |  | 
 | 	/* | 
 | 	 * iocg->vtime is targeted at 50% behind the device vtime, which | 
 | 	 * serves as its IO credit buffer.  Surplus weight adjustment is | 
 | 	 * immediately canceled if the vtime margin runs below 10%. | 
 | 	 */ | 
 | 	MARGIN_MIN_PCT		= 10, | 
 | 	MARGIN_LOW_PCT		= 20, | 
 | 	MARGIN_TARGET_PCT	= 50, | 
 |  | 
 | 	INUSE_ADJ_STEP_PCT	= 25, | 
 |  | 
 | 	/* Have some play in timer operations */ | 
 | 	TIMER_SLACK_PCT		= 1, | 
 |  | 
 | 	/* 1/64k is granular enough and can easily be handled w/ u32 */ | 
 | 	WEIGHT_ONE		= 1 << 16, | 
 |  | 
 | 	/* | 
 | 	 * As vtime is used to calculate the cost of each IO, it needs to | 
 | 	 * be fairly high precision.  For example, it should be able to | 
 | 	 * represent the cost of a single page worth of discard with | 
 | 	 * suffificient accuracy.  At the same time, it should be able to | 
 | 	 * represent reasonably long enough durations to be useful and | 
 | 	 * convenient during operation. | 
 | 	 * | 
 | 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond | 
 | 	 * granularity and days of wrap-around time even at extreme vrates. | 
 | 	 */ | 
 | 	VTIME_PER_SEC_SHIFT	= 37, | 
 | 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT, | 
 | 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC, | 
 | 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC, | 
 |  | 
 | 	/* bound vrate adjustments within two orders of magnitude */ | 
 | 	VRATE_MIN_PPM		= 10000,	/* 1% */ | 
 | 	VRATE_MAX_PPM		= 100000000,	/* 10000% */ | 
 |  | 
 | 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, | 
 | 	VRATE_CLAMP_ADJ_PCT	= 4, | 
 |  | 
 | 	/* if IOs end up waiting for requests, issue less */ | 
 | 	RQ_WAIT_BUSY_PCT	= 5, | 
 |  | 
 | 	/* unbusy hysterisis */ | 
 | 	UNBUSY_THR_PCT		= 75, | 
 |  | 
 | 	/* | 
 | 	 * The effect of delay is indirect and non-linear and a huge amount of | 
 | 	 * future debt can accumulate abruptly while unthrottled. Linearly scale | 
 | 	 * up delay as debt is going up and then let it decay exponentially. | 
 | 	 * This gives us quick ramp ups while delay is accumulating and long | 
 | 	 * tails which can help reducing the frequency of debt explosions on | 
 | 	 * unthrottle. The parameters are experimentally determined. | 
 | 	 * | 
 | 	 * The delay mechanism provides adequate protection and behavior in many | 
 | 	 * cases. However, this is far from ideal and falls shorts on both | 
 | 	 * fronts. The debtors are often throttled too harshly costing a | 
 | 	 * significant level of fairness and possibly total work while the | 
 | 	 * protection against their impacts on the system can be choppy and | 
 | 	 * unreliable. | 
 | 	 * | 
 | 	 * The shortcoming primarily stems from the fact that, unlike for page | 
 | 	 * cache, the kernel doesn't have well-defined back-pressure propagation | 
 | 	 * mechanism and policies for anonymous memory. Fully addressing this | 
 | 	 * issue will likely require substantial improvements in the area. | 
 | 	 */ | 
 | 	MIN_DELAY_THR_PCT	= 500, | 
 | 	MAX_DELAY_THR_PCT	= 25000, | 
 | 	MIN_DELAY		= 250, | 
 | 	MAX_DELAY		= 250 * USEC_PER_MSEC, | 
 |  | 
 | 	/* halve debts if avg usage over 100ms is under 50% */ | 
 | 	DFGV_USAGE_PCT		= 50, | 
 | 	DFGV_PERIOD		= 100 * USEC_PER_MSEC, | 
 |  | 
 | 	/* don't let cmds which take a very long time pin lagging for too long */ | 
 | 	MAX_LAGGING_PERIODS	= 10, | 
 |  | 
 | 	/* switch iff the conditions are met for longer than this */ | 
 | 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC, | 
 |  | 
 | 	/* | 
 | 	 * Count IO size in 4k pages.  The 12bit shift helps keeping | 
 | 	 * size-proportional components of cost calculation in closer | 
 | 	 * numbers of digits to per-IO cost components. | 
 | 	 */ | 
 | 	IOC_PAGE_SHIFT		= 12, | 
 | 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT, | 
 | 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT, | 
 |  | 
 | 	/* if apart further than 16M, consider randio for linear model */ | 
 | 	LCOEF_RANDIO_PAGES	= 4096, | 
 | }; | 
 |  | 
 | enum ioc_running { | 
 | 	IOC_IDLE, | 
 | 	IOC_RUNNING, | 
 | 	IOC_STOP, | 
 | }; | 
 |  | 
 | /* io.cost.qos controls including per-dev enable of the whole controller */ | 
 | enum { | 
 | 	QOS_ENABLE, | 
 | 	QOS_CTRL, | 
 | 	NR_QOS_CTRL_PARAMS, | 
 | }; | 
 |  | 
 | /* io.cost.qos params */ | 
 | enum { | 
 | 	QOS_RPPM, | 
 | 	QOS_RLAT, | 
 | 	QOS_WPPM, | 
 | 	QOS_WLAT, | 
 | 	QOS_MIN, | 
 | 	QOS_MAX, | 
 | 	NR_QOS_PARAMS, | 
 | }; | 
 |  | 
 | /* io.cost.model controls */ | 
 | enum { | 
 | 	COST_CTRL, | 
 | 	COST_MODEL, | 
 | 	NR_COST_CTRL_PARAMS, | 
 | }; | 
 |  | 
 | /* builtin linear cost model coefficients */ | 
 | enum { | 
 | 	I_LCOEF_RBPS, | 
 | 	I_LCOEF_RSEQIOPS, | 
 | 	I_LCOEF_RRANDIOPS, | 
 | 	I_LCOEF_WBPS, | 
 | 	I_LCOEF_WSEQIOPS, | 
 | 	I_LCOEF_WRANDIOPS, | 
 | 	NR_I_LCOEFS, | 
 | }; | 
 |  | 
 | enum { | 
 | 	LCOEF_RPAGE, | 
 | 	LCOEF_RSEQIO, | 
 | 	LCOEF_RRANDIO, | 
 | 	LCOEF_WPAGE, | 
 | 	LCOEF_WSEQIO, | 
 | 	LCOEF_WRANDIO, | 
 | 	NR_LCOEFS, | 
 | }; | 
 |  | 
 | enum { | 
 | 	AUTOP_INVALID, | 
 | 	AUTOP_HDD, | 
 | 	AUTOP_SSD_QD1, | 
 | 	AUTOP_SSD_DFL, | 
 | 	AUTOP_SSD_FAST, | 
 | }; | 
 |  | 
 | struct ioc_params { | 
 | 	u32				qos[NR_QOS_PARAMS]; | 
 | 	u64				i_lcoefs[NR_I_LCOEFS]; | 
 | 	u64				lcoefs[NR_LCOEFS]; | 
 | 	u32				too_fast_vrate_pct; | 
 | 	u32				too_slow_vrate_pct; | 
 | }; | 
 |  | 
 | struct ioc_margins { | 
 | 	s64				min; | 
 | 	s64				low; | 
 | 	s64				target; | 
 | }; | 
 |  | 
 | struct ioc_missed { | 
 | 	local_t				nr_met; | 
 | 	local_t				nr_missed; | 
 | 	u32				last_met; | 
 | 	u32				last_missed; | 
 | }; | 
 |  | 
 | struct ioc_pcpu_stat { | 
 | 	struct ioc_missed		missed[2]; | 
 |  | 
 | 	local64_t			rq_wait_ns; | 
 | 	u64				last_rq_wait_ns; | 
 | }; | 
 |  | 
 | /* per device */ | 
 | struct ioc { | 
 | 	struct rq_qos			rqos; | 
 |  | 
 | 	bool				enabled; | 
 |  | 
 | 	struct ioc_params		params; | 
 | 	struct ioc_margins		margins; | 
 | 	u32				period_us; | 
 | 	u32				timer_slack_ns; | 
 | 	u64				vrate_min; | 
 | 	u64				vrate_max; | 
 |  | 
 | 	spinlock_t			lock; | 
 | 	struct timer_list		timer; | 
 | 	struct list_head		active_iocgs;	/* active cgroups */ | 
 | 	struct ioc_pcpu_stat __percpu	*pcpu_stat; | 
 |  | 
 | 	enum ioc_running		running; | 
 | 	atomic64_t			vtime_rate; | 
 | 	u64				vtime_base_rate; | 
 | 	s64				vtime_err; | 
 |  | 
 | 	seqcount_spinlock_t		period_seqcount; | 
 | 	u64				period_at;	/* wallclock starttime */ | 
 | 	u64				period_at_vtime; /* vtime starttime */ | 
 |  | 
 | 	atomic64_t			cur_period;	/* inc'd each period */ | 
 | 	int				busy_level;	/* saturation history */ | 
 |  | 
 | 	bool				weights_updated; | 
 | 	atomic_t			hweight_gen;	/* for lazy hweights */ | 
 |  | 
 | 	/* debt forgivness */ | 
 | 	u64				dfgv_period_at; | 
 | 	u64				dfgv_period_rem; | 
 | 	u64				dfgv_usage_us_sum; | 
 |  | 
 | 	u64				autop_too_fast_at; | 
 | 	u64				autop_too_slow_at; | 
 | 	int				autop_idx; | 
 | 	bool				user_qos_params:1; | 
 | 	bool				user_cost_model:1; | 
 | }; | 
 |  | 
 | struct iocg_pcpu_stat { | 
 | 	local64_t			abs_vusage; | 
 | }; | 
 |  | 
 | struct iocg_stat { | 
 | 	u64				usage_us; | 
 | 	u64				wait_us; | 
 | 	u64				indebt_us; | 
 | 	u64				indelay_us; | 
 | }; | 
 |  | 
 | /* per device-cgroup pair */ | 
 | struct ioc_gq { | 
 | 	struct blkg_policy_data		pd; | 
 | 	struct ioc			*ioc; | 
 |  | 
 | 	/* | 
 | 	 * A iocg can get its weight from two sources - an explicit | 
 | 	 * per-device-cgroup configuration or the default weight of the | 
 | 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup | 
 | 	 * configuration.  `weight` is the effective considering both | 
 | 	 * sources. | 
 | 	 * | 
 | 	 * When an idle cgroup becomes active its `active` goes from 0 to | 
 | 	 * `weight`.  `inuse` is the surplus adjusted active weight. | 
 | 	 * `active` and `inuse` are used to calculate `hweight_active` and | 
 | 	 * `hweight_inuse`. | 
 | 	 * | 
 | 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist | 
 | 	 * surplus adjustments. | 
 | 	 * | 
 | 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used | 
 | 	 * to determine and track adjustments. | 
 | 	 */ | 
 | 	u32				cfg_weight; | 
 | 	u32				weight; | 
 | 	u32				active; | 
 | 	u32				inuse; | 
 |  | 
 | 	u32				last_inuse; | 
 | 	s64				saved_margin; | 
 |  | 
 | 	sector_t			cursor;		/* to detect randio */ | 
 |  | 
 | 	/* | 
 | 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are | 
 | 	 * issued.  If lagging behind device vtime, the delta represents | 
 | 	 * the currently available IO budget.  If running ahead, the | 
 | 	 * overage. | 
 | 	 * | 
 | 	 * `vtime_done` is the same but progressed on completion rather | 
 | 	 * than issue.  The delta behind `vtime` represents the cost of | 
 | 	 * currently in-flight IOs. | 
 | 	 */ | 
 | 	atomic64_t			vtime; | 
 | 	atomic64_t			done_vtime; | 
 | 	u64				abs_vdebt; | 
 |  | 
 | 	/* current delay in effect and when it started */ | 
 | 	u64				delay; | 
 | 	u64				delay_at; | 
 |  | 
 | 	/* | 
 | 	 * The period this iocg was last active in.  Used for deactivation | 
 | 	 * and invalidating `vtime`. | 
 | 	 */ | 
 | 	atomic64_t			active_period; | 
 | 	struct list_head		active_list; | 
 |  | 
 | 	/* see __propagate_weights() and current_hweight() for details */ | 
 | 	u64				child_active_sum; | 
 | 	u64				child_inuse_sum; | 
 | 	u64				child_adjusted_sum; | 
 | 	int				hweight_gen; | 
 | 	u32				hweight_active; | 
 | 	u32				hweight_inuse; | 
 | 	u32				hweight_donating; | 
 | 	u32				hweight_after_donation; | 
 |  | 
 | 	struct list_head		walk_list; | 
 | 	struct list_head		surplus_list; | 
 |  | 
 | 	struct wait_queue_head		waitq; | 
 | 	struct hrtimer			waitq_timer; | 
 |  | 
 | 	/* timestamp at the latest activation */ | 
 | 	u64				activated_at; | 
 |  | 
 | 	/* statistics */ | 
 | 	struct iocg_pcpu_stat __percpu	*pcpu_stat; | 
 | 	struct iocg_stat		local_stat; | 
 | 	struct iocg_stat		desc_stat; | 
 | 	struct iocg_stat		last_stat; | 
 | 	u64				last_stat_abs_vusage; | 
 | 	u64				usage_delta_us; | 
 | 	u64				wait_since; | 
 | 	u64				indebt_since; | 
 | 	u64				indelay_since; | 
 |  | 
 | 	/* this iocg's depth in the hierarchy and ancestors including self */ | 
 | 	int				level; | 
 | 	struct ioc_gq			*ancestors[]; | 
 | }; | 
 |  | 
 | /* per cgroup */ | 
 | struct ioc_cgrp { | 
 | 	struct blkcg_policy_data	cpd; | 
 | 	unsigned int			dfl_weight; | 
 | }; | 
 |  | 
 | struct ioc_now { | 
 | 	u64				now_ns; | 
 | 	u64				now; | 
 | 	u64				vnow; | 
 | 	u64				vrate; | 
 | }; | 
 |  | 
 | struct iocg_wait { | 
 | 	struct wait_queue_entry		wait; | 
 | 	struct bio			*bio; | 
 | 	u64				abs_cost; | 
 | 	bool				committed; | 
 | }; | 
 |  | 
 | struct iocg_wake_ctx { | 
 | 	struct ioc_gq			*iocg; | 
 | 	u32				hw_inuse; | 
 | 	s64				vbudget; | 
 | }; | 
 |  | 
 | static const struct ioc_params autop[] = { | 
 | 	[AUTOP_HDD] = { | 
 | 		.qos				= { | 
 | 			[QOS_RLAT]		=        250000, /* 250ms */ | 
 | 			[QOS_WLAT]		=        250000, | 
 | 			[QOS_MIN]		= VRATE_MIN_PPM, | 
 | 			[QOS_MAX]		= VRATE_MAX_PPM, | 
 | 		}, | 
 | 		.i_lcoefs			= { | 
 | 			[I_LCOEF_RBPS]		=     174019176, | 
 | 			[I_LCOEF_RSEQIOPS]	=         41708, | 
 | 			[I_LCOEF_RRANDIOPS]	=           370, | 
 | 			[I_LCOEF_WBPS]		=     178075866, | 
 | 			[I_LCOEF_WSEQIOPS]	=         42705, | 
 | 			[I_LCOEF_WRANDIOPS]	=           378, | 
 | 		}, | 
 | 	}, | 
 | 	[AUTOP_SSD_QD1] = { | 
 | 		.qos				= { | 
 | 			[QOS_RLAT]		=         25000, /* 25ms */ | 
 | 			[QOS_WLAT]		=         25000, | 
 | 			[QOS_MIN]		= VRATE_MIN_PPM, | 
 | 			[QOS_MAX]		= VRATE_MAX_PPM, | 
 | 		}, | 
 | 		.i_lcoefs			= { | 
 | 			[I_LCOEF_RBPS]		=     245855193, | 
 | 			[I_LCOEF_RSEQIOPS]	=         61575, | 
 | 			[I_LCOEF_RRANDIOPS]	=          6946, | 
 | 			[I_LCOEF_WBPS]		=     141365009, | 
 | 			[I_LCOEF_WSEQIOPS]	=         33716, | 
 | 			[I_LCOEF_WRANDIOPS]	=         26796, | 
 | 		}, | 
 | 	}, | 
 | 	[AUTOP_SSD_DFL] = { | 
 | 		.qos				= { | 
 | 			[QOS_RLAT]		=         25000, /* 25ms */ | 
 | 			[QOS_WLAT]		=         25000, | 
 | 			[QOS_MIN]		= VRATE_MIN_PPM, | 
 | 			[QOS_MAX]		= VRATE_MAX_PPM, | 
 | 		}, | 
 | 		.i_lcoefs			= { | 
 | 			[I_LCOEF_RBPS]		=     488636629, | 
 | 			[I_LCOEF_RSEQIOPS]	=          8932, | 
 | 			[I_LCOEF_RRANDIOPS]	=          8518, | 
 | 			[I_LCOEF_WBPS]		=     427891549, | 
 | 			[I_LCOEF_WSEQIOPS]	=         28755, | 
 | 			[I_LCOEF_WRANDIOPS]	=         21940, | 
 | 		}, | 
 | 		.too_fast_vrate_pct		=           500, | 
 | 	}, | 
 | 	[AUTOP_SSD_FAST] = { | 
 | 		.qos				= { | 
 | 			[QOS_RLAT]		=          5000, /* 5ms */ | 
 | 			[QOS_WLAT]		=          5000, | 
 | 			[QOS_MIN]		= VRATE_MIN_PPM, | 
 | 			[QOS_MAX]		= VRATE_MAX_PPM, | 
 | 		}, | 
 | 		.i_lcoefs			= { | 
 | 			[I_LCOEF_RBPS]		=    3102524156LLU, | 
 | 			[I_LCOEF_RSEQIOPS]	=        724816, | 
 | 			[I_LCOEF_RRANDIOPS]	=        778122, | 
 | 			[I_LCOEF_WBPS]		=    1742780862LLU, | 
 | 			[I_LCOEF_WSEQIOPS]	=        425702, | 
 | 			[I_LCOEF_WRANDIOPS]	=	 443193, | 
 | 		}, | 
 | 		.too_slow_vrate_pct		=            10, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* | 
 |  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on | 
 |  * vtime credit shortage and down on device saturation. | 
 |  */ | 
 | static u32 vrate_adj_pct[] = | 
 | 	{ 0, 0, 0, 0, | 
 | 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 
 | 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | 
 | 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; | 
 |  | 
 | static struct blkcg_policy blkcg_policy_iocost; | 
 |  | 
 | /* accessors and helpers */ | 
 | static struct ioc *rqos_to_ioc(struct rq_qos *rqos) | 
 | { | 
 | 	return container_of(rqos, struct ioc, rqos); | 
 | } | 
 |  | 
 | static struct ioc *q_to_ioc(struct request_queue *q) | 
 | { | 
 | 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); | 
 | } | 
 |  | 
 | static const char *q_name(struct request_queue *q) | 
 | { | 
 | 	if (blk_queue_registered(q)) | 
 | 		return kobject_name(q->kobj.parent); | 
 | 	else | 
 | 		return "<unknown>"; | 
 | } | 
 |  | 
 | static const char __maybe_unused *ioc_name(struct ioc *ioc) | 
 | { | 
 | 	return q_name(ioc->rqos.q); | 
 | } | 
 |  | 
 | static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) | 
 | { | 
 | 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL; | 
 | } | 
 |  | 
 | static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) | 
 | { | 
 | 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); | 
 | } | 
 |  | 
 | static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) | 
 | { | 
 | 	return pd_to_blkg(&iocg->pd); | 
 | } | 
 |  | 
 | static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) | 
 | { | 
 | 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), | 
 | 			    struct ioc_cgrp, cpd); | 
 | } | 
 |  | 
 | /* | 
 |  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical | 
 |  * weight, the more expensive each IO.  Must round up. | 
 |  */ | 
 | static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) | 
 | { | 
 | 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse); | 
 | } | 
 |  | 
 | /* | 
 |  * The inverse of abs_cost_to_cost().  Must round up. | 
 |  */ | 
 | static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) | 
 | { | 
 | 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE); | 
 | } | 
 |  | 
 | static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, | 
 | 			    u64 abs_cost, u64 cost) | 
 | { | 
 | 	struct iocg_pcpu_stat *gcs; | 
 |  | 
 | 	bio->bi_iocost_cost = cost; | 
 | 	atomic64_add(cost, &iocg->vtime); | 
 |  | 
 | 	gcs = get_cpu_ptr(iocg->pcpu_stat); | 
 | 	local64_add(abs_cost, &gcs->abs_vusage); | 
 | 	put_cpu_ptr(gcs); | 
 | } | 
 |  | 
 | static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags) | 
 | { | 
 | 	if (lock_ioc) { | 
 | 		spin_lock_irqsave(&iocg->ioc->lock, *flags); | 
 | 		spin_lock(&iocg->waitq.lock); | 
 | 	} else { | 
 | 		spin_lock_irqsave(&iocg->waitq.lock, *flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags) | 
 | { | 
 | 	if (unlock_ioc) { | 
 | 		spin_unlock(&iocg->waitq.lock); | 
 | 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags); | 
 | 	} else { | 
 | 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags); | 
 | 	} | 
 | } | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/iocost.h> | 
 |  | 
 | static void ioc_refresh_margins(struct ioc *ioc) | 
 | { | 
 | 	struct ioc_margins *margins = &ioc->margins; | 
 | 	u32 period_us = ioc->period_us; | 
 | 	u64 vrate = ioc->vtime_base_rate; | 
 |  | 
 | 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate; | 
 | 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate; | 
 | 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate; | 
 | } | 
 |  | 
 | /* latency Qos params changed, update period_us and all the dependent params */ | 
 | static void ioc_refresh_period_us(struct ioc *ioc) | 
 | { | 
 | 	u32 ppm, lat, multi, period_us; | 
 |  | 
 | 	lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 	/* pick the higher latency target */ | 
 | 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { | 
 | 		ppm = ioc->params.qos[QOS_RPPM]; | 
 | 		lat = ioc->params.qos[QOS_RLAT]; | 
 | 	} else { | 
 | 		ppm = ioc->params.qos[QOS_WPPM]; | 
 | 		lat = ioc->params.qos[QOS_WLAT]; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We want the period to be long enough to contain a healthy number | 
 | 	 * of IOs while short enough for granular control.  Define it as a | 
 | 	 * multiple of the latency target.  Ideally, the multiplier should | 
 | 	 * be scaled according to the percentile so that it would nominally | 
 | 	 * contain a certain number of requests.  Let's be simpler and | 
 | 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). | 
 | 	 */ | 
 | 	if (ppm) | 
 | 		multi = max_t(u32, (MILLION - ppm) / 50000, 2); | 
 | 	else | 
 | 		multi = 2; | 
 | 	period_us = multi * lat; | 
 | 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); | 
 |  | 
 | 	/* calculate dependent params */ | 
 | 	ioc->period_us = period_us; | 
 | 	ioc->timer_slack_ns = div64_u64( | 
 | 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT, | 
 | 		100); | 
 | 	ioc_refresh_margins(ioc); | 
 | } | 
 |  | 
 | static int ioc_autop_idx(struct ioc *ioc) | 
 | { | 
 | 	int idx = ioc->autop_idx; | 
 | 	const struct ioc_params *p = &autop[idx]; | 
 | 	u32 vrate_pct; | 
 | 	u64 now_ns; | 
 |  | 
 | 	/* rotational? */ | 
 | 	if (!blk_queue_nonrot(ioc->rqos.q)) | 
 | 		return AUTOP_HDD; | 
 |  | 
 | 	/* handle SATA SSDs w/ broken NCQ */ | 
 | 	if (blk_queue_depth(ioc->rqos.q) == 1) | 
 | 		return AUTOP_SSD_QD1; | 
 |  | 
 | 	/* use one of the normal ssd sets */ | 
 | 	if (idx < AUTOP_SSD_DFL) | 
 | 		return AUTOP_SSD_DFL; | 
 |  | 
 | 	/* if user is overriding anything, maintain what was there */ | 
 | 	if (ioc->user_qos_params || ioc->user_cost_model) | 
 | 		return idx; | 
 |  | 
 | 	/* step up/down based on the vrate */ | 
 | 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC); | 
 | 	now_ns = ktime_get_ns(); | 
 |  | 
 | 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { | 
 | 		if (!ioc->autop_too_fast_at) | 
 | 			ioc->autop_too_fast_at = now_ns; | 
 | 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) | 
 | 			return idx + 1; | 
 | 	} else { | 
 | 		ioc->autop_too_fast_at = 0; | 
 | 	} | 
 |  | 
 | 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { | 
 | 		if (!ioc->autop_too_slow_at) | 
 | 			ioc->autop_too_slow_at = now_ns; | 
 | 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) | 
 | 			return idx - 1; | 
 | 	} else { | 
 | 		ioc->autop_too_slow_at = 0; | 
 | 	} | 
 |  | 
 | 	return idx; | 
 | } | 
 |  | 
 | /* | 
 |  * Take the followings as input | 
 |  * | 
 |  *  @bps	maximum sequential throughput | 
 |  *  @seqiops	maximum sequential 4k iops | 
 |  *  @randiops	maximum random 4k iops | 
 |  * | 
 |  * and calculate the linear model cost coefficients. | 
 |  * | 
 |  *  *@page	per-page cost		1s / (@bps / 4096) | 
 |  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0) | 
 |  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0) | 
 |  */ | 
 | static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, | 
 | 			u64 *page, u64 *seqio, u64 *randio) | 
 | { | 
 | 	u64 v; | 
 |  | 
 | 	*page = *seqio = *randio = 0; | 
 |  | 
 | 	if (bps) | 
 | 		*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, | 
 | 					   DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); | 
 |  | 
 | 	if (seqiops) { | 
 | 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); | 
 | 		if (v > *page) | 
 | 			*seqio = v - *page; | 
 | 	} | 
 |  | 
 | 	if (randiops) { | 
 | 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); | 
 | 		if (v > *page) | 
 | 			*randio = v - *page; | 
 | 	} | 
 | } | 
 |  | 
 | static void ioc_refresh_lcoefs(struct ioc *ioc) | 
 | { | 
 | 	u64 *u = ioc->params.i_lcoefs; | 
 | 	u64 *c = ioc->params.lcoefs; | 
 |  | 
 | 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], | 
 | 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); | 
 | 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], | 
 | 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); | 
 | } | 
 |  | 
 | static bool ioc_refresh_params(struct ioc *ioc, bool force) | 
 | { | 
 | 	const struct ioc_params *p; | 
 | 	int idx; | 
 |  | 
 | 	lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 	idx = ioc_autop_idx(ioc); | 
 | 	p = &autop[idx]; | 
 |  | 
 | 	if (idx == ioc->autop_idx && !force) | 
 | 		return false; | 
 |  | 
 | 	if (idx != ioc->autop_idx) | 
 | 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); | 
 |  | 
 | 	ioc->autop_idx = idx; | 
 | 	ioc->autop_too_fast_at = 0; | 
 | 	ioc->autop_too_slow_at = 0; | 
 |  | 
 | 	if (!ioc->user_qos_params) | 
 | 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); | 
 | 	if (!ioc->user_cost_model) | 
 | 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); | 
 |  | 
 | 	ioc_refresh_period_us(ioc); | 
 | 	ioc_refresh_lcoefs(ioc); | 
 |  | 
 | 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * | 
 | 					    VTIME_PER_USEC, MILLION); | 
 | 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * | 
 | 				   VTIME_PER_USEC, MILLION); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * When an iocg accumulates too much vtime or gets deactivated, we throw away | 
 |  * some vtime, which lowers the overall device utilization. As the exact amount | 
 |  * which is being thrown away is known, we can compensate by accelerating the | 
 |  * vrate accordingly so that the extra vtime generated in the current period | 
 |  * matches what got lost. | 
 |  */ | 
 | static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now) | 
 | { | 
 | 	s64 pleft = ioc->period_at + ioc->period_us - now->now; | 
 | 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate; | 
 | 	s64 vcomp, vcomp_min, vcomp_max; | 
 |  | 
 | 	lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 	/* we need some time left in this period */ | 
 | 	if (pleft <= 0) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * Calculate how much vrate should be adjusted to offset the error. | 
 | 	 * Limit the amount of adjustment and deduct the adjusted amount from | 
 | 	 * the error. | 
 | 	 */ | 
 | 	vcomp = -div64_s64(ioc->vtime_err, pleft); | 
 | 	vcomp_min = -(ioc->vtime_base_rate >> 1); | 
 | 	vcomp_max = ioc->vtime_base_rate; | 
 | 	vcomp = clamp(vcomp, vcomp_min, vcomp_max); | 
 |  | 
 | 	ioc->vtime_err += vcomp * pleft; | 
 |  | 
 | 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp); | 
 | done: | 
 | 	/* bound how much error can accumulate */ | 
 | 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod); | 
 | } | 
 |  | 
 | static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct, | 
 | 				  int nr_lagging, int nr_shortages, | 
 | 				  int prev_busy_level, u32 *missed_ppm) | 
 | { | 
 | 	u64 vrate = ioc->vtime_base_rate; | 
 | 	u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; | 
 |  | 
 | 	if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) { | 
 | 		if (ioc->busy_level != prev_busy_level || nr_lagging) | 
 | 			trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), | 
 | 						   missed_ppm, rq_wait_pct, | 
 | 						   nr_lagging, nr_shortages); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If vrate is out of bounds, apply clamp gradually as the | 
 | 	 * bounds can change abruptly.  Otherwise, apply busy_level | 
 | 	 * based adjustment. | 
 | 	 */ | 
 | 	if (vrate < vrate_min) { | 
 | 		vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100); | 
 | 		vrate = min(vrate, vrate_min); | 
 | 	} else if (vrate > vrate_max) { | 
 | 		vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100); | 
 | 		vrate = max(vrate, vrate_max); | 
 | 	} else { | 
 | 		int idx = min_t(int, abs(ioc->busy_level), | 
 | 				ARRAY_SIZE(vrate_adj_pct) - 1); | 
 | 		u32 adj_pct = vrate_adj_pct[idx]; | 
 |  | 
 | 		if (ioc->busy_level > 0) | 
 | 			adj_pct = 100 - adj_pct; | 
 | 		else | 
 | 			adj_pct = 100 + adj_pct; | 
 |  | 
 | 		vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), | 
 | 			      vrate_min, vrate_max); | 
 | 	} | 
 |  | 
 | 	trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, | 
 | 				   nr_lagging, nr_shortages); | 
 |  | 
 | 	ioc->vtime_base_rate = vrate; | 
 | 	ioc_refresh_margins(ioc); | 
 | } | 
 |  | 
 | /* take a snapshot of the current [v]time and vrate */ | 
 | static void ioc_now(struct ioc *ioc, struct ioc_now *now) | 
 | { | 
 | 	unsigned seq; | 
 |  | 
 | 	now->now_ns = ktime_get(); | 
 | 	now->now = ktime_to_us(now->now_ns); | 
 | 	now->vrate = atomic64_read(&ioc->vtime_rate); | 
 |  | 
 | 	/* | 
 | 	 * The current vtime is | 
 | 	 * | 
 | 	 *   vtime at period start + (wallclock time since the start) * vrate | 
 | 	 * | 
 | 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is | 
 | 	 * needed, they're seqcount protected. | 
 | 	 */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&ioc->period_seqcount); | 
 | 		now->vnow = ioc->period_at_vtime + | 
 | 			(now->now - ioc->period_at) * now->vrate; | 
 | 	} while (read_seqcount_retry(&ioc->period_seqcount, seq)); | 
 | } | 
 |  | 
 | static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) | 
 | { | 
 | 	WARN_ON_ONCE(ioc->running != IOC_RUNNING); | 
 |  | 
 | 	write_seqcount_begin(&ioc->period_seqcount); | 
 | 	ioc->period_at = now->now; | 
 | 	ioc->period_at_vtime = now->vnow; | 
 | 	write_seqcount_end(&ioc->period_seqcount); | 
 |  | 
 | 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); | 
 | 	add_timer(&ioc->timer); | 
 | } | 
 |  | 
 | /* | 
 |  * Update @iocg's `active` and `inuse` to @active and @inuse, update level | 
 |  * weight sums and propagate upwards accordingly. If @save, the current margin | 
 |  * is saved to be used as reference for later inuse in-period adjustments. | 
 |  */ | 
 | static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, | 
 | 				bool save, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	int lvl; | 
 |  | 
 | 	lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 	/* | 
 | 	 * For an active leaf node, its inuse shouldn't be zero or exceed | 
 | 	 * @active. An active internal node's inuse is solely determined by the | 
 | 	 * inuse to active ratio of its children regardless of @inuse. | 
 | 	 */ | 
 | 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) { | 
 | 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum, | 
 | 					   iocg->child_active_sum); | 
 | 	} else { | 
 | 		inuse = clamp_t(u32, inuse, 1, active); | 
 | 	} | 
 |  | 
 | 	iocg->last_inuse = iocg->inuse; | 
 | 	if (save) | 
 | 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime); | 
 |  | 
 | 	if (active == iocg->active && inuse == iocg->inuse) | 
 | 		return; | 
 |  | 
 | 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) { | 
 | 		struct ioc_gq *parent = iocg->ancestors[lvl]; | 
 | 		struct ioc_gq *child = iocg->ancestors[lvl + 1]; | 
 | 		u32 parent_active = 0, parent_inuse = 0; | 
 |  | 
 | 		/* update the level sums */ | 
 | 		parent->child_active_sum += (s32)(active - child->active); | 
 | 		parent->child_inuse_sum += (s32)(inuse - child->inuse); | 
 | 		/* apply the updates */ | 
 | 		child->active = active; | 
 | 		child->inuse = inuse; | 
 |  | 
 | 		/* | 
 | 		 * The delta between inuse and active sums indicates that | 
 | 		 * much of weight is being given away.  Parent's inuse | 
 | 		 * and active should reflect the ratio. | 
 | 		 */ | 
 | 		if (parent->child_active_sum) { | 
 | 			parent_active = parent->weight; | 
 | 			parent_inuse = DIV64_U64_ROUND_UP( | 
 | 				parent_active * parent->child_inuse_sum, | 
 | 				parent->child_active_sum); | 
 | 		} | 
 |  | 
 | 		/* do we need to keep walking up? */ | 
 | 		if (parent_active == parent->active && | 
 | 		    parent_inuse == parent->inuse) | 
 | 			break; | 
 |  | 
 | 		active = parent_active; | 
 | 		inuse = parent_inuse; | 
 | 	} | 
 |  | 
 | 	ioc->weights_updated = true; | 
 | } | 
 |  | 
 | static void commit_weights(struct ioc *ioc) | 
 | { | 
 | 	lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 	if (ioc->weights_updated) { | 
 | 		/* paired with rmb in current_hweight(), see there */ | 
 | 		smp_wmb(); | 
 | 		atomic_inc(&ioc->hweight_gen); | 
 | 		ioc->weights_updated = false; | 
 | 	} | 
 | } | 
 |  | 
 | static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse, | 
 | 			      bool save, struct ioc_now *now) | 
 | { | 
 | 	__propagate_weights(iocg, active, inuse, save, now); | 
 | 	commit_weights(iocg->ioc); | 
 | } | 
 |  | 
 | static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	int lvl; | 
 | 	u32 hwa, hwi; | 
 | 	int ioc_gen; | 
 |  | 
 | 	/* hot path - if uptodate, use cached */ | 
 | 	ioc_gen = atomic_read(&ioc->hweight_gen); | 
 | 	if (ioc_gen == iocg->hweight_gen) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Paired with wmb in commit_weights(). If we saw the updated | 
 | 	 * hweight_gen, all the weight updates from __propagate_weights() are | 
 | 	 * visible too. | 
 | 	 * | 
 | 	 * We can race with weight updates during calculation and get it | 
 | 	 * wrong.  However, hweight_gen would have changed and a future | 
 | 	 * reader will recalculate and we're guaranteed to discard the | 
 | 	 * wrong result soon. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	hwa = hwi = WEIGHT_ONE; | 
 | 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) { | 
 | 		struct ioc_gq *parent = iocg->ancestors[lvl]; | 
 | 		struct ioc_gq *child = iocg->ancestors[lvl + 1]; | 
 | 		u64 active_sum = READ_ONCE(parent->child_active_sum); | 
 | 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum); | 
 | 		u32 active = READ_ONCE(child->active); | 
 | 		u32 inuse = READ_ONCE(child->inuse); | 
 |  | 
 | 		/* we can race with deactivations and either may read as zero */ | 
 | 		if (!active_sum || !inuse_sum) | 
 | 			continue; | 
 |  | 
 | 		active_sum = max_t(u64, active, active_sum); | 
 | 		hwa = div64_u64((u64)hwa * active, active_sum); | 
 |  | 
 | 		inuse_sum = max_t(u64, inuse, inuse_sum); | 
 | 		hwi = div64_u64((u64)hwi * inuse, inuse_sum); | 
 | 	} | 
 |  | 
 | 	iocg->hweight_active = max_t(u32, hwa, 1); | 
 | 	iocg->hweight_inuse = max_t(u32, hwi, 1); | 
 | 	iocg->hweight_gen = ioc_gen; | 
 | out: | 
 | 	if (hw_activep) | 
 | 		*hw_activep = iocg->hweight_active; | 
 | 	if (hw_inusep) | 
 | 		*hw_inusep = iocg->hweight_inuse; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the | 
 |  * other weights stay unchanged. | 
 |  */ | 
 | static u32 current_hweight_max(struct ioc_gq *iocg) | 
 | { | 
 | 	u32 hwm = WEIGHT_ONE; | 
 | 	u32 inuse = iocg->active; | 
 | 	u64 child_inuse_sum; | 
 | 	int lvl; | 
 |  | 
 | 	lockdep_assert_held(&iocg->ioc->lock); | 
 |  | 
 | 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) { | 
 | 		struct ioc_gq *parent = iocg->ancestors[lvl]; | 
 | 		struct ioc_gq *child = iocg->ancestors[lvl + 1]; | 
 |  | 
 | 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse; | 
 | 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum); | 
 | 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum, | 
 | 					   parent->child_active_sum); | 
 | 	} | 
 |  | 
 | 	return max_t(u32, hwm, 1); | 
 | } | 
 |  | 
 | static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	struct blkcg_gq *blkg = iocg_to_blkg(iocg); | 
 | 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); | 
 | 	u32 weight; | 
 |  | 
 | 	lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 	weight = iocg->cfg_weight ?: iocc->dfl_weight; | 
 | 	if (weight != iocg->weight && iocg->active) | 
 | 		propagate_weights(iocg, weight, iocg->inuse, true, now); | 
 | 	iocg->weight = weight; | 
 | } | 
 |  | 
 | static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	u64 last_period, cur_period; | 
 | 	u64 vtime, vtarget; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * If seem to be already active, just update the stamp to tell the | 
 | 	 * timer that we're still active.  We don't mind occassional races. | 
 | 	 */ | 
 | 	if (!list_empty(&iocg->active_list)) { | 
 | 		ioc_now(ioc, now); | 
 | 		cur_period = atomic64_read(&ioc->cur_period); | 
 | 		if (atomic64_read(&iocg->active_period) != cur_period) | 
 | 			atomic64_set(&iocg->active_period, cur_period); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* racy check on internal node IOs, treat as root level IOs */ | 
 | 	if (iocg->child_active_sum) | 
 | 		return false; | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 |  | 
 | 	ioc_now(ioc, now); | 
 |  | 
 | 	/* update period */ | 
 | 	cur_period = atomic64_read(&ioc->cur_period); | 
 | 	last_period = atomic64_read(&iocg->active_period); | 
 | 	atomic64_set(&iocg->active_period, cur_period); | 
 |  | 
 | 	/* already activated or breaking leaf-only constraint? */ | 
 | 	if (!list_empty(&iocg->active_list)) | 
 | 		goto succeed_unlock; | 
 | 	for (i = iocg->level - 1; i > 0; i--) | 
 | 		if (!list_empty(&iocg->ancestors[i]->active_list)) | 
 | 			goto fail_unlock; | 
 |  | 
 | 	if (iocg->child_active_sum) | 
 | 		goto fail_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Always start with the target budget. On deactivation, we throw away | 
 | 	 * anything above it. | 
 | 	 */ | 
 | 	vtarget = now->vnow - ioc->margins.target; | 
 | 	vtime = atomic64_read(&iocg->vtime); | 
 |  | 
 | 	atomic64_add(vtarget - vtime, &iocg->vtime); | 
 | 	atomic64_add(vtarget - vtime, &iocg->done_vtime); | 
 | 	vtime = vtarget; | 
 |  | 
 | 	/* | 
 | 	 * Activate, propagate weight and start period timer if not | 
 | 	 * running.  Reset hweight_gen to avoid accidental match from | 
 | 	 * wrapping. | 
 | 	 */ | 
 | 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; | 
 | 	list_add(&iocg->active_list, &ioc->active_iocgs); | 
 |  | 
 | 	propagate_weights(iocg, iocg->weight, | 
 | 			  iocg->last_inuse ?: iocg->weight, true, now); | 
 |  | 
 | 	TRACE_IOCG_PATH(iocg_activate, iocg, now, | 
 | 			last_period, cur_period, vtime); | 
 |  | 
 | 	iocg->activated_at = now->now; | 
 |  | 
 | 	if (ioc->running == IOC_IDLE) { | 
 | 		ioc->running = IOC_RUNNING; | 
 | 		ioc->dfgv_period_at = now->now; | 
 | 		ioc->dfgv_period_rem = 0; | 
 | 		ioc_start_period(ioc, now); | 
 | 	} | 
 |  | 
 | succeed_unlock: | 
 | 	spin_unlock_irq(&ioc->lock); | 
 | 	return true; | 
 |  | 
 | fail_unlock: | 
 | 	spin_unlock_irq(&ioc->lock); | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	struct blkcg_gq *blkg = iocg_to_blkg(iocg); | 
 | 	u64 tdelta, delay, new_delay; | 
 | 	s64 vover, vover_pct; | 
 | 	u32 hwa; | 
 |  | 
 | 	lockdep_assert_held(&iocg->waitq.lock); | 
 |  | 
 | 	/* calculate the current delay in effect - 1/2 every second */ | 
 | 	tdelta = now->now - iocg->delay_at; | 
 | 	if (iocg->delay) | 
 | 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC); | 
 | 	else | 
 | 		delay = 0; | 
 |  | 
 | 	/* calculate the new delay from the debt amount */ | 
 | 	current_hweight(iocg, &hwa, NULL); | 
 | 	vover = atomic64_read(&iocg->vtime) + | 
 | 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow; | 
 | 	vover_pct = div64_s64(100 * vover, | 
 | 			      ioc->period_us * ioc->vtime_base_rate); | 
 |  | 
 | 	if (vover_pct <= MIN_DELAY_THR_PCT) | 
 | 		new_delay = 0; | 
 | 	else if (vover_pct >= MAX_DELAY_THR_PCT) | 
 | 		new_delay = MAX_DELAY; | 
 | 	else | 
 | 		new_delay = MIN_DELAY + | 
 | 			div_u64((MAX_DELAY - MIN_DELAY) * | 
 | 				(vover_pct - MIN_DELAY_THR_PCT), | 
 | 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT); | 
 |  | 
 | 	/* pick the higher one and apply */ | 
 | 	if (new_delay > delay) { | 
 | 		iocg->delay = new_delay; | 
 | 		iocg->delay_at = now->now; | 
 | 		delay = new_delay; | 
 | 	} | 
 |  | 
 | 	if (delay >= MIN_DELAY) { | 
 | 		if (!iocg->indelay_since) | 
 | 			iocg->indelay_since = now->now; | 
 | 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC); | 
 | 		return true; | 
 | 	} else { | 
 | 		if (iocg->indelay_since) { | 
 | 			iocg->local_stat.indelay_us += now->now - iocg->indelay_since; | 
 | 			iocg->indelay_since = 0; | 
 | 		} | 
 | 		iocg->delay = 0; | 
 | 		blkcg_clear_delay(blkg); | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost, | 
 | 			    struct ioc_now *now) | 
 | { | 
 | 	struct iocg_pcpu_stat *gcs; | 
 |  | 
 | 	lockdep_assert_held(&iocg->ioc->lock); | 
 | 	lockdep_assert_held(&iocg->waitq.lock); | 
 | 	WARN_ON_ONCE(list_empty(&iocg->active_list)); | 
 |  | 
 | 	/* | 
 | 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum | 
 | 	 * inuse donating all of it share to others until its debt is paid off. | 
 | 	 */ | 
 | 	if (!iocg->abs_vdebt && abs_cost) { | 
 | 		iocg->indebt_since = now->now; | 
 | 		propagate_weights(iocg, iocg->active, 0, false, now); | 
 | 	} | 
 |  | 
 | 	iocg->abs_vdebt += abs_cost; | 
 |  | 
 | 	gcs = get_cpu_ptr(iocg->pcpu_stat); | 
 | 	local64_add(abs_cost, &gcs->abs_vusage); | 
 | 	put_cpu_ptr(gcs); | 
 | } | 
 |  | 
 | static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay, | 
 | 			  struct ioc_now *now) | 
 | { | 
 | 	lockdep_assert_held(&iocg->ioc->lock); | 
 | 	lockdep_assert_held(&iocg->waitq.lock); | 
 |  | 
 | 	/* make sure that nobody messed with @iocg */ | 
 | 	WARN_ON_ONCE(list_empty(&iocg->active_list)); | 
 | 	WARN_ON_ONCE(iocg->inuse > 1); | 
 |  | 
 | 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt); | 
 |  | 
 | 	/* if debt is paid in full, restore inuse */ | 
 | 	if (!iocg->abs_vdebt) { | 
 | 		iocg->local_stat.indebt_us += now->now - iocg->indebt_since; | 
 | 		iocg->indebt_since = 0; | 
 |  | 
 | 		propagate_weights(iocg, iocg->active, iocg->last_inuse, | 
 | 				  false, now); | 
 | 	} | 
 | } | 
 |  | 
 | static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, | 
 | 			int flags, void *key) | 
 | { | 
 | 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); | 
 | 	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; | 
 | 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); | 
 |  | 
 | 	ctx->vbudget -= cost; | 
 |  | 
 | 	if (ctx->vbudget < 0) | 
 | 		return -1; | 
 |  | 
 | 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost); | 
 |  | 
 | 	/* | 
 | 	 * autoremove_wake_function() removes the wait entry only when it | 
 | 	 * actually changed the task state.  We want the wait always | 
 | 	 * removed.  Remove explicitly and use default_wake_function(). | 
 | 	 */ | 
 | 	list_del_init(&wq_entry->entry); | 
 | 	wait->committed = true; | 
 |  | 
 | 	default_wake_function(wq_entry, mode, flags, key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters | 
 |  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in | 
 |  * addition to iocg->waitq.lock. | 
 |  */ | 
 | static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt, | 
 | 			    struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	struct iocg_wake_ctx ctx = { .iocg = iocg }; | 
 | 	u64 vshortage, expires, oexpires; | 
 | 	s64 vbudget; | 
 | 	u32 hwa; | 
 |  | 
 | 	lockdep_assert_held(&iocg->waitq.lock); | 
 |  | 
 | 	current_hweight(iocg, &hwa, NULL); | 
 | 	vbudget = now->vnow - atomic64_read(&iocg->vtime); | 
 |  | 
 | 	/* pay off debt */ | 
 | 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) { | 
 | 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa); | 
 | 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt); | 
 | 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa); | 
 |  | 
 | 		lockdep_assert_held(&ioc->lock); | 
 |  | 
 | 		atomic64_add(vpay, &iocg->vtime); | 
 | 		atomic64_add(vpay, &iocg->done_vtime); | 
 | 		iocg_pay_debt(iocg, abs_vpay, now); | 
 | 		vbudget -= vpay; | 
 | 	} | 
 |  | 
 | 	if (iocg->abs_vdebt || iocg->delay) | 
 | 		iocg_kick_delay(iocg, now); | 
 |  | 
 | 	/* | 
 | 	 * Debt can still be outstanding if we haven't paid all yet or the | 
 | 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters | 
 | 	 * under debt. Make sure @vbudget reflects the outstanding amount and is | 
 | 	 * not positive. | 
 | 	 */ | 
 | 	if (iocg->abs_vdebt) { | 
 | 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa); | 
 | 		vbudget = min_t(s64, 0, vbudget - vdebt); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Wake up the ones which are due and see how much vtime we'll need for | 
 | 	 * the next one. As paying off debt restores hw_inuse, it must be read | 
 | 	 * after the above debt payment. | 
 | 	 */ | 
 | 	ctx.vbudget = vbudget; | 
 | 	current_hweight(iocg, NULL, &ctx.hw_inuse); | 
 |  | 
 | 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); | 
 |  | 
 | 	if (!waitqueue_active(&iocg->waitq)) { | 
 | 		if (iocg->wait_since) { | 
 | 			iocg->local_stat.wait_us += now->now - iocg->wait_since; | 
 | 			iocg->wait_since = 0; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!iocg->wait_since) | 
 | 		iocg->wait_since = now->now; | 
 |  | 
 | 	if (WARN_ON_ONCE(ctx.vbudget >= 0)) | 
 | 		return; | 
 |  | 
 | 	/* determine next wakeup, add a timer margin to guarantee chunking */ | 
 | 	vshortage = -ctx.vbudget; | 
 | 	expires = now->now_ns + | 
 | 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) * | 
 | 		NSEC_PER_USEC; | 
 | 	expires += ioc->timer_slack_ns; | 
 |  | 
 | 	/* if already active and close enough, don't bother */ | 
 | 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); | 
 | 	if (hrtimer_is_queued(&iocg->waitq_timer) && | 
 | 	    abs(oexpires - expires) <= ioc->timer_slack_ns) | 
 | 		return; | 
 |  | 
 | 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), | 
 | 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS); | 
 | } | 
 |  | 
 | static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) | 
 | { | 
 | 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); | 
 | 	bool pay_debt = READ_ONCE(iocg->abs_vdebt); | 
 | 	struct ioc_now now; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ioc_now(iocg->ioc, &now); | 
 |  | 
 | 	iocg_lock(iocg, pay_debt, &flags); | 
 | 	iocg_kick_waitq(iocg, pay_debt, &now); | 
 | 	iocg_unlock(iocg, pay_debt, &flags); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) | 
 | { | 
 | 	u32 nr_met[2] = { }; | 
 | 	u32 nr_missed[2] = { }; | 
 | 	u64 rq_wait_ns = 0; | 
 | 	int cpu, rw; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); | 
 | 		u64 this_rq_wait_ns; | 
 |  | 
 | 		for (rw = READ; rw <= WRITE; rw++) { | 
 | 			u32 this_met = local_read(&stat->missed[rw].nr_met); | 
 | 			u32 this_missed = local_read(&stat->missed[rw].nr_missed); | 
 |  | 
 | 			nr_met[rw] += this_met - stat->missed[rw].last_met; | 
 | 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed; | 
 | 			stat->missed[rw].last_met = this_met; | 
 | 			stat->missed[rw].last_missed = this_missed; | 
 | 		} | 
 |  | 
 | 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns); | 
 | 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; | 
 | 		stat->last_rq_wait_ns = this_rq_wait_ns; | 
 | 	} | 
 |  | 
 | 	for (rw = READ; rw <= WRITE; rw++) { | 
 | 		if (nr_met[rw] + nr_missed[rw]) | 
 | 			missed_ppm_ar[rw] = | 
 | 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, | 
 | 						   nr_met[rw] + nr_missed[rw]); | 
 | 		else | 
 | 			missed_ppm_ar[rw] = 0; | 
 | 	} | 
 |  | 
 | 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100, | 
 | 				   ioc->period_us * NSEC_PER_USEC); | 
 | } | 
 |  | 
 | /* was iocg idle this period? */ | 
 | static bool iocg_is_idle(struct ioc_gq *iocg) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 |  | 
 | 	/* did something get issued this period? */ | 
 | 	if (atomic64_read(&iocg->active_period) == | 
 | 	    atomic64_read(&ioc->cur_period)) | 
 | 		return false; | 
 |  | 
 | 	/* is something in flight? */ | 
 | 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Call this function on the target leaf @iocg's to build pre-order traversal | 
 |  * list of all the ancestors in @inner_walk. The inner nodes are linked through | 
 |  * ->walk_list and the caller is responsible for dissolving the list after use. | 
 |  */ | 
 | static void iocg_build_inner_walk(struct ioc_gq *iocg, | 
 | 				  struct list_head *inner_walk) | 
 | { | 
 | 	int lvl; | 
 |  | 
 | 	WARN_ON_ONCE(!list_empty(&iocg->walk_list)); | 
 |  | 
 | 	/* find the first ancestor which hasn't been visited yet */ | 
 | 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) { | 
 | 		if (!list_empty(&iocg->ancestors[lvl]->walk_list)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* walk down and visit the inner nodes to get pre-order traversal */ | 
 | 	while (++lvl <= iocg->level - 1) { | 
 | 		struct ioc_gq *inner = iocg->ancestors[lvl]; | 
 |  | 
 | 		/* record traversal order */ | 
 | 		list_add_tail(&inner->walk_list, inner_walk); | 
 | 	} | 
 | } | 
 |  | 
 | /* collect per-cpu counters and propagate the deltas to the parent */ | 
 | static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	struct iocg_stat new_stat; | 
 | 	u64 abs_vusage = 0; | 
 | 	u64 vusage_delta; | 
 | 	int cpu; | 
 |  | 
 | 	lockdep_assert_held(&iocg->ioc->lock); | 
 |  | 
 | 	/* collect per-cpu counters */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		abs_vusage += local64_read( | 
 | 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu)); | 
 | 	} | 
 | 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage; | 
 | 	iocg->last_stat_abs_vusage = abs_vusage; | 
 |  | 
 | 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate); | 
 | 	iocg->local_stat.usage_us += iocg->usage_delta_us; | 
 |  | 
 | 	/* propagate upwards */ | 
 | 	new_stat.usage_us = | 
 | 		iocg->local_stat.usage_us + iocg->desc_stat.usage_us; | 
 | 	new_stat.wait_us = | 
 | 		iocg->local_stat.wait_us + iocg->desc_stat.wait_us; | 
 | 	new_stat.indebt_us = | 
 | 		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us; | 
 | 	new_stat.indelay_us = | 
 | 		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us; | 
 |  | 
 | 	/* propagate the deltas to the parent */ | 
 | 	if (iocg->level > 0) { | 
 | 		struct iocg_stat *parent_stat = | 
 | 			&iocg->ancestors[iocg->level - 1]->desc_stat; | 
 |  | 
 | 		parent_stat->usage_us += | 
 | 			new_stat.usage_us - iocg->last_stat.usage_us; | 
 | 		parent_stat->wait_us += | 
 | 			new_stat.wait_us - iocg->last_stat.wait_us; | 
 | 		parent_stat->indebt_us += | 
 | 			new_stat.indebt_us - iocg->last_stat.indebt_us; | 
 | 		parent_stat->indelay_us += | 
 | 			new_stat.indelay_us - iocg->last_stat.indelay_us; | 
 | 	} | 
 |  | 
 | 	iocg->last_stat = new_stat; | 
 | } | 
 |  | 
 | /* get stat counters ready for reading on all active iocgs */ | 
 | static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now) | 
 | { | 
 | 	LIST_HEAD(inner_walk); | 
 | 	struct ioc_gq *iocg, *tiocg; | 
 |  | 
 | 	/* flush leaves and build inner node walk list */ | 
 | 	list_for_each_entry(iocg, target_iocgs, active_list) { | 
 | 		iocg_flush_stat_one(iocg, now); | 
 | 		iocg_build_inner_walk(iocg, &inner_walk); | 
 | 	} | 
 |  | 
 | 	/* keep flushing upwards by walking the inner list backwards */ | 
 | 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) { | 
 | 		iocg_flush_stat_one(iocg, now); | 
 | 		list_del_init(&iocg->walk_list); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Determine what @iocg's hweight_inuse should be after donating unused | 
 |  * capacity. @hwm is the upper bound and used to signal no donation. This | 
 |  * function also throws away @iocg's excess budget. | 
 |  */ | 
 | static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm, | 
 | 				  u32 usage, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	u64 vtime = atomic64_read(&iocg->vtime); | 
 | 	s64 excess, delta, target, new_hwi; | 
 |  | 
 | 	/* debt handling owns inuse for debtors */ | 
 | 	if (iocg->abs_vdebt) | 
 | 		return 1; | 
 |  | 
 | 	/* see whether minimum margin requirement is met */ | 
 | 	if (waitqueue_active(&iocg->waitq) || | 
 | 	    time_after64(vtime, now->vnow - ioc->margins.min)) | 
 | 		return hwm; | 
 |  | 
 | 	/* throw away excess above target */ | 
 | 	excess = now->vnow - vtime - ioc->margins.target; | 
 | 	if (excess > 0) { | 
 | 		atomic64_add(excess, &iocg->vtime); | 
 | 		atomic64_add(excess, &iocg->done_vtime); | 
 | 		vtime += excess; | 
 | 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Let's say the distance between iocg's and device's vtimes as a | 
 | 	 * fraction of period duration is delta. Assuming that the iocg will | 
 | 	 * consume the usage determined above, we want to determine new_hwi so | 
 | 	 * that delta equals MARGIN_TARGET at the end of the next period. | 
 | 	 * | 
 | 	 * We need to execute usage worth of IOs while spending the sum of the | 
 | 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period | 
 | 	 * (delta): | 
 | 	 * | 
 | 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi | 
 | 	 * | 
 | 	 * Therefore, the new_hwi is: | 
 | 	 * | 
 | 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta) | 
 | 	 */ | 
 | 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime), | 
 | 			  now->vnow - ioc->period_at_vtime); | 
 | 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100; | 
 | 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta); | 
 |  | 
 | 	return clamp_t(s64, new_hwi, 1, hwm); | 
 | } | 
 |  | 
 | /* | 
 |  * For work-conservation, an iocg which isn't using all of its share should | 
 |  * donate the leftover to other iocgs. There are two ways to achieve this - 1. | 
 |  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight. | 
 |  * | 
 |  * #1 is mathematically simpler but has the drawback of requiring synchronous | 
 |  * global hweight_inuse updates when idle iocg's get activated or inuse weights | 
 |  * change due to donation snapbacks as it has the possibility of grossly | 
 |  * overshooting what's allowed by the model and vrate. | 
 |  * | 
 |  * #2 is inherently safe with local operations. The donating iocg can easily | 
 |  * snap back to higher weights when needed without worrying about impacts on | 
 |  * other nodes as the impacts will be inherently correct. This also makes idle | 
 |  * iocg activations safe. The only effect activations have is decreasing | 
 |  * hweight_inuse of others, the right solution to which is for those iocgs to | 
 |  * snap back to higher weights. | 
 |  * | 
 |  * So, we go with #2. The challenge is calculating how each donating iocg's | 
 |  * inuse should be adjusted to achieve the target donation amounts. This is done | 
 |  * using Andy's method described in the following pdf. | 
 |  * | 
 |  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo | 
 |  * | 
 |  * Given the weights and target after-donation hweight_inuse values, Andy's | 
 |  * method determines how the proportional distribution should look like at each | 
 |  * sibling level to maintain the relative relationship between all non-donating | 
 |  * pairs. To roughly summarize, it divides the tree into donating and | 
 |  * non-donating parts, calculates global donation rate which is used to | 
 |  * determine the target hweight_inuse for each node, and then derives per-level | 
 |  * proportions. | 
 |  * | 
 |  * The following pdf shows that global distribution calculated this way can be | 
 |  * achieved by scaling inuse weights of donating leaves and propagating the | 
 |  * adjustments upwards proportionally. | 
 |  * | 
 |  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE | 
 |  * | 
 |  * Combining the above two, we can determine how each leaf iocg's inuse should | 
 |  * be adjusted to achieve the target donation. | 
 |  * | 
 |  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN | 
 |  * | 
 |  * The inline comments use symbols from the last pdf. | 
 |  * | 
 |  *   b is the sum of the absolute budgets in the subtree. 1 for the root node. | 
 |  *   f is the sum of the absolute budgets of non-donating nodes in the subtree. | 
 |  *   t is the sum of the absolute budgets of donating nodes in the subtree. | 
 |  *   w is the weight of the node. w = w_f + w_t | 
 |  *   w_f is the non-donating portion of w. w_f = w * f / b | 
 |  *   w_b is the donating portion of w. w_t = w * t / b | 
 |  *   s is the sum of all sibling weights. s = Sum(w) for siblings | 
 |  *   s_f and s_t are the non-donating and donating portions of s. | 
 |  * | 
 |  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g. | 
 |  * w_pt is the donating portion of the parent's weight and w'_pt the same value | 
 |  * after adjustments. Subscript r denotes the root node's values. | 
 |  */ | 
 | static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now) | 
 | { | 
 | 	LIST_HEAD(over_hwa); | 
 | 	LIST_HEAD(inner_walk); | 
 | 	struct ioc_gq *iocg, *tiocg, *root_iocg; | 
 | 	u32 after_sum, over_sum, over_target, gamma; | 
 |  | 
 | 	/* | 
 | 	 * It's pretty unlikely but possible for the total sum of | 
 | 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will | 
 | 	 * confuse the following calculations. If such condition is detected, | 
 | 	 * scale down everyone over its full share equally to keep the sum below | 
 | 	 * WEIGHT_ONE. | 
 | 	 */ | 
 | 	after_sum = 0; | 
 | 	over_sum = 0; | 
 | 	list_for_each_entry(iocg, surpluses, surplus_list) { | 
 | 		u32 hwa; | 
 |  | 
 | 		current_hweight(iocg, &hwa, NULL); | 
 | 		after_sum += iocg->hweight_after_donation; | 
 |  | 
 | 		if (iocg->hweight_after_donation > hwa) { | 
 | 			over_sum += iocg->hweight_after_donation; | 
 | 			list_add(&iocg->walk_list, &over_hwa); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (after_sum >= WEIGHT_ONE) { | 
 | 		/* | 
 | 		 * The delta should be deducted from the over_sum, calculate | 
 | 		 * target over_sum value. | 
 | 		 */ | 
 | 		u32 over_delta = after_sum - (WEIGHT_ONE - 1); | 
 | 		WARN_ON_ONCE(over_sum <= over_delta); | 
 | 		over_target = over_sum - over_delta; | 
 | 	} else { | 
 | 		over_target = 0; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) { | 
 | 		if (over_target) | 
 | 			iocg->hweight_after_donation = | 
 | 				div_u64((u64)iocg->hweight_after_donation * | 
 | 					over_target, over_sum); | 
 | 		list_del_init(&iocg->walk_list); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Build pre-order inner node walk list and prepare for donation | 
 | 	 * adjustment calculations. | 
 | 	 */ | 
 | 	list_for_each_entry(iocg, surpluses, surplus_list) { | 
 | 		iocg_build_inner_walk(iocg, &inner_walk); | 
 | 	} | 
 |  | 
 | 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list); | 
 | 	WARN_ON_ONCE(root_iocg->level > 0); | 
 |  | 
 | 	list_for_each_entry(iocg, &inner_walk, walk_list) { | 
 | 		iocg->child_adjusted_sum = 0; | 
 | 		iocg->hweight_donating = 0; | 
 | 		iocg->hweight_after_donation = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Propagate the donating budget (b_t) and after donation budget (b'_t) | 
 | 	 * up the hierarchy. | 
 | 	 */ | 
 | 	list_for_each_entry(iocg, surpluses, surplus_list) { | 
 | 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; | 
 |  | 
 | 		parent->hweight_donating += iocg->hweight_donating; | 
 | 		parent->hweight_after_donation += iocg->hweight_after_donation; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) { | 
 | 		if (iocg->level > 0) { | 
 | 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; | 
 |  | 
 | 			parent->hweight_donating += iocg->hweight_donating; | 
 | 			parent->hweight_after_donation += iocg->hweight_after_donation; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate inner hwa's (b) and make sure the donation values are | 
 | 	 * within the accepted ranges as we're doing low res calculations with | 
 | 	 * roundups. | 
 | 	 */ | 
 | 	list_for_each_entry(iocg, &inner_walk, walk_list) { | 
 | 		if (iocg->level) { | 
 | 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; | 
 |  | 
 | 			iocg->hweight_active = DIV64_U64_ROUND_UP( | 
 | 				(u64)parent->hweight_active * iocg->active, | 
 | 				parent->child_active_sum); | 
 |  | 
 | 		} | 
 |  | 
 | 		iocg->hweight_donating = min(iocg->hweight_donating, | 
 | 					     iocg->hweight_active); | 
 | 		iocg->hweight_after_donation = min(iocg->hweight_after_donation, | 
 | 						   iocg->hweight_donating - 1); | 
 | 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 || | 
 | 				 iocg->hweight_donating <= 1 || | 
 | 				 iocg->hweight_after_donation == 0)) { | 
 | 			pr_warn("iocg: invalid donation weights in "); | 
 | 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup); | 
 | 			pr_cont(": active=%u donating=%u after=%u\n", | 
 | 				iocg->hweight_active, iocg->hweight_donating, | 
 | 				iocg->hweight_after_donation); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate the global donation rate (gamma) - the rate to adjust | 
 | 	 * non-donating budgets by. | 
 | 	 * | 
 | 	 * No need to use 64bit multiplication here as the first operand is | 
 | 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16). | 
 | 	 * | 
 | 	 * We know that there are beneficiary nodes and the sum of the donating | 
 | 	 * hweights can't be whole; however, due to the round-ups during hweight | 
 | 	 * calculations, root_iocg->hweight_donating might still end up equal to | 
 | 	 * or greater than whole. Limit the range when calculating the divider. | 
 | 	 * | 
 | 	 * gamma = (1 - t_r') / (1 - t_r) | 
 | 	 */ | 
 | 	gamma = DIV_ROUND_UP( | 
 | 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE, | 
 | 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1)); | 
 |  | 
 | 	/* | 
 | 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner | 
 | 	 * nodes. | 
 | 	 */ | 
 | 	list_for_each_entry(iocg, &inner_walk, walk_list) { | 
 | 		struct ioc_gq *parent; | 
 | 		u32 inuse, wpt, wptp; | 
 | 		u64 st, sf; | 
 |  | 
 | 		if (iocg->level == 0) { | 
 | 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */ | 
 | 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP( | 
 | 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating), | 
 | 				WEIGHT_ONE - iocg->hweight_after_donation); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		parent = iocg->ancestors[iocg->level - 1]; | 
 |  | 
 | 		/* b' = gamma * b_f + b_t' */ | 
 | 		iocg->hweight_inuse = DIV64_U64_ROUND_UP( | 
 | 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating), | 
 | 			WEIGHT_ONE) + iocg->hweight_after_donation; | 
 |  | 
 | 		/* w' = s' * b' / b'_p */ | 
 | 		inuse = DIV64_U64_ROUND_UP( | 
 | 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse, | 
 | 			parent->hweight_inuse); | 
 |  | 
 | 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */ | 
 | 		st = DIV64_U64_ROUND_UP( | 
 | 			iocg->child_active_sum * iocg->hweight_donating, | 
 | 			iocg->hweight_active); | 
 | 		sf = iocg->child_active_sum - st; | 
 | 		wpt = DIV64_U64_ROUND_UP( | 
 | 			(u64)iocg->active * iocg->hweight_donating, | 
 | 			iocg->hweight_active); | 
 | 		wptp = DIV64_U64_ROUND_UP( | 
 | 			(u64)inuse * iocg->hweight_after_donation, | 
 | 			iocg->hweight_inuse); | 
 |  | 
 | 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and | 
 | 	 * we can finally determine leaf adjustments. | 
 | 	 */ | 
 | 	list_for_each_entry(iocg, surpluses, surplus_list) { | 
 | 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1]; | 
 | 		u32 inuse; | 
 |  | 
 | 		/* | 
 | 		 * In-debt iocgs participated in the donation calculation with | 
 | 		 * the minimum target hweight_inuse. Configuring inuse | 
 | 		 * accordingly would work fine but debt handling expects | 
 | 		 * @iocg->inuse stay at the minimum and we don't wanna | 
 | 		 * interfere. | 
 | 		 */ | 
 | 		if (iocg->abs_vdebt) { | 
 | 			WARN_ON_ONCE(iocg->inuse > 1); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */ | 
 | 		inuse = DIV64_U64_ROUND_UP( | 
 | 			parent->child_adjusted_sum * iocg->hweight_after_donation, | 
 | 			parent->hweight_inuse); | 
 |  | 
 | 		TRACE_IOCG_PATH(inuse_transfer, iocg, now, | 
 | 				iocg->inuse, inuse, | 
 | 				iocg->hweight_inuse, | 
 | 				iocg->hweight_after_donation); | 
 |  | 
 | 		__propagate_weights(iocg, iocg->active, inuse, true, now); | 
 | 	} | 
 |  | 
 | 	/* walk list should be dissolved after use */ | 
 | 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list) | 
 | 		list_del_init(&iocg->walk_list); | 
 | } | 
 |  | 
 | /* | 
 |  * A low weight iocg can amass a large amount of debt, for example, when | 
 |  * anonymous memory gets reclaimed aggressively. If the system has a lot of | 
 |  * memory paired with a slow IO device, the debt can span multiple seconds or | 
 |  * more. If there are no other subsequent IO issuers, the in-debt iocg may end | 
 |  * up blocked paying its debt while the IO device is idle. | 
 |  * | 
 |  * The following protects against such cases. If the device has been | 
 |  * sufficiently idle for a while, the debts are halved and delays are | 
 |  * recalculated. | 
 |  */ | 
 | static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors, | 
 | 			      struct ioc_now *now) | 
 | { | 
 | 	struct ioc_gq *iocg; | 
 | 	u64 dur, usage_pct, nr_cycles; | 
 |  | 
 | 	/* if no debtor, reset the cycle */ | 
 | 	if (!nr_debtors) { | 
 | 		ioc->dfgv_period_at = now->now; | 
 | 		ioc->dfgv_period_rem = 0; | 
 | 		ioc->dfgv_usage_us_sum = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Debtors can pass through a lot of writes choking the device and we | 
 | 	 * don't want to be forgiving debts while the device is struggling from | 
 | 	 * write bursts. If we're missing latency targets, consider the device | 
 | 	 * fully utilized. | 
 | 	 */ | 
 | 	if (ioc->busy_level > 0) | 
 | 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us); | 
 |  | 
 | 	ioc->dfgv_usage_us_sum += usage_us_sum; | 
 | 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * At least DFGV_PERIOD has passed since the last period. Calculate the | 
 | 	 * average usage and reset the period counters. | 
 | 	 */ | 
 | 	dur = now->now - ioc->dfgv_period_at; | 
 | 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur); | 
 |  | 
 | 	ioc->dfgv_period_at = now->now; | 
 | 	ioc->dfgv_usage_us_sum = 0; | 
 |  | 
 | 	/* if was too busy, reset everything */ | 
 | 	if (usage_pct > DFGV_USAGE_PCT) { | 
 | 		ioc->dfgv_period_rem = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Usage is lower than threshold. Let's forgive some debts. Debt | 
 | 	 * forgiveness runs off of the usual ioc timer but its period usually | 
 | 	 * doesn't match ioc's. Compensate the difference by performing the | 
 | 	 * reduction as many times as would fit in the duration since the last | 
 | 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem | 
 | 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive | 
 | 	 * reductions is doubled. | 
 | 	 */ | 
 | 	nr_cycles = dur + ioc->dfgv_period_rem; | 
 | 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD); | 
 |  | 
 | 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { | 
 | 		u64 __maybe_unused old_debt, __maybe_unused old_delay; | 
 |  | 
 | 		if (!iocg->abs_vdebt && !iocg->delay) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&iocg->waitq.lock); | 
 |  | 
 | 		old_debt = iocg->abs_vdebt; | 
 | 		old_delay = iocg->delay; | 
 |  | 
 | 		if (iocg->abs_vdebt) | 
 | 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1; | 
 | 		if (iocg->delay) | 
 | 			iocg->delay = iocg->delay >> nr_cycles ?: 1; | 
 |  | 
 | 		iocg_kick_waitq(iocg, true, now); | 
 |  | 
 | 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct, | 
 | 				old_debt, iocg->abs_vdebt, | 
 | 				old_delay, iocg->delay); | 
 |  | 
 | 		spin_unlock(&iocg->waitq.lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check the active iocgs' state to avoid oversleeping and deactive | 
 |  * idle iocgs. | 
 |  * | 
 |  * Since waiters determine the sleep durations based on the vrate | 
 |  * they saw at the time of sleep, if vrate has increased, some | 
 |  * waiters could be sleeping for too long. Wake up tardy waiters | 
 |  * which should have woken up in the last period and expire idle | 
 |  * iocgs. | 
 |  */ | 
 | static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now) | 
 | { | 
 | 	int nr_debtors = 0; | 
 | 	struct ioc_gq *iocg, *tiocg; | 
 |  | 
 | 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { | 
 | 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && | 
 | 		    !iocg->delay && !iocg_is_idle(iocg)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&iocg->waitq.lock); | 
 |  | 
 | 		/* flush wait and indebt stat deltas */ | 
 | 		if (iocg->wait_since) { | 
 | 			iocg->local_stat.wait_us += now->now - iocg->wait_since; | 
 | 			iocg->wait_since = now->now; | 
 | 		} | 
 | 		if (iocg->indebt_since) { | 
 | 			iocg->local_stat.indebt_us += | 
 | 				now->now - iocg->indebt_since; | 
 | 			iocg->indebt_since = now->now; | 
 | 		} | 
 | 		if (iocg->indelay_since) { | 
 | 			iocg->local_stat.indelay_us += | 
 | 				now->now - iocg->indelay_since; | 
 | 			iocg->indelay_since = now->now; | 
 | 		} | 
 |  | 
 | 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt || | 
 | 		    iocg->delay) { | 
 | 			/* might be oversleeping vtime / hweight changes, kick */ | 
 | 			iocg_kick_waitq(iocg, true, now); | 
 | 			if (iocg->abs_vdebt || iocg->delay) | 
 | 				nr_debtors++; | 
 | 		} else if (iocg_is_idle(iocg)) { | 
 | 			/* no waiter and idle, deactivate */ | 
 | 			u64 vtime = atomic64_read(&iocg->vtime); | 
 | 			s64 excess; | 
 |  | 
 | 			/* | 
 | 			 * @iocg has been inactive for a full duration and will | 
 | 			 * have a high budget. Account anything above target as | 
 | 			 * error and throw away. On reactivation, it'll start | 
 | 			 * with the target budget. | 
 | 			 */ | 
 | 			excess = now->vnow - vtime - ioc->margins.target; | 
 | 			if (excess > 0) { | 
 | 				u32 old_hwi; | 
 |  | 
 | 				current_hweight(iocg, NULL, &old_hwi); | 
 | 				ioc->vtime_err -= div64_u64(excess * old_hwi, | 
 | 							    WEIGHT_ONE); | 
 | 			} | 
 |  | 
 | 			TRACE_IOCG_PATH(iocg_idle, iocg, now, | 
 | 					atomic64_read(&iocg->active_period), | 
 | 					atomic64_read(&ioc->cur_period), vtime); | 
 | 			__propagate_weights(iocg, 0, 0, false, now); | 
 | 			list_del_init(&iocg->active_list); | 
 | 		} | 
 |  | 
 | 		spin_unlock(&iocg->waitq.lock); | 
 | 	} | 
 |  | 
 | 	commit_weights(ioc); | 
 | 	return nr_debtors; | 
 | } | 
 |  | 
 | static void ioc_timer_fn(struct timer_list *timer) | 
 | { | 
 | 	struct ioc *ioc = container_of(timer, struct ioc, timer); | 
 | 	struct ioc_gq *iocg, *tiocg; | 
 | 	struct ioc_now now; | 
 | 	LIST_HEAD(surpluses); | 
 | 	int nr_debtors, nr_shortages = 0, nr_lagging = 0; | 
 | 	u64 usage_us_sum = 0; | 
 | 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; | 
 | 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; | 
 | 	u32 missed_ppm[2], rq_wait_pct; | 
 | 	u64 period_vtime; | 
 | 	int prev_busy_level; | 
 |  | 
 | 	/* how were the latencies during the period? */ | 
 | 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); | 
 |  | 
 | 	/* take care of active iocgs */ | 
 | 	spin_lock_irq(&ioc->lock); | 
 |  | 
 | 	ioc_now(ioc, &now); | 
 |  | 
 | 	period_vtime = now.vnow - ioc->period_at_vtime; | 
 | 	if (WARN_ON_ONCE(!period_vtime)) { | 
 | 		spin_unlock_irq(&ioc->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	nr_debtors = ioc_check_iocgs(ioc, &now); | 
 |  | 
 | 	/* | 
 | 	 * Wait and indebt stat are flushed above and the donation calculation | 
 | 	 * below needs updated usage stat. Let's bring stat up-to-date. | 
 | 	 */ | 
 | 	iocg_flush_stat(&ioc->active_iocgs, &now); | 
 |  | 
 | 	/* calc usage and see whether some weights need to be moved around */ | 
 | 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { | 
 | 		u64 vdone, vtime, usage_us; | 
 | 		u32 hw_active, hw_inuse; | 
 |  | 
 | 		/* | 
 | 		 * Collect unused and wind vtime closer to vnow to prevent | 
 | 		 * iocgs from accumulating a large amount of budget. | 
 | 		 */ | 
 | 		vdone = atomic64_read(&iocg->done_vtime); | 
 | 		vtime = atomic64_read(&iocg->vtime); | 
 | 		current_hweight(iocg, &hw_active, &hw_inuse); | 
 |  | 
 | 		/* | 
 | 		 * Latency QoS detection doesn't account for IOs which are | 
 | 		 * in-flight for longer than a period.  Detect them by | 
 | 		 * comparing vdone against period start.  If lagging behind | 
 | 		 * IOs from past periods, don't increase vrate. | 
 | 		 */ | 
 | 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && | 
 | 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) && | 
 | 		    time_after64(vtime, vdone) && | 
 | 		    time_after64(vtime, now.vnow - | 
 | 				 MAX_LAGGING_PERIODS * period_vtime) && | 
 | 		    time_before64(vdone, now.vnow - period_vtime)) | 
 | 			nr_lagging++; | 
 |  | 
 | 		/* | 
 | 		 * Determine absolute usage factoring in in-flight IOs to avoid | 
 | 		 * high-latency completions appearing as idle. | 
 | 		 */ | 
 | 		usage_us = iocg->usage_delta_us; | 
 | 		usage_us_sum += usage_us; | 
 |  | 
 | 		/* see whether there's surplus vtime */ | 
 | 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); | 
 | 		if (hw_inuse < hw_active || | 
 | 		    (!waitqueue_active(&iocg->waitq) && | 
 | 		     time_before64(vtime, now.vnow - ioc->margins.low))) { | 
 | 			u32 hwa, old_hwi, hwm, new_hwi, usage; | 
 | 			u64 usage_dur; | 
 |  | 
 | 			if (vdone != vtime) { | 
 | 				u64 inflight_us = DIV64_U64_ROUND_UP( | 
 | 					cost_to_abs_cost(vtime - vdone, hw_inuse), | 
 | 					ioc->vtime_base_rate); | 
 |  | 
 | 				usage_us = max(usage_us, inflight_us); | 
 | 			} | 
 |  | 
 | 			/* convert to hweight based usage ratio */ | 
 | 			if (time_after64(iocg->activated_at, ioc->period_at)) | 
 | 				usage_dur = max_t(u64, now.now - iocg->activated_at, 1); | 
 | 			else | 
 | 				usage_dur = max_t(u64, now.now - ioc->period_at, 1); | 
 |  | 
 | 			usage = clamp_t(u32, | 
 | 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE, | 
 | 						   usage_dur), | 
 | 				1, WEIGHT_ONE); | 
 |  | 
 | 			/* | 
 | 			 * Already donating or accumulated enough to start. | 
 | 			 * Determine the donation amount. | 
 | 			 */ | 
 | 			current_hweight(iocg, &hwa, &old_hwi); | 
 | 			hwm = current_hweight_max(iocg); | 
 | 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm, | 
 | 							 usage, &now); | 
 | 			if (new_hwi < hwm) { | 
 | 				iocg->hweight_donating = hwa; | 
 | 				iocg->hweight_after_donation = new_hwi; | 
 | 				list_add(&iocg->surplus_list, &surpluses); | 
 | 			} else { | 
 | 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now, | 
 | 						iocg->inuse, iocg->active, | 
 | 						iocg->hweight_inuse, new_hwi); | 
 |  | 
 | 				__propagate_weights(iocg, iocg->active, | 
 | 						    iocg->active, true, &now); | 
 | 				nr_shortages++; | 
 | 			} | 
 | 		} else { | 
 | 			/* genuinely short on vtime */ | 
 | 			nr_shortages++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&surpluses) && nr_shortages) | 
 | 		transfer_surpluses(&surpluses, &now); | 
 |  | 
 | 	commit_weights(ioc); | 
 |  | 
 | 	/* surplus list should be dissolved after use */ | 
 | 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list) | 
 | 		list_del_init(&iocg->surplus_list); | 
 |  | 
 | 	/* | 
 | 	 * If q is getting clogged or we're missing too much, we're issuing | 
 | 	 * too much IO and should lower vtime rate.  If we're not missing | 
 | 	 * and experiencing shortages but not surpluses, we're too stingy | 
 | 	 * and should increase vtime rate. | 
 | 	 */ | 
 | 	prev_busy_level = ioc->busy_level; | 
 | 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT || | 
 | 	    missed_ppm[READ] > ppm_rthr || | 
 | 	    missed_ppm[WRITE] > ppm_wthr) { | 
 | 		/* clearly missing QoS targets, slow down vrate */ | 
 | 		ioc->busy_level = max(ioc->busy_level, 0); | 
 | 		ioc->busy_level++; | 
 | 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && | 
 | 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && | 
 | 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { | 
 | 		/* QoS targets are being met with >25% margin */ | 
 | 		if (nr_shortages) { | 
 | 			/* | 
 | 			 * We're throttling while the device has spare | 
 | 			 * capacity.  If vrate was being slowed down, stop. | 
 | 			 */ | 
 | 			ioc->busy_level = min(ioc->busy_level, 0); | 
 |  | 
 | 			/* | 
 | 			 * If there are IOs spanning multiple periods, wait | 
 | 			 * them out before pushing the device harder. | 
 | 			 */ | 
 | 			if (!nr_lagging) | 
 | 				ioc->busy_level--; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Nobody is being throttled and the users aren't | 
 | 			 * issuing enough IOs to saturate the device.  We | 
 | 			 * simply don't know how close the device is to | 
 | 			 * saturation.  Coast. | 
 | 			 */ | 
 | 			ioc->busy_level = 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* inside the hysterisis margin, we're good */ | 
 | 		ioc->busy_level = 0; | 
 | 	} | 
 |  | 
 | 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); | 
 |  | 
 | 	ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages, | 
 | 			      prev_busy_level, missed_ppm); | 
 |  | 
 | 	ioc_refresh_params(ioc, false); | 
 |  | 
 | 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now); | 
 |  | 
 | 	/* | 
 | 	 * This period is done.  Move onto the next one.  If nothing's | 
 | 	 * going on with the device, stop the timer. | 
 | 	 */ | 
 | 	atomic64_inc(&ioc->cur_period); | 
 |  | 
 | 	if (ioc->running != IOC_STOP) { | 
 | 		if (!list_empty(&ioc->active_iocgs)) { | 
 | 			ioc_start_period(ioc, &now); | 
 | 		} else { | 
 | 			ioc->busy_level = 0; | 
 | 			ioc->vtime_err = 0; | 
 | 			ioc->running = IOC_IDLE; | 
 | 		} | 
 |  | 
 | 		ioc_refresh_vrate(ioc, &now); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&ioc->lock); | 
 | } | 
 |  | 
 | static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime, | 
 | 				      u64 abs_cost, struct ioc_now *now) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	struct ioc_margins *margins = &ioc->margins; | 
 | 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi; | 
 | 	u32 hwi, adj_step; | 
 | 	s64 margin; | 
 | 	u64 cost, new_inuse; | 
 |  | 
 | 	current_hweight(iocg, NULL, &hwi); | 
 | 	old_hwi = hwi; | 
 | 	cost = abs_cost_to_cost(abs_cost, hwi); | 
 | 	margin = now->vnow - vtime - cost; | 
 |  | 
 | 	/* debt handling owns inuse for debtors */ | 
 | 	if (iocg->abs_vdebt) | 
 | 		return cost; | 
 |  | 
 | 	/* | 
 | 	 * We only increase inuse during period and do so if the margin has | 
 | 	 * deteriorated since the previous adjustment. | 
 | 	 */ | 
 | 	if (margin >= iocg->saved_margin || margin >= margins->low || | 
 | 	    iocg->inuse == iocg->active) | 
 | 		return cost; | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 |  | 
 | 	/* we own inuse only when @iocg is in the normal active state */ | 
 | 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) { | 
 | 		spin_unlock_irq(&ioc->lock); | 
 | 		return cost; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Bump up inuse till @abs_cost fits in the existing budget. | 
 | 	 * adj_step must be determined after acquiring ioc->lock - we might | 
 | 	 * have raced and lost to another thread for activation and could | 
 | 	 * be reading 0 iocg->active before ioc->lock which will lead to | 
 | 	 * infinite loop. | 
 | 	 */ | 
 | 	new_inuse = iocg->inuse; | 
 | 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100); | 
 | 	do { | 
 | 		new_inuse = new_inuse + adj_step; | 
 | 		propagate_weights(iocg, iocg->active, new_inuse, true, now); | 
 | 		current_hweight(iocg, NULL, &hwi); | 
 | 		cost = abs_cost_to_cost(abs_cost, hwi); | 
 | 	} while (time_after64(vtime + cost, now->vnow) && | 
 | 		 iocg->inuse != iocg->active); | 
 |  | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	TRACE_IOCG_PATH(inuse_adjust, iocg, now, | 
 | 			old_inuse, iocg->inuse, old_hwi, hwi); | 
 |  | 
 | 	return cost; | 
 | } | 
 |  | 
 | static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, | 
 | 				    bool is_merge, u64 *costp) | 
 | { | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	u64 coef_seqio, coef_randio, coef_page; | 
 | 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); | 
 | 	u64 seek_pages = 0; | 
 | 	u64 cost = 0; | 
 |  | 
 | 	switch (bio_op(bio)) { | 
 | 	case REQ_OP_READ: | 
 | 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO]; | 
 | 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO]; | 
 | 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE]; | 
 | 		break; | 
 | 	case REQ_OP_WRITE: | 
 | 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO]; | 
 | 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO]; | 
 | 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE]; | 
 | 		break; | 
 | 	default: | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (iocg->cursor) { | 
 | 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); | 
 | 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; | 
 | 	} | 
 |  | 
 | 	if (!is_merge) { | 
 | 		if (seek_pages > LCOEF_RANDIO_PAGES) { | 
 | 			cost += coef_randio; | 
 | 		} else { | 
 | 			cost += coef_seqio; | 
 | 		} | 
 | 	} | 
 | 	cost += pages * coef_page; | 
 | out: | 
 | 	*costp = cost; | 
 | } | 
 |  | 
 | static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) | 
 | { | 
 | 	u64 cost; | 
 |  | 
 | 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); | 
 | 	return cost; | 
 | } | 
 |  | 
 | static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc, | 
 | 					 u64 *costp) | 
 | { | 
 | 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT; | 
 |  | 
 | 	switch (req_op(rq)) { | 
 | 	case REQ_OP_READ: | 
 | 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE]; | 
 | 		break; | 
 | 	case REQ_OP_WRITE: | 
 | 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE]; | 
 | 		break; | 
 | 	default: | 
 | 		*costp = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc) | 
 | { | 
 | 	u64 cost; | 
 |  | 
 | 	calc_size_vtime_cost_builtin(rq, ioc, &cost); | 
 | 	return cost; | 
 | } | 
 |  | 
 | static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) | 
 | { | 
 | 	struct blkcg_gq *blkg = bio->bi_blkg; | 
 | 	struct ioc *ioc = rqos_to_ioc(rqos); | 
 | 	struct ioc_gq *iocg = blkg_to_iocg(blkg); | 
 | 	struct ioc_now now; | 
 | 	struct iocg_wait wait; | 
 | 	u64 abs_cost, cost, vtime; | 
 | 	bool use_debt, ioc_locked; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* bypass IOs if disabled, still initializing, or for root cgroup */ | 
 | 	if (!ioc->enabled || !iocg || !iocg->level) | 
 | 		return; | 
 |  | 
 | 	/* calculate the absolute vtime cost */ | 
 | 	abs_cost = calc_vtime_cost(bio, iocg, false); | 
 | 	if (!abs_cost) | 
 | 		return; | 
 |  | 
 | 	if (!iocg_activate(iocg, &now)) | 
 | 		return; | 
 |  | 
 | 	iocg->cursor = bio_end_sector(bio); | 
 | 	vtime = atomic64_read(&iocg->vtime); | 
 | 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); | 
 |  | 
 | 	/* | 
 | 	 * If no one's waiting and within budget, issue right away.  The | 
 | 	 * tests are racy but the races aren't systemic - we only miss once | 
 | 	 * in a while which is fine. | 
 | 	 */ | 
 | 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && | 
 | 	    time_before_eq64(vtime + cost, now.vnow)) { | 
 | 		iocg_commit_bio(iocg, bio, abs_cost, cost); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're over budget. This can be handled in two ways. IOs which may | 
 | 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as | 
 | 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling | 
 | 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine | 
 | 	 * whether debt handling is needed and acquire locks accordingly. | 
 | 	 */ | 
 | 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current); | 
 | 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt); | 
 | retry_lock: | 
 | 	iocg_lock(iocg, ioc_locked, &flags); | 
 |  | 
 | 	/* | 
 | 	 * @iocg must stay activated for debt and waitq handling. Deactivation | 
 | 	 * is synchronized against both ioc->lock and waitq.lock and we won't | 
 | 	 * get deactivated as long as we're waiting or has debt, so we're good | 
 | 	 * if we're activated here. In the unlikely cases that we aren't, just | 
 | 	 * issue the IO. | 
 | 	 */ | 
 | 	if (unlikely(list_empty(&iocg->active_list))) { | 
 | 		iocg_unlock(iocg, ioc_locked, &flags); | 
 | 		iocg_commit_bio(iocg, bio, abs_cost, cost); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're over budget. If @bio has to be issued regardless, remember | 
 | 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay | 
 | 	 * off the debt before waking more IOs. | 
 | 	 * | 
 | 	 * This way, the debt is continuously paid off each period with the | 
 | 	 * actual budget available to the cgroup. If we just wound vtime, we | 
 | 	 * would incorrectly use the current hw_inuse for the entire amount | 
 | 	 * which, for example, can lead to the cgroup staying blocked for a | 
 | 	 * long time even with substantially raised hw_inuse. | 
 | 	 * | 
 | 	 * An iocg with vdebt should stay online so that the timer can keep | 
 | 	 * deducting its vdebt and [de]activate use_delay mechanism | 
 | 	 * accordingly. We don't want to race against the timer trying to | 
 | 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily | 
 | 	 * penalizing the cgroup and its descendants. | 
 | 	 */ | 
 | 	if (use_debt) { | 
 | 		iocg_incur_debt(iocg, abs_cost, &now); | 
 | 		if (iocg_kick_delay(iocg, &now)) | 
 | 			blkcg_schedule_throttle(rqos->q, | 
 | 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP); | 
 | 		iocg_unlock(iocg, ioc_locked, &flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* guarantee that iocgs w/ waiters have maximum inuse */ | 
 | 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) { | 
 | 		if (!ioc_locked) { | 
 | 			iocg_unlock(iocg, false, &flags); | 
 | 			ioc_locked = true; | 
 | 			goto retry_lock; | 
 | 		} | 
 | 		propagate_weights(iocg, iocg->active, iocg->active, true, | 
 | 				  &now); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Append self to the waitq and schedule the wakeup timer if we're | 
 | 	 * the first waiter.  The timer duration is calculated based on the | 
 | 	 * current vrate.  vtime and hweight changes can make it too short | 
 | 	 * or too long.  Each wait entry records the absolute cost it's | 
 | 	 * waiting for to allow re-evaluation using a custom wait entry. | 
 | 	 * | 
 | 	 * If too short, the timer simply reschedules itself.  If too long, | 
 | 	 * the period timer will notice and trigger wakeups. | 
 | 	 * | 
 | 	 * All waiters are on iocg->waitq and the wait states are | 
 | 	 * synchronized using waitq.lock. | 
 | 	 */ | 
 | 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); | 
 | 	wait.wait.private = current; | 
 | 	wait.bio = bio; | 
 | 	wait.abs_cost = abs_cost; | 
 | 	wait.committed = false;	/* will be set true by waker */ | 
 |  | 
 | 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); | 
 | 	iocg_kick_waitq(iocg, ioc_locked, &now); | 
 |  | 
 | 	iocg_unlock(iocg, ioc_locked, &flags); | 
 |  | 
 | 	while (true) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		if (wait.committed) | 
 | 			break; | 
 | 		io_schedule(); | 
 | 	} | 
 |  | 
 | 	/* waker already committed us, proceed */ | 
 | 	finish_wait(&iocg->waitq, &wait.wait); | 
 | } | 
 |  | 
 | static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, | 
 | 			   struct bio *bio) | 
 | { | 
 | 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); | 
 | 	struct ioc *ioc = rqos_to_ioc(rqos); | 
 | 	sector_t bio_end = bio_end_sector(bio); | 
 | 	struct ioc_now now; | 
 | 	u64 vtime, abs_cost, cost; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* bypass if disabled, still initializing, or for root cgroup */ | 
 | 	if (!ioc->enabled || !iocg || !iocg->level) | 
 | 		return; | 
 |  | 
 | 	abs_cost = calc_vtime_cost(bio, iocg, true); | 
 | 	if (!abs_cost) | 
 | 		return; | 
 |  | 
 | 	ioc_now(ioc, &now); | 
 |  | 
 | 	vtime = atomic64_read(&iocg->vtime); | 
 | 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now); | 
 |  | 
 | 	/* update cursor if backmerging into the request at the cursor */ | 
 | 	if (blk_rq_pos(rq) < bio_end && | 
 | 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) | 
 | 		iocg->cursor = bio_end; | 
 |  | 
 | 	/* | 
 | 	 * Charge if there's enough vtime budget and the existing request has | 
 | 	 * cost assigned. | 
 | 	 */ | 
 | 	if (rq->bio && rq->bio->bi_iocost_cost && | 
 | 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { | 
 | 		iocg_commit_bio(iocg, bio, abs_cost, cost); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, account it as debt if @iocg is online, which it should | 
 | 	 * be for the vast majority of cases. See debt handling in | 
 | 	 * ioc_rqos_throttle() for details. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ioc->lock, flags); | 
 | 	spin_lock(&iocg->waitq.lock); | 
 |  | 
 | 	if (likely(!list_empty(&iocg->active_list))) { | 
 | 		iocg_incur_debt(iocg, abs_cost, &now); | 
 | 		if (iocg_kick_delay(iocg, &now)) | 
 | 			blkcg_schedule_throttle(rqos->q, | 
 | 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP); | 
 | 	} else { | 
 | 		iocg_commit_bio(iocg, bio, abs_cost, cost); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&iocg->waitq.lock); | 
 | 	spin_unlock_irqrestore(&ioc->lock, flags); | 
 | } | 
 |  | 
 | static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) | 
 | { | 
 | 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); | 
 |  | 
 | 	if (iocg && bio->bi_iocost_cost) | 
 | 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); | 
 | } | 
 |  | 
 | static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) | 
 | { | 
 | 	struct ioc *ioc = rqos_to_ioc(rqos); | 
 | 	struct ioc_pcpu_stat *ccs; | 
 | 	u64 on_q_ns, rq_wait_ns, size_nsec; | 
 | 	int pidx, rw; | 
 |  | 
 | 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) | 
 | 		return; | 
 |  | 
 | 	switch (req_op(rq) & REQ_OP_MASK) { | 
 | 	case REQ_OP_READ: | 
 | 		pidx = QOS_RLAT; | 
 | 		rw = READ; | 
 | 		break; | 
 | 	case REQ_OP_WRITE: | 
 | 		pidx = QOS_WLAT; | 
 | 		rw = WRITE; | 
 | 		break; | 
 | 	default: | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns; | 
 | 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; | 
 | 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC); | 
 |  | 
 | 	ccs = get_cpu_ptr(ioc->pcpu_stat); | 
 |  | 
 | 	if (on_q_ns <= size_nsec || | 
 | 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC) | 
 | 		local_inc(&ccs->missed[rw].nr_met); | 
 | 	else | 
 | 		local_inc(&ccs->missed[rw].nr_missed); | 
 |  | 
 | 	local64_add(rq_wait_ns, &ccs->rq_wait_ns); | 
 |  | 
 | 	put_cpu_ptr(ccs); | 
 | } | 
 |  | 
 | static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) | 
 | { | 
 | 	struct ioc *ioc = rqos_to_ioc(rqos); | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 | 	ioc_refresh_params(ioc, false); | 
 | 	spin_unlock_irq(&ioc->lock); | 
 | } | 
 |  | 
 | static void ioc_rqos_exit(struct rq_qos *rqos) | 
 | { | 
 | 	struct ioc *ioc = rqos_to_ioc(rqos); | 
 |  | 
 | 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 | 	ioc->running = IOC_STOP; | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	del_timer_sync(&ioc->timer); | 
 | 	free_percpu(ioc->pcpu_stat); | 
 | 	kfree(ioc); | 
 | } | 
 |  | 
 | static struct rq_qos_ops ioc_rqos_ops = { | 
 | 	.throttle = ioc_rqos_throttle, | 
 | 	.merge = ioc_rqos_merge, | 
 | 	.done_bio = ioc_rqos_done_bio, | 
 | 	.done = ioc_rqos_done, | 
 | 	.queue_depth_changed = ioc_rqos_queue_depth_changed, | 
 | 	.exit = ioc_rqos_exit, | 
 | }; | 
 |  | 
 | static int blk_iocost_init(struct request_queue *q) | 
 | { | 
 | 	struct ioc *ioc; | 
 | 	struct rq_qos *rqos; | 
 | 	int i, cpu, ret; | 
 |  | 
 | 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); | 
 | 	if (!ioc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); | 
 | 	if (!ioc->pcpu_stat) { | 
 | 		kfree(ioc); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu); | 
 |  | 
 | 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) { | 
 | 			local_set(&ccs->missed[i].nr_met, 0); | 
 | 			local_set(&ccs->missed[i].nr_missed, 0); | 
 | 		} | 
 | 		local64_set(&ccs->rq_wait_ns, 0); | 
 | 	} | 
 |  | 
 | 	rqos = &ioc->rqos; | 
 | 	rqos->id = RQ_QOS_COST; | 
 | 	rqos->ops = &ioc_rqos_ops; | 
 | 	rqos->q = q; | 
 |  | 
 | 	spin_lock_init(&ioc->lock); | 
 | 	timer_setup(&ioc->timer, ioc_timer_fn, 0); | 
 | 	INIT_LIST_HEAD(&ioc->active_iocgs); | 
 |  | 
 | 	ioc->running = IOC_IDLE; | 
 | 	ioc->vtime_base_rate = VTIME_PER_USEC; | 
 | 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); | 
 | 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock); | 
 | 	ioc->period_at = ktime_to_us(ktime_get()); | 
 | 	atomic64_set(&ioc->cur_period, 0); | 
 | 	atomic_set(&ioc->hweight_gen, 0); | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 | 	ioc->autop_idx = AUTOP_INVALID; | 
 | 	ioc_refresh_params(ioc, true); | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	/* | 
 | 	 * rqos must be added before activation to allow iocg_pd_init() to | 
 | 	 * lookup the ioc from q. This means that the rqos methods may get | 
 | 	 * called before policy activation completion, can't assume that the | 
 | 	 * target bio has an iocg associated and need to test for NULL iocg. | 
 | 	 */ | 
 | 	rq_qos_add(q, rqos); | 
 | 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost); | 
 | 	if (ret) { | 
 | 		rq_qos_del(q, rqos); | 
 | 		free_percpu(ioc->pcpu_stat); | 
 | 		kfree(ioc); | 
 | 		return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) | 
 | { | 
 | 	struct ioc_cgrp *iocc; | 
 |  | 
 | 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); | 
 | 	if (!iocc) | 
 | 		return NULL; | 
 |  | 
 | 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE; | 
 | 	return &iocc->cpd; | 
 | } | 
 |  | 
 | static void ioc_cpd_free(struct blkcg_policy_data *cpd) | 
 | { | 
 | 	kfree(container_of(cpd, struct ioc_cgrp, cpd)); | 
 | } | 
 |  | 
 | static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, | 
 | 					     struct blkcg *blkcg) | 
 | { | 
 | 	int levels = blkcg->css.cgroup->level + 1; | 
 | 	struct ioc_gq *iocg; | 
 |  | 
 | 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node); | 
 | 	if (!iocg) | 
 | 		return NULL; | 
 |  | 
 | 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp); | 
 | 	if (!iocg->pcpu_stat) { | 
 | 		kfree(iocg); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return &iocg->pd; | 
 | } | 
 |  | 
 | static void ioc_pd_init(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct ioc_gq *iocg = pd_to_iocg(pd); | 
 | 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); | 
 | 	struct ioc *ioc = q_to_ioc(blkg->q); | 
 | 	struct ioc_now now; | 
 | 	struct blkcg_gq *tblkg; | 
 | 	unsigned long flags; | 
 |  | 
 | 	ioc_now(ioc, &now); | 
 |  | 
 | 	iocg->ioc = ioc; | 
 | 	atomic64_set(&iocg->vtime, now.vnow); | 
 | 	atomic64_set(&iocg->done_vtime, now.vnow); | 
 | 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); | 
 | 	INIT_LIST_HEAD(&iocg->active_list); | 
 | 	INIT_LIST_HEAD(&iocg->walk_list); | 
 | 	INIT_LIST_HEAD(&iocg->surplus_list); | 
 | 	iocg->hweight_active = WEIGHT_ONE; | 
 | 	iocg->hweight_inuse = WEIGHT_ONE; | 
 |  | 
 | 	init_waitqueue_head(&iocg->waitq); | 
 | 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
 | 	iocg->waitq_timer.function = iocg_waitq_timer_fn; | 
 |  | 
 | 	iocg->level = blkg->blkcg->css.cgroup->level; | 
 |  | 
 | 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { | 
 | 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg); | 
 | 		iocg->ancestors[tiocg->level] = tiocg; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&ioc->lock, flags); | 
 | 	weight_updated(iocg, &now); | 
 | 	spin_unlock_irqrestore(&ioc->lock, flags); | 
 | } | 
 |  | 
 | static void ioc_pd_free(struct blkg_policy_data *pd) | 
 | { | 
 | 	struct ioc_gq *iocg = pd_to_iocg(pd); | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (ioc) { | 
 | 		spin_lock_irqsave(&ioc->lock, flags); | 
 |  | 
 | 		if (!list_empty(&iocg->active_list)) { | 
 | 			struct ioc_now now; | 
 |  | 
 | 			ioc_now(ioc, &now); | 
 | 			propagate_weights(iocg, 0, 0, false, &now); | 
 | 			list_del_init(&iocg->active_list); | 
 | 		} | 
 |  | 
 | 		WARN_ON_ONCE(!list_empty(&iocg->walk_list)); | 
 | 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list)); | 
 |  | 
 | 		spin_unlock_irqrestore(&ioc->lock, flags); | 
 |  | 
 | 		hrtimer_cancel(&iocg->waitq_timer); | 
 | 	} | 
 | 	free_percpu(iocg->pcpu_stat); | 
 | 	kfree(iocg); | 
 | } | 
 |  | 
 | static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size) | 
 | { | 
 | 	struct ioc_gq *iocg = pd_to_iocg(pd); | 
 | 	struct ioc *ioc = iocg->ioc; | 
 | 	size_t pos = 0; | 
 |  | 
 | 	if (!ioc->enabled) | 
 | 		return 0; | 
 |  | 
 | 	if (iocg->level == 0) { | 
 | 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST( | 
 | 			ioc->vtime_base_rate * 10000, | 
 | 			VTIME_PER_USEC); | 
 | 		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u", | 
 | 				  vp10k / 100, vp10k % 100); | 
 | 	} | 
 |  | 
 | 	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu", | 
 | 			 iocg->last_stat.usage_us); | 
 |  | 
 | 	if (blkcg_debug_stats) | 
 | 		pos += scnprintf(buf + pos, size - pos, | 
 | 				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu", | 
 | 				 iocg->last_stat.wait_us, | 
 | 				 iocg->last_stat.indebt_us, | 
 | 				 iocg->last_stat.indelay_us); | 
 |  | 
 | 	return pos; | 
 | } | 
 |  | 
 | static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			     int off) | 
 | { | 
 | 	const char *dname = blkg_dev_name(pd->blkg); | 
 | 	struct ioc_gq *iocg = pd_to_iocg(pd); | 
 |  | 
 | 	if (dname && iocg->cfg_weight) | 
 | 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static int ioc_weight_show(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
 | 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); | 
 |  | 
 | 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE); | 
 | 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, | 
 | 			  &blkcg_policy_iocost, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, | 
 | 				size_t nbytes, loff_t off) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
 | 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); | 
 | 	struct blkg_conf_ctx ctx; | 
 | 	struct ioc_now now; | 
 | 	struct ioc_gq *iocg; | 
 | 	u32 v; | 
 | 	int ret; | 
 |  | 
 | 	if (!strchr(buf, ':')) { | 
 | 		struct blkcg_gq *blkg; | 
 |  | 
 | 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) | 
 | 			return -EINVAL; | 
 |  | 
 | 		spin_lock(&blkcg->lock); | 
 | 		iocc->dfl_weight = v * WEIGHT_ONE; | 
 | 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { | 
 | 			struct ioc_gq *iocg = blkg_to_iocg(blkg); | 
 |  | 
 | 			if (iocg) { | 
 | 				spin_lock_irq(&iocg->ioc->lock); | 
 | 				ioc_now(iocg->ioc, &now); | 
 | 				weight_updated(iocg, &now); | 
 | 				spin_unlock_irq(&iocg->ioc->lock); | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&blkcg->lock); | 
 |  | 
 | 		return nbytes; | 
 | 	} | 
 |  | 
 | 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	iocg = blkg_to_iocg(ctx.blkg); | 
 |  | 
 | 	if (!strncmp(ctx.body, "default", 7)) { | 
 | 		v = 0; | 
 | 	} else { | 
 | 		if (!sscanf(ctx.body, "%u", &v)) | 
 | 			goto einval; | 
 | 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) | 
 | 			goto einval; | 
 | 	} | 
 |  | 
 | 	spin_lock(&iocg->ioc->lock); | 
 | 	iocg->cfg_weight = v * WEIGHT_ONE; | 
 | 	ioc_now(iocg->ioc, &now); | 
 | 	weight_updated(iocg, &now); | 
 | 	spin_unlock(&iocg->ioc->lock); | 
 |  | 
 | 	blkg_conf_finish(&ctx); | 
 | 	return nbytes; | 
 |  | 
 | einval: | 
 | 	blkg_conf_finish(&ctx); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, | 
 | 			  int off) | 
 | { | 
 | 	const char *dname = blkg_dev_name(pd->blkg); | 
 | 	struct ioc *ioc = pd_to_iocg(pd)->ioc; | 
 |  | 
 | 	if (!dname) | 
 | 		return 0; | 
 |  | 
 | 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", | 
 | 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", | 
 | 		   ioc->params.qos[QOS_RPPM] / 10000, | 
 | 		   ioc->params.qos[QOS_RPPM] % 10000 / 100, | 
 | 		   ioc->params.qos[QOS_RLAT], | 
 | 		   ioc->params.qos[QOS_WPPM] / 10000, | 
 | 		   ioc->params.qos[QOS_WPPM] % 10000 / 100, | 
 | 		   ioc->params.qos[QOS_WLAT], | 
 | 		   ioc->params.qos[QOS_MIN] / 10000, | 
 | 		   ioc->params.qos[QOS_MIN] % 10000 / 100, | 
 | 		   ioc->params.qos[QOS_MAX] / 10000, | 
 | 		   ioc->params.qos[QOS_MAX] % 10000 / 100); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ioc_qos_show(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
 |  | 
 | 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, | 
 | 			  &blkcg_policy_iocost, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const match_table_t qos_ctrl_tokens = { | 
 | 	{ QOS_ENABLE,		"enable=%u"	}, | 
 | 	{ QOS_CTRL,		"ctrl=%s"	}, | 
 | 	{ NR_QOS_CTRL_PARAMS,	NULL		}, | 
 | }; | 
 |  | 
 | static const match_table_t qos_tokens = { | 
 | 	{ QOS_RPPM,		"rpct=%s"	}, | 
 | 	{ QOS_RLAT,		"rlat=%u"	}, | 
 | 	{ QOS_WPPM,		"wpct=%s"	}, | 
 | 	{ QOS_WLAT,		"wlat=%u"	}, | 
 | 	{ QOS_MIN,		"min=%s"	}, | 
 | 	{ QOS_MAX,		"max=%s"	}, | 
 | 	{ NR_QOS_PARAMS,	NULL		}, | 
 | }; | 
 |  | 
 | static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, | 
 | 			     size_t nbytes, loff_t off) | 
 | { | 
 | 	struct block_device *bdev; | 
 | 	struct ioc *ioc; | 
 | 	u32 qos[NR_QOS_PARAMS]; | 
 | 	bool enable, user; | 
 | 	char *p; | 
 | 	int ret; | 
 |  | 
 | 	bdev = blkcg_conf_open_bdev(&input); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 |  | 
 | 	ioc = q_to_ioc(bdev->bd_disk->queue); | 
 | 	if (!ioc) { | 
 | 		ret = blk_iocost_init(bdev->bd_disk->queue); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 		ioc = q_to_ioc(bdev->bd_disk->queue); | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 | 	memcpy(qos, ioc->params.qos, sizeof(qos)); | 
 | 	enable = ioc->enabled; | 
 | 	user = ioc->user_qos_params; | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	while ((p = strsep(&input, " \t\n"))) { | 
 | 		substring_t args[MAX_OPT_ARGS]; | 
 | 		char buf[32]; | 
 | 		int tok; | 
 | 		s64 v; | 
 |  | 
 | 		if (!*p) | 
 | 			continue; | 
 |  | 
 | 		switch (match_token(p, qos_ctrl_tokens, args)) { | 
 | 		case QOS_ENABLE: | 
 | 			match_u64(&args[0], &v); | 
 | 			enable = v; | 
 | 			continue; | 
 | 		case QOS_CTRL: | 
 | 			match_strlcpy(buf, &args[0], sizeof(buf)); | 
 | 			if (!strcmp(buf, "auto")) | 
 | 				user = false; | 
 | 			else if (!strcmp(buf, "user")) | 
 | 				user = true; | 
 | 			else | 
 | 				goto einval; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		tok = match_token(p, qos_tokens, args); | 
 | 		switch (tok) { | 
 | 		case QOS_RPPM: | 
 | 		case QOS_WPPM: | 
 | 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >= | 
 | 			    sizeof(buf)) | 
 | 				goto einval; | 
 | 			if (cgroup_parse_float(buf, 2, &v)) | 
 | 				goto einval; | 
 | 			if (v < 0 || v > 10000) | 
 | 				goto einval; | 
 | 			qos[tok] = v * 100; | 
 | 			break; | 
 | 		case QOS_RLAT: | 
 | 		case QOS_WLAT: | 
 | 			if (match_u64(&args[0], &v)) | 
 | 				goto einval; | 
 | 			qos[tok] = v; | 
 | 			break; | 
 | 		case QOS_MIN: | 
 | 		case QOS_MAX: | 
 | 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >= | 
 | 			    sizeof(buf)) | 
 | 				goto einval; | 
 | 			if (cgroup_parse_float(buf, 2, &v)) | 
 | 				goto einval; | 
 | 			if (v < 0) | 
 | 				goto einval; | 
 | 			qos[tok] = clamp_t(s64, v * 100, | 
 | 					   VRATE_MIN_PPM, VRATE_MAX_PPM); | 
 | 			break; | 
 | 		default: | 
 | 			goto einval; | 
 | 		} | 
 | 		user = true; | 
 | 	} | 
 |  | 
 | 	if (qos[QOS_MIN] > qos[QOS_MAX]) | 
 | 		goto einval; | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 |  | 
 | 	if (enable) { | 
 | 		blk_stat_enable_accounting(ioc->rqos.q); | 
 | 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); | 
 | 		ioc->enabled = true; | 
 | 	} else { | 
 | 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); | 
 | 		ioc->enabled = false; | 
 | 	} | 
 |  | 
 | 	if (user) { | 
 | 		memcpy(ioc->params.qos, qos, sizeof(qos)); | 
 | 		ioc->user_qos_params = true; | 
 | 	} else { | 
 | 		ioc->user_qos_params = false; | 
 | 	} | 
 |  | 
 | 	ioc_refresh_params(ioc, true); | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	blkdev_put_no_open(bdev); | 
 | 	return nbytes; | 
 | einval: | 
 | 	ret = -EINVAL; | 
 | err: | 
 | 	blkdev_put_no_open(bdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 ioc_cost_model_prfill(struct seq_file *sf, | 
 | 				 struct blkg_policy_data *pd, int off) | 
 | { | 
 | 	const char *dname = blkg_dev_name(pd->blkg); | 
 | 	struct ioc *ioc = pd_to_iocg(pd)->ioc; | 
 | 	u64 *u = ioc->params.i_lcoefs; | 
 |  | 
 | 	if (!dname) | 
 | 		return 0; | 
 |  | 
 | 	seq_printf(sf, "%s ctrl=%s model=linear " | 
 | 		   "rbps=%llu rseqiops=%llu rrandiops=%llu " | 
 | 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n", | 
 | 		   dname, ioc->user_cost_model ? "user" : "auto", | 
 | 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], | 
 | 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ioc_cost_model_show(struct seq_file *sf, void *v) | 
 | { | 
 | 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); | 
 |  | 
 | 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, | 
 | 			  &blkcg_policy_iocost, seq_cft(sf)->private, false); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const match_table_t cost_ctrl_tokens = { | 
 | 	{ COST_CTRL,		"ctrl=%s"	}, | 
 | 	{ COST_MODEL,		"model=%s"	}, | 
 | 	{ NR_COST_CTRL_PARAMS,	NULL		}, | 
 | }; | 
 |  | 
 | static const match_table_t i_lcoef_tokens = { | 
 | 	{ I_LCOEF_RBPS,		"rbps=%u"	}, | 
 | 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	}, | 
 | 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	}, | 
 | 	{ I_LCOEF_WBPS,		"wbps=%u"	}, | 
 | 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	}, | 
 | 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	}, | 
 | 	{ NR_I_LCOEFS,		NULL		}, | 
 | }; | 
 |  | 
 | static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, | 
 | 				    size_t nbytes, loff_t off) | 
 | { | 
 | 	struct block_device *bdev; | 
 | 	struct ioc *ioc; | 
 | 	u64 u[NR_I_LCOEFS]; | 
 | 	bool user; | 
 | 	char *p; | 
 | 	int ret; | 
 |  | 
 | 	bdev = blkcg_conf_open_bdev(&input); | 
 | 	if (IS_ERR(bdev)) | 
 | 		return PTR_ERR(bdev); | 
 |  | 
 | 	ioc = q_to_ioc(bdev->bd_disk->queue); | 
 | 	if (!ioc) { | 
 | 		ret = blk_iocost_init(bdev->bd_disk->queue); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 		ioc = q_to_ioc(bdev->bd_disk->queue); | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 | 	memcpy(u, ioc->params.i_lcoefs, sizeof(u)); | 
 | 	user = ioc->user_cost_model; | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	while ((p = strsep(&input, " \t\n"))) { | 
 | 		substring_t args[MAX_OPT_ARGS]; | 
 | 		char buf[32]; | 
 | 		int tok; | 
 | 		u64 v; | 
 |  | 
 | 		if (!*p) | 
 | 			continue; | 
 |  | 
 | 		switch (match_token(p, cost_ctrl_tokens, args)) { | 
 | 		case COST_CTRL: | 
 | 			match_strlcpy(buf, &args[0], sizeof(buf)); | 
 | 			if (!strcmp(buf, "auto")) | 
 | 				user = false; | 
 | 			else if (!strcmp(buf, "user")) | 
 | 				user = true; | 
 | 			else | 
 | 				goto einval; | 
 | 			continue; | 
 | 		case COST_MODEL: | 
 | 			match_strlcpy(buf, &args[0], sizeof(buf)); | 
 | 			if (strcmp(buf, "linear")) | 
 | 				goto einval; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		tok = match_token(p, i_lcoef_tokens, args); | 
 | 		if (tok == NR_I_LCOEFS) | 
 | 			goto einval; | 
 | 		if (match_u64(&args[0], &v)) | 
 | 			goto einval; | 
 | 		u[tok] = v; | 
 | 		user = true; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&ioc->lock); | 
 | 	if (user) { | 
 | 		memcpy(ioc->params.i_lcoefs, u, sizeof(u)); | 
 | 		ioc->user_cost_model = true; | 
 | 	} else { | 
 | 		ioc->user_cost_model = false; | 
 | 	} | 
 | 	ioc_refresh_params(ioc, true); | 
 | 	spin_unlock_irq(&ioc->lock); | 
 |  | 
 | 	blkdev_put_no_open(bdev); | 
 | 	return nbytes; | 
 |  | 
 | einval: | 
 | 	ret = -EINVAL; | 
 | err: | 
 | 	blkdev_put_no_open(bdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct cftype ioc_files[] = { | 
 | 	{ | 
 | 		.name = "weight", | 
 | 		.flags = CFTYPE_NOT_ON_ROOT, | 
 | 		.seq_show = ioc_weight_show, | 
 | 		.write = ioc_weight_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "cost.qos", | 
 | 		.flags = CFTYPE_ONLY_ON_ROOT, | 
 | 		.seq_show = ioc_qos_show, | 
 | 		.write = ioc_qos_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "cost.model", | 
 | 		.flags = CFTYPE_ONLY_ON_ROOT, | 
 | 		.seq_show = ioc_cost_model_show, | 
 | 		.write = ioc_cost_model_write, | 
 | 	}, | 
 | 	{} | 
 | }; | 
 |  | 
 | static struct blkcg_policy blkcg_policy_iocost = { | 
 | 	.dfl_cftypes	= ioc_files, | 
 | 	.cpd_alloc_fn	= ioc_cpd_alloc, | 
 | 	.cpd_free_fn	= ioc_cpd_free, | 
 | 	.pd_alloc_fn	= ioc_pd_alloc, | 
 | 	.pd_init_fn	= ioc_pd_init, | 
 | 	.pd_free_fn	= ioc_pd_free, | 
 | 	.pd_stat_fn	= ioc_pd_stat, | 
 | }; | 
 |  | 
 | static int __init ioc_init(void) | 
 | { | 
 | 	return blkcg_policy_register(&blkcg_policy_iocost); | 
 | } | 
 |  | 
 | static void __exit ioc_exit(void) | 
 | { | 
 | 	blkcg_policy_unregister(&blkcg_policy_iocost); | 
 | } | 
 |  | 
 | module_init(ioc_init); | 
 | module_exit(ioc_exit); |