|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include <linux/iversion.h> | 
|  |  | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_attr.h" | 
|  | #include "xfs_trans_space.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_bmap_util.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_filestream.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_icache.h" | 
|  | #include "xfs_symlink.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_reflink.h" | 
|  | #include "xfs_ag.h" | 
|  |  | 
|  | kmem_zone_t *xfs_inode_zone; | 
|  |  | 
|  | /* | 
|  | * Used in xfs_itruncate_extents().  This is the maximum number of extents | 
|  | * freed from a file in a single transaction. | 
|  | */ | 
|  | #define	XFS_ITRUNC_MAX_EXTENTS	2 | 
|  |  | 
|  | STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); | 
|  | STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag, | 
|  | struct xfs_inode *); | 
|  |  | 
|  | /* | 
|  | * helper function to extract extent size hint from inode | 
|  | */ | 
|  | xfs_extlen_t | 
|  | xfs_get_extsz_hint( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | /* | 
|  | * No point in aligning allocations if we need to COW to actually | 
|  | * write to them. | 
|  | */ | 
|  | if (xfs_is_always_cow_inode(ip)) | 
|  | return 0; | 
|  | if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize) | 
|  | return ip->i_extsize; | 
|  | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | return ip->i_mount->m_sb.sb_rextsize; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function to extract CoW extent size hint from inode. | 
|  | * Between the extent size hint and the CoW extent size hint, we | 
|  | * return the greater of the two.  If the value is zero (automatic), | 
|  | * use the default size. | 
|  | */ | 
|  | xfs_extlen_t | 
|  | xfs_get_cowextsz_hint( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | xfs_extlen_t		a, b; | 
|  |  | 
|  | a = 0; | 
|  | if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) | 
|  | a = ip->i_cowextsize; | 
|  | b = xfs_get_extsz_hint(ip); | 
|  |  | 
|  | a = max(a, b); | 
|  | if (a == 0) | 
|  | return XFS_DEFAULT_COWEXTSZ_HINT; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These two are wrapper routines around the xfs_ilock() routine used to | 
|  | * centralize some grungy code.  They are used in places that wish to lock the | 
|  | * inode solely for reading the extents.  The reason these places can't just | 
|  | * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to | 
|  | * bringing in of the extents from disk for a file in b-tree format.  If the | 
|  | * inode is in b-tree format, then we need to lock the inode exclusively until | 
|  | * the extents are read in.  Locking it exclusively all the time would limit | 
|  | * our parallelism unnecessarily, though.  What we do instead is check to see | 
|  | * if the extents have been read in yet, and only lock the inode exclusively | 
|  | * if they have not. | 
|  | * | 
|  | * The functions return a value which should be given to the corresponding | 
|  | * xfs_iunlock() call. | 
|  | */ | 
|  | uint | 
|  | xfs_ilock_data_map_shared( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | uint			lock_mode = XFS_ILOCK_SHARED; | 
|  |  | 
|  | if (xfs_need_iread_extents(&ip->i_df)) | 
|  | lock_mode = XFS_ILOCK_EXCL; | 
|  | xfs_ilock(ip, lock_mode); | 
|  | return lock_mode; | 
|  | } | 
|  |  | 
|  | uint | 
|  | xfs_ilock_attr_map_shared( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | uint			lock_mode = XFS_ILOCK_SHARED; | 
|  |  | 
|  | if (ip->i_afp && xfs_need_iread_extents(ip->i_afp)) | 
|  | lock_mode = XFS_ILOCK_EXCL; | 
|  | xfs_ilock(ip, lock_mode); | 
|  | return lock_mode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 | 
|  | * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows | 
|  | * various combinations of the locks to be obtained. | 
|  | * | 
|  | * The 3 locks should always be ordered so that the IO lock is obtained first, | 
|  | * the mmap lock second and the ilock last in order to prevent deadlock. | 
|  | * | 
|  | * Basic locking order: | 
|  | * | 
|  | * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock | 
|  | * | 
|  | * mmap_lock locking order: | 
|  | * | 
|  | * i_rwsem -> page lock -> mmap_lock | 
|  | * mmap_lock -> i_mmap_lock -> page_lock | 
|  | * | 
|  | * The difference in mmap_lock locking order mean that we cannot hold the | 
|  | * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can | 
|  | * fault in pages during copy in/out (for buffered IO) or require the mmap_lock | 
|  | * in get_user_pages() to map the user pages into the kernel address space for | 
|  | * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because | 
|  | * page faults already hold the mmap_lock. | 
|  | * | 
|  | * Hence to serialise fully against both syscall and mmap based IO, we need to | 
|  | * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both | 
|  | * taken in places where we need to invalidate the page cache in a race | 
|  | * free manner (e.g. truncate, hole punch and other extent manipulation | 
|  | * functions). | 
|  | */ | 
|  | void | 
|  | xfs_ilock( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | trace_xfs_ilock(ip, lock_flags, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
|  | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | down_write_nested(&VFS_I(ip)->i_rwsem, | 
|  | XFS_IOLOCK_DEP(lock_flags)); | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | down_read_nested(&VFS_I(ip)->i_rwsem, | 
|  | XFS_IOLOCK_DEP(lock_flags)); | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); | 
|  | else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
|  | mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | else if (lock_flags & XFS_ILOCK_SHARED) | 
|  | mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is just like xfs_ilock(), except that the caller | 
|  | * is guaranteed not to sleep.  It returns 1 if it gets | 
|  | * the requested locks and 0 otherwise.  If the IO lock is | 
|  | * obtained but the inode lock cannot be, then the IO lock | 
|  | * is dropped before returning. | 
|  | * | 
|  | * ip -- the inode being locked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be locked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values. | 
|  | */ | 
|  | int | 
|  | xfs_ilock_nowait( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); | 
|  |  | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
|  | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) { | 
|  | if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) | 
|  | goto out; | 
|  | } else if (lock_flags & XFS_IOLOCK_SHARED) { | 
|  | if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) { | 
|  | if (!mrtryupdate(&ip->i_mmaplock)) | 
|  | goto out_undo_iolock; | 
|  | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { | 
|  | if (!mrtryaccess(&ip->i_mmaplock)) | 
|  | goto out_undo_iolock; | 
|  | } | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) { | 
|  | if (!mrtryupdate(&ip->i_lock)) | 
|  | goto out_undo_mmaplock; | 
|  | } else if (lock_flags & XFS_ILOCK_SHARED) { | 
|  | if (!mrtryaccess(&ip->i_lock)) | 
|  | goto out_undo_mmaplock; | 
|  | } | 
|  | return 1; | 
|  |  | 
|  | out_undo_mmaplock: | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | mrunlock_excl(&ip->i_mmaplock); | 
|  | else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
|  | mrunlock_shared(&ip->i_mmaplock); | 
|  | out_undo_iolock: | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | up_write(&VFS_I(ip)->i_rwsem); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | up_read(&VFS_I(ip)->i_rwsem); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_iunlock() is used to drop the inode locks acquired with | 
|  | * xfs_ilock() and xfs_ilock_nowait().  The caller must pass | 
|  | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so | 
|  | * that we know which locks to drop. | 
|  | * | 
|  | * ip -- the inode being unlocked | 
|  | * lock_flags -- this parameter indicates the inode's locks to be | 
|  | *       to be unlocked.  See the comment for xfs_ilock() for a list | 
|  | *	 of valid values for this parameter. | 
|  | * | 
|  | */ | 
|  | void | 
|  | xfs_iunlock( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | /* | 
|  | * You can't set both SHARED and EXCL for the same lock, | 
|  | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, | 
|  | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. | 
|  | */ | 
|  | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != | 
|  | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != | 
|  | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); | 
|  | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != | 
|  | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); | 
|  | ASSERT(lock_flags != 0); | 
|  |  | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | up_write(&VFS_I(ip)->i_rwsem); | 
|  | else if (lock_flags & XFS_IOLOCK_SHARED) | 
|  | up_read(&VFS_I(ip)->i_rwsem); | 
|  |  | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | mrunlock_excl(&ip->i_mmaplock); | 
|  | else if (lock_flags & XFS_MMAPLOCK_SHARED) | 
|  | mrunlock_shared(&ip->i_mmaplock); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | mrunlock_excl(&ip->i_lock); | 
|  | else if (lock_flags & XFS_ILOCK_SHARED) | 
|  | mrunlock_shared(&ip->i_lock); | 
|  |  | 
|  | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * give up write locks.  the i/o lock cannot be held nested | 
|  | * if it is being demoted. | 
|  | */ | 
|  | void | 
|  | xfs_ilock_demote( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); | 
|  | ASSERT((lock_flags & | 
|  | ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); | 
|  |  | 
|  | if (lock_flags & XFS_ILOCK_EXCL) | 
|  | mrdemote(&ip->i_lock); | 
|  | if (lock_flags & XFS_MMAPLOCK_EXCL) | 
|  | mrdemote(&ip->i_mmaplock); | 
|  | if (lock_flags & XFS_IOLOCK_EXCL) | 
|  | downgrade_write(&VFS_I(ip)->i_rwsem); | 
|  |  | 
|  | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) || defined(XFS_WARN) | 
|  | int | 
|  | xfs_isilocked( | 
|  | xfs_inode_t		*ip, | 
|  | uint			lock_flags) | 
|  | { | 
|  | if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { | 
|  | if (!(lock_flags & XFS_ILOCK_SHARED)) | 
|  | return !!ip->i_lock.mr_writer; | 
|  | return rwsem_is_locked(&ip->i_lock.mr_lock); | 
|  | } | 
|  |  | 
|  | if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { | 
|  | if (!(lock_flags & XFS_MMAPLOCK_SHARED)) | 
|  | return !!ip->i_mmaplock.mr_writer; | 
|  | return rwsem_is_locked(&ip->i_mmaplock.mr_lock); | 
|  | } | 
|  |  | 
|  | if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { | 
|  | if (!(lock_flags & XFS_IOLOCK_SHARED)) | 
|  | return !debug_locks || | 
|  | lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); | 
|  | return rwsem_is_locked(&VFS_I(ip)->i_rwsem); | 
|  | } | 
|  |  | 
|  | ASSERT(0); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when | 
|  | * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined | 
|  | * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build | 
|  | * errors and warnings. | 
|  | */ | 
|  | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) | 
|  | static bool | 
|  | xfs_lockdep_subclass_ok( | 
|  | int subclass) | 
|  | { | 
|  | return subclass < MAX_LOCKDEP_SUBCLASSES; | 
|  | } | 
|  | #else | 
|  | #define xfs_lockdep_subclass_ok(subclass)	(true) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Bump the subclass so xfs_lock_inodes() acquires each lock with a different | 
|  | * value. This can be called for any type of inode lock combination, including | 
|  | * parent locking. Care must be taken to ensure we don't overrun the subclass | 
|  | * storage fields in the class mask we build. | 
|  | */ | 
|  | static inline int | 
|  | xfs_lock_inumorder(int lock_mode, int subclass) | 
|  | { | 
|  | int	class = 0; | 
|  |  | 
|  | ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | | 
|  | XFS_ILOCK_RTSUM))); | 
|  | ASSERT(xfs_lockdep_subclass_ok(subclass)); | 
|  |  | 
|  | if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { | 
|  | ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); | 
|  | class += subclass << XFS_IOLOCK_SHIFT; | 
|  | } | 
|  |  | 
|  | if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { | 
|  | ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); | 
|  | class += subclass << XFS_MMAPLOCK_SHIFT; | 
|  | } | 
|  |  | 
|  | if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { | 
|  | ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); | 
|  | class += subclass << XFS_ILOCK_SHIFT; | 
|  | } | 
|  |  | 
|  | return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following routine will lock n inodes in exclusive mode.  We assume the | 
|  | * caller calls us with the inodes in i_ino order. | 
|  | * | 
|  | * We need to detect deadlock where an inode that we lock is in the AIL and we | 
|  | * start waiting for another inode that is locked by a thread in a long running | 
|  | * transaction (such as truncate). This can result in deadlock since the long | 
|  | * running trans might need to wait for the inode we just locked in order to | 
|  | * push the tail and free space in the log. | 
|  | * | 
|  | * xfs_lock_inodes() can only be used to lock one type of lock at a time - | 
|  | * the iolock, the mmaplock or the ilock, but not more than one at a time. If we | 
|  | * lock more than one at a time, lockdep will report false positives saying we | 
|  | * have violated locking orders. | 
|  | */ | 
|  | static void | 
|  | xfs_lock_inodes( | 
|  | struct xfs_inode	**ips, | 
|  | int			inodes, | 
|  | uint			lock_mode) | 
|  | { | 
|  | int			attempts = 0, i, j, try_lock; | 
|  | struct xfs_log_item	*lp; | 
|  |  | 
|  | /* | 
|  | * Currently supports between 2 and 5 inodes with exclusive locking.  We | 
|  | * support an arbitrary depth of locking here, but absolute limits on | 
|  | * inodes depend on the type of locking and the limits placed by | 
|  | * lockdep annotations in xfs_lock_inumorder.  These are all checked by | 
|  | * the asserts. | 
|  | */ | 
|  | ASSERT(ips && inodes >= 2 && inodes <= 5); | 
|  | ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | | 
|  | XFS_ILOCK_EXCL)); | 
|  | ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | | 
|  | XFS_ILOCK_SHARED))); | 
|  | ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || | 
|  | inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); | 
|  | ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || | 
|  | inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); | 
|  |  | 
|  | if (lock_mode & XFS_IOLOCK_EXCL) { | 
|  | ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); | 
|  | } else if (lock_mode & XFS_MMAPLOCK_EXCL) | 
|  | ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); | 
|  |  | 
|  | try_lock = 0; | 
|  | i = 0; | 
|  | again: | 
|  | for (; i < inodes; i++) { | 
|  | ASSERT(ips[i]); | 
|  |  | 
|  | if (i && (ips[i] == ips[i - 1]))	/* Already locked */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If try_lock is not set yet, make sure all locked inodes are | 
|  | * not in the AIL.  If any are, set try_lock to be used later. | 
|  | */ | 
|  | if (!try_lock) { | 
|  | for (j = (i - 1); j >= 0 && !try_lock; j--) { | 
|  | lp = &ips[j]->i_itemp->ili_item; | 
|  | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) | 
|  | try_lock++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any of the previous locks we have locked is in the AIL, | 
|  | * we must TRY to get the second and subsequent locks. If | 
|  | * we can't get any, we must release all we have | 
|  | * and try again. | 
|  | */ | 
|  | if (!try_lock) { | 
|  | xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* try_lock means we have an inode locked that is in the AIL. */ | 
|  | ASSERT(i != 0); | 
|  | if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Unlock all previous guys and try again.  xfs_iunlock will try | 
|  | * to push the tail if the inode is in the AIL. | 
|  | */ | 
|  | attempts++; | 
|  | for (j = i - 1; j >= 0; j--) { | 
|  | /* | 
|  | * Check to see if we've already unlocked this one.  Not | 
|  | * the first one going back, and the inode ptr is the | 
|  | * same. | 
|  | */ | 
|  | if (j != (i - 1) && ips[j] == ips[j + 1]) | 
|  | continue; | 
|  |  | 
|  | xfs_iunlock(ips[j], lock_mode); | 
|  | } | 
|  |  | 
|  | if ((attempts % 5) == 0) { | 
|  | delay(1); /* Don't just spin the CPU */ | 
|  | } | 
|  | i = 0; | 
|  | try_lock = 0; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - | 
|  | * the mmaplock or the ilock, but not more than one type at a time. If we lock | 
|  | * more than one at a time, lockdep will report false positives saying we have | 
|  | * violated locking orders.  The iolock must be double-locked separately since | 
|  | * we use i_rwsem for that.  We now support taking one lock EXCL and the other | 
|  | * SHARED. | 
|  | */ | 
|  | void | 
|  | xfs_lock_two_inodes( | 
|  | struct xfs_inode	*ip0, | 
|  | uint			ip0_mode, | 
|  | struct xfs_inode	*ip1, | 
|  | uint			ip1_mode) | 
|  | { | 
|  | struct xfs_inode	*temp; | 
|  | uint			mode_temp; | 
|  | int			attempts = 0; | 
|  | struct xfs_log_item	*lp; | 
|  |  | 
|  | ASSERT(hweight32(ip0_mode) == 1); | 
|  | ASSERT(hweight32(ip1_mode) == 1); | 
|  | ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
|  | ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); | 
|  | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
|  | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
|  | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
|  | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
|  | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
|  | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
|  | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || | 
|  | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); | 
|  |  | 
|  | ASSERT(ip0->i_ino != ip1->i_ino); | 
|  |  | 
|  | if (ip0->i_ino > ip1->i_ino) { | 
|  | temp = ip0; | 
|  | ip0 = ip1; | 
|  | ip1 = temp; | 
|  | mode_temp = ip0_mode; | 
|  | ip0_mode = ip1_mode; | 
|  | ip1_mode = mode_temp; | 
|  | } | 
|  |  | 
|  | again: | 
|  | xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); | 
|  |  | 
|  | /* | 
|  | * If the first lock we have locked is in the AIL, we must TRY to get | 
|  | * the second lock. If we can't get it, we must release the first one | 
|  | * and try again. | 
|  | */ | 
|  | lp = &ip0->i_itemp->ili_item; | 
|  | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { | 
|  | if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { | 
|  | xfs_iunlock(ip0, ip0_mode); | 
|  | if ((++attempts % 5) == 0) | 
|  | delay(1); /* Don't just spin the CPU */ | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint | 
|  | xfs_ip2xflags( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | uint			flags = 0; | 
|  |  | 
|  | if (ip->i_diflags & XFS_DIFLAG_ANY) { | 
|  | if (ip->i_diflags & XFS_DIFLAG_REALTIME) | 
|  | flags |= FS_XFLAG_REALTIME; | 
|  | if (ip->i_diflags & XFS_DIFLAG_PREALLOC) | 
|  | flags |= FS_XFLAG_PREALLOC; | 
|  | if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE) | 
|  | flags |= FS_XFLAG_IMMUTABLE; | 
|  | if (ip->i_diflags & XFS_DIFLAG_APPEND) | 
|  | flags |= FS_XFLAG_APPEND; | 
|  | if (ip->i_diflags & XFS_DIFLAG_SYNC) | 
|  | flags |= FS_XFLAG_SYNC; | 
|  | if (ip->i_diflags & XFS_DIFLAG_NOATIME) | 
|  | flags |= FS_XFLAG_NOATIME; | 
|  | if (ip->i_diflags & XFS_DIFLAG_NODUMP) | 
|  | flags |= FS_XFLAG_NODUMP; | 
|  | if (ip->i_diflags & XFS_DIFLAG_RTINHERIT) | 
|  | flags |= FS_XFLAG_RTINHERIT; | 
|  | if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT) | 
|  | flags |= FS_XFLAG_PROJINHERIT; | 
|  | if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS) | 
|  | flags |= FS_XFLAG_NOSYMLINKS; | 
|  | if (ip->i_diflags & XFS_DIFLAG_EXTSIZE) | 
|  | flags |= FS_XFLAG_EXTSIZE; | 
|  | if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) | 
|  | flags |= FS_XFLAG_EXTSZINHERIT; | 
|  | if (ip->i_diflags & XFS_DIFLAG_NODEFRAG) | 
|  | flags |= FS_XFLAG_NODEFRAG; | 
|  | if (ip->i_diflags & XFS_DIFLAG_FILESTREAM) | 
|  | flags |= FS_XFLAG_FILESTREAM; | 
|  | } | 
|  |  | 
|  | if (ip->i_diflags2 & XFS_DIFLAG2_ANY) { | 
|  | if (ip->i_diflags2 & XFS_DIFLAG2_DAX) | 
|  | flags |= FS_XFLAG_DAX; | 
|  | if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) | 
|  | flags |= FS_XFLAG_COWEXTSIZE; | 
|  | } | 
|  |  | 
|  | if (XFS_IFORK_Q(ip)) | 
|  | flags |= FS_XFLAG_HASATTR; | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookups up an inode from "name". If ci_name is not NULL, then a CI match | 
|  | * is allowed, otherwise it has to be an exact match. If a CI match is found, | 
|  | * ci_name->name will point to a the actual name (caller must free) or | 
|  | * will be set to NULL if an exact match is found. | 
|  | */ | 
|  | int | 
|  | xfs_lookup( | 
|  | xfs_inode_t		*dp, | 
|  | struct xfs_name		*name, | 
|  | xfs_inode_t		**ipp, | 
|  | struct xfs_name		*ci_name) | 
|  | { | 
|  | xfs_ino_t		inum; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_lookup(dp, name); | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(dp->i_mount)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); | 
|  | if (error) | 
|  | goto out_free_name; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_name: | 
|  | if (ci_name) | 
|  | kmem_free(ci_name->name); | 
|  | out_unlock: | 
|  | *ipp = NULL; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Propagate di_flags from a parent inode to a child inode. */ | 
|  | static void | 
|  | xfs_inode_inherit_flags( | 
|  | struct xfs_inode	*ip, | 
|  | const struct xfs_inode	*pip) | 
|  | { | 
|  | unsigned int		di_flags = 0; | 
|  | xfs_failaddr_t		failaddr; | 
|  | umode_t			mode = VFS_I(ip)->i_mode; | 
|  |  | 
|  | if (S_ISDIR(mode)) { | 
|  | if (pip->i_diflags & XFS_DIFLAG_RTINHERIT) | 
|  | di_flags |= XFS_DIFLAG_RTINHERIT; | 
|  | if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { | 
|  | di_flags |= XFS_DIFLAG_EXTSZINHERIT; | 
|  | ip->i_extsize = pip->i_extsize; | 
|  | } | 
|  | if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT) | 
|  | di_flags |= XFS_DIFLAG_PROJINHERIT; | 
|  | } else if (S_ISREG(mode)) { | 
|  | if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) && | 
|  | xfs_sb_version_hasrealtime(&ip->i_mount->m_sb)) | 
|  | di_flags |= XFS_DIFLAG_REALTIME; | 
|  | if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) { | 
|  | di_flags |= XFS_DIFLAG_EXTSIZE; | 
|  | ip->i_extsize = pip->i_extsize; | 
|  | } | 
|  | } | 
|  | if ((pip->i_diflags & XFS_DIFLAG_NOATIME) && | 
|  | xfs_inherit_noatime) | 
|  | di_flags |= XFS_DIFLAG_NOATIME; | 
|  | if ((pip->i_diflags & XFS_DIFLAG_NODUMP) && | 
|  | xfs_inherit_nodump) | 
|  | di_flags |= XFS_DIFLAG_NODUMP; | 
|  | if ((pip->i_diflags & XFS_DIFLAG_SYNC) && | 
|  | xfs_inherit_sync) | 
|  | di_flags |= XFS_DIFLAG_SYNC; | 
|  | if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) && | 
|  | xfs_inherit_nosymlinks) | 
|  | di_flags |= XFS_DIFLAG_NOSYMLINKS; | 
|  | if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) && | 
|  | xfs_inherit_nodefrag) | 
|  | di_flags |= XFS_DIFLAG_NODEFRAG; | 
|  | if (pip->i_diflags & XFS_DIFLAG_FILESTREAM) | 
|  | di_flags |= XFS_DIFLAG_FILESTREAM; | 
|  |  | 
|  | ip->i_diflags |= di_flags; | 
|  |  | 
|  | /* | 
|  | * Inode verifiers on older kernels only check that the extent size | 
|  | * hint is an integer multiple of the rt extent size on realtime files. | 
|  | * They did not check the hint alignment on a directory with both | 
|  | * rtinherit and extszinherit flags set.  If the misaligned hint is | 
|  | * propagated from a directory into a new realtime file, new file | 
|  | * allocations will fail due to math errors in the rt allocator and/or | 
|  | * trip the verifiers.  Validate the hint settings in the new file so | 
|  | * that we don't let broken hints propagate. | 
|  | */ | 
|  | failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize, | 
|  | VFS_I(ip)->i_mode, ip->i_diflags); | 
|  | if (failaddr) { | 
|  | ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE | | 
|  | XFS_DIFLAG_EXTSZINHERIT); | 
|  | ip->i_extsize = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Propagate di_flags2 from a parent inode to a child inode. */ | 
|  | static void | 
|  | xfs_inode_inherit_flags2( | 
|  | struct xfs_inode	*ip, | 
|  | const struct xfs_inode	*pip) | 
|  | { | 
|  | xfs_failaddr_t		failaddr; | 
|  |  | 
|  | if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) { | 
|  | ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; | 
|  | ip->i_cowextsize = pip->i_cowextsize; | 
|  | } | 
|  | if (pip->i_diflags2 & XFS_DIFLAG2_DAX) | 
|  | ip->i_diflags2 |= XFS_DIFLAG2_DAX; | 
|  |  | 
|  | /* Don't let invalid cowextsize hints propagate. */ | 
|  | failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize, | 
|  | VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2); | 
|  | if (failaddr) { | 
|  | ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE; | 
|  | ip->i_cowextsize = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise a newly allocated inode and return the in-core inode to the | 
|  | * caller locked exclusively. | 
|  | */ | 
|  | int | 
|  | xfs_init_new_inode( | 
|  | struct user_namespace	*mnt_userns, | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*pip, | 
|  | xfs_ino_t		ino, | 
|  | umode_t			mode, | 
|  | xfs_nlink_t		nlink, | 
|  | dev_t			rdev, | 
|  | prid_t			prid, | 
|  | bool			init_xattrs, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct inode		*dir = pip ? VFS_I(pip) : NULL; | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_inode	*ip; | 
|  | unsigned int		flags; | 
|  | int			error; | 
|  | struct timespec64	tv; | 
|  | struct inode		*inode; | 
|  |  | 
|  | /* | 
|  | * Protect against obviously corrupt allocation btree records. Later | 
|  | * xfs_iget checks will catch re-allocation of other active in-memory | 
|  | * and on-disk inodes. If we don't catch reallocating the parent inode | 
|  | * here we will deadlock in xfs_iget() so we have to do these checks | 
|  | * first. | 
|  | */ | 
|  | if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { | 
|  | xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the in-core inode with the lock held exclusively to prevent | 
|  | * others from looking at until we're done. | 
|  | */ | 
|  | error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | ASSERT(ip != NULL); | 
|  | inode = VFS_I(ip); | 
|  | set_nlink(inode, nlink); | 
|  | inode->i_rdev = rdev; | 
|  | ip->i_projid = prid; | 
|  |  | 
|  | if (dir && !(dir->i_mode & S_ISGID) && | 
|  | (mp->m_flags & XFS_MOUNT_GRPID)) { | 
|  | inode_fsuid_set(inode, mnt_userns); | 
|  | inode->i_gid = dir->i_gid; | 
|  | inode->i_mode = mode; | 
|  | } else { | 
|  | inode_init_owner(mnt_userns, inode, dir, mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the group ID of the new file does not match the effective group | 
|  | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | 
|  | * (and only if the irix_sgid_inherit compatibility variable is set). | 
|  | */ | 
|  | if (irix_sgid_inherit && | 
|  | (inode->i_mode & S_ISGID) && | 
|  | !in_group_p(i_gid_into_mnt(mnt_userns, inode))) | 
|  | inode->i_mode &= ~S_ISGID; | 
|  |  | 
|  | ip->i_disk_size = 0; | 
|  | ip->i_df.if_nextents = 0; | 
|  | ASSERT(ip->i_nblocks == 0); | 
|  |  | 
|  | tv = current_time(inode); | 
|  | inode->i_mtime = tv; | 
|  | inode->i_atime = tv; | 
|  | inode->i_ctime = tv; | 
|  |  | 
|  | ip->i_extsize = 0; | 
|  | ip->i_diflags = 0; | 
|  |  | 
|  | if (xfs_sb_version_has_v3inode(&mp->m_sb)) { | 
|  | inode_set_iversion(inode, 1); | 
|  | ip->i_cowextsize = 0; | 
|  | ip->i_crtime = tv; | 
|  | } | 
|  |  | 
|  | flags = XFS_ILOG_CORE; | 
|  | switch (mode & S_IFMT) { | 
|  | case S_IFIFO: | 
|  | case S_IFCHR: | 
|  | case S_IFBLK: | 
|  | case S_IFSOCK: | 
|  | ip->i_df.if_format = XFS_DINODE_FMT_DEV; | 
|  | flags |= XFS_ILOG_DEV; | 
|  | break; | 
|  | case S_IFREG: | 
|  | case S_IFDIR: | 
|  | if (pip && (pip->i_diflags & XFS_DIFLAG_ANY)) | 
|  | xfs_inode_inherit_flags(ip, pip); | 
|  | if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY)) | 
|  | xfs_inode_inherit_flags2(ip, pip); | 
|  | fallthrough; | 
|  | case S_IFLNK: | 
|  | ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; | 
|  | ip->i_df.if_bytes = 0; | 
|  | ip->i_df.if_u1.if_root = NULL; | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we need to create attributes immediately after allocating the | 
|  | * inode, initialise an empty attribute fork right now. We use the | 
|  | * default fork offset for attributes here as we don't know exactly what | 
|  | * size or how many attributes we might be adding. We can do this | 
|  | * safely here because we know the data fork is completely empty and | 
|  | * this saves us from needing to run a separate transaction to set the | 
|  | * fork offset in the immediate future. | 
|  | */ | 
|  | if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) { | 
|  | ip->i_forkoff = xfs_default_attroffset(ip) >> 3; | 
|  | ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log the new values stuffed into the inode. | 
|  | */ | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_log_inode(tp, ip, flags); | 
|  |  | 
|  | /* now that we have an i_mode we can setup the inode structure */ | 
|  | xfs_setup_inode(ip); | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decrement the link count on an inode & log the change.  If this causes the | 
|  | * link count to go to zero, move the inode to AGI unlinked list so that it can | 
|  | * be freed when the last active reference goes away via xfs_inactive(). | 
|  | */ | 
|  | static int			/* error */ | 
|  | xfs_droplink( | 
|  | xfs_trans_t *tp, | 
|  | xfs_inode_t *ip) | 
|  | { | 
|  | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | 
|  |  | 
|  | drop_nlink(VFS_I(ip)); | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | if (VFS_I(ip)->i_nlink) | 
|  | return 0; | 
|  |  | 
|  | return xfs_iunlink(tp, ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increment the link count on an inode & log the change. | 
|  | */ | 
|  | static void | 
|  | xfs_bumplink( | 
|  | xfs_trans_t *tp, | 
|  | xfs_inode_t *ip) | 
|  | { | 
|  | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); | 
|  |  | 
|  | inc_nlink(VFS_I(ip)); | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_create( | 
|  | struct user_namespace	*mnt_userns, | 
|  | xfs_inode_t		*dp, | 
|  | struct xfs_name		*name, | 
|  | umode_t			mode, | 
|  | dev_t			rdev, | 
|  | bool			init_xattrs, | 
|  | xfs_inode_t		**ipp) | 
|  | { | 
|  | int			is_dir = S_ISDIR(mode); | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_inode	*ip = NULL; | 
|  | struct xfs_trans	*tp = NULL; | 
|  | int			error; | 
|  | bool                    unlock_dp_on_error = false; | 
|  | prid_t			prid; | 
|  | struct xfs_dquot	*udqp = NULL; | 
|  | struct xfs_dquot	*gdqp = NULL; | 
|  | struct xfs_dquot	*pdqp = NULL; | 
|  | struct xfs_trans_res	*tres; | 
|  | uint			resblks; | 
|  | xfs_ino_t		ino; | 
|  |  | 
|  | trace_xfs_create(dp, name); | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | prid = xfs_get_initial_prid(dp); | 
|  |  | 
|  | /* | 
|  | * Make sure that we have allocated dquot(s) on disk. | 
|  | */ | 
|  | error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), | 
|  | mapped_fsgid(mnt_userns), prid, | 
|  | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | 
|  | &udqp, &gdqp, &pdqp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (is_dir) { | 
|  | resblks = XFS_MKDIR_SPACE_RES(mp, name->len); | 
|  | tres = &M_RES(mp)->tr_mkdir; | 
|  | } else { | 
|  | resblks = XFS_CREATE_SPACE_RES(mp, name->len); | 
|  | tres = &M_RES(mp)->tr_create; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initially assume that the file does not exist and | 
|  | * reserve the resources for that case.  If that is not | 
|  | * the case we'll drop the one we have and get a more | 
|  | * appropriate transaction later. | 
|  | */ | 
|  | error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, | 
|  | &tp); | 
|  | if (error == -ENOSPC) { | 
|  | /* flush outstanding delalloc blocks and retry */ | 
|  | xfs_flush_inodes(mp); | 
|  | error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, | 
|  | resblks, &tp); | 
|  | } | 
|  | if (error) | 
|  | goto out_release_dquots; | 
|  |  | 
|  | xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); | 
|  | unlock_dp_on_error = true; | 
|  |  | 
|  | error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK, | 
|  | XFS_IEXT_DIR_MANIP_CNT(mp)); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * A newly created regular or special file just has one directory | 
|  | * entry pointing to them, but a directory also the "." entry | 
|  | * pointing to itself. | 
|  | */ | 
|  | error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); | 
|  | if (!error) | 
|  | error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, | 
|  | is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * Now we join the directory inode to the transaction.  We do not do it | 
|  | * earlier because xfs_dialloc might commit the previous transaction | 
|  | * (and release all the locks).  An error from here on will result in | 
|  | * the transaction cancel unlocking dp so don't do it explicitly in the | 
|  | * error path. | 
|  | */ | 
|  | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); | 
|  | unlock_dp_on_error = false; | 
|  |  | 
|  | error = xfs_dir_createname(tp, dp, name, ip->i_ino, | 
|  | resblks - XFS_IALLOC_SPACE_RES(mp)); | 
|  | if (error) { | 
|  | ASSERT(error != -ENOSPC); | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | 
|  |  | 
|  | if (is_dir) { | 
|  | error = xfs_dir_init(tp, ip, dp); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | xfs_bumplink(tp, dp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the | 
|  | * create transaction goes to disk before returning to | 
|  | * the user. | 
|  | */ | 
|  | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | /* | 
|  | * Attach the dquot(s) to the inodes and modify them incore. | 
|  | * These ids of the inode couldn't have changed since the new | 
|  | * inode has been locked ever since it was created. | 
|  | */ | 
|  | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_release_inode; | 
|  |  | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_release_inode: | 
|  | /* | 
|  | * Wait until after the current transaction is aborted to finish the | 
|  | * setup of the inode and release the inode.  This prevents recursive | 
|  | * transactions and deadlocks from xfs_inactive. | 
|  | */ | 
|  | if (ip) { | 
|  | xfs_finish_inode_setup(ip); | 
|  | xfs_irele(ip); | 
|  | } | 
|  | out_release_dquots: | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | if (unlock_dp_on_error) | 
|  | xfs_iunlock(dp, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_create_tmpfile( | 
|  | struct user_namespace	*mnt_userns, | 
|  | struct xfs_inode	*dp, | 
|  | umode_t			mode, | 
|  | struct xfs_inode	**ipp) | 
|  | { | 
|  | struct xfs_mount	*mp = dp->i_mount; | 
|  | struct xfs_inode	*ip = NULL; | 
|  | struct xfs_trans	*tp = NULL; | 
|  | int			error; | 
|  | prid_t                  prid; | 
|  | struct xfs_dquot	*udqp = NULL; | 
|  | struct xfs_dquot	*gdqp = NULL; | 
|  | struct xfs_dquot	*pdqp = NULL; | 
|  | struct xfs_trans_res	*tres; | 
|  | uint			resblks; | 
|  | xfs_ino_t		ino; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | prid = xfs_get_initial_prid(dp); | 
|  |  | 
|  | /* | 
|  | * Make sure that we have allocated dquot(s) on disk. | 
|  | */ | 
|  | error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns), | 
|  | mapped_fsgid(mnt_userns), prid, | 
|  | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, | 
|  | &udqp, &gdqp, &pdqp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | resblks = XFS_IALLOC_SPACE_RES(mp); | 
|  | tres = &M_RES(mp)->tr_create_tmpfile; | 
|  |  | 
|  | error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks, | 
|  | &tp); | 
|  | if (error) | 
|  | goto out_release_dquots; | 
|  |  | 
|  | error = xfs_dialloc(&tp, dp->i_ino, mode, &ino); | 
|  | if (!error) | 
|  | error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode, | 
|  | 0, 0, prid, false, &ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | if (mp->m_flags & XFS_MOUNT_WSYNC) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | /* | 
|  | * Attach the dquot(s) to the inodes and modify them incore. | 
|  | * These ids of the inode couldn't have changed since the new | 
|  | * inode has been locked ever since it was created. | 
|  | */ | 
|  | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); | 
|  |  | 
|  | error = xfs_iunlink(tp, ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto out_release_inode; | 
|  |  | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | *ipp = ip; | 
|  | return 0; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_release_inode: | 
|  | /* | 
|  | * Wait until after the current transaction is aborted to finish the | 
|  | * setup of the inode and release the inode.  This prevents recursive | 
|  | * transactions and deadlocks from xfs_inactive. | 
|  | */ | 
|  | if (ip) { | 
|  | xfs_finish_inode_setup(ip); | 
|  | xfs_irele(ip); | 
|  | } | 
|  | out_release_dquots: | 
|  | xfs_qm_dqrele(udqp); | 
|  | xfs_qm_dqrele(gdqp); | 
|  | xfs_qm_dqrele(pdqp); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_link( | 
|  | xfs_inode_t		*tdp, | 
|  | xfs_inode_t		*sip, | 
|  | struct xfs_name		*target_name) | 
|  | { | 
|  | xfs_mount_t		*mp = tdp->i_mount; | 
|  | xfs_trans_t		*tp; | 
|  | int			error; | 
|  | int			resblks; | 
|  |  | 
|  | trace_xfs_link(tdp, target_name); | 
|  |  | 
|  | ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_qm_dqattach(sip); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | error = xfs_qm_dqattach(tdp); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | resblks = XFS_LINK_SPACE_RES(mp, target_name->len); | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); | 
|  | if (error == -ENOSPC) { | 
|  | resblks = 0; | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); | 
|  | } | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); | 
|  |  | 
|  | xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); | 
|  |  | 
|  | error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK, | 
|  | XFS_IEXT_DIR_MANIP_CNT(mp)); | 
|  | if (error) | 
|  | goto error_return; | 
|  |  | 
|  | /* | 
|  | * If we are using project inheritance, we only allow hard link | 
|  | * creation in our tree when the project IDs are the same; else | 
|  | * the tree quota mechanism could be circumvented. | 
|  | */ | 
|  | if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) && | 
|  | tdp->i_projid != sip->i_projid)) { | 
|  | error = -EXDEV; | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | if (!resblks) { | 
|  | error = xfs_dir_canenter(tp, tdp, target_name); | 
|  | if (error) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle initial link state of O_TMPFILE inode | 
|  | */ | 
|  | if (VFS_I(sip)->i_nlink == 0) { | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino)); | 
|  | error = xfs_iunlink_remove(tp, pag, sip); | 
|  | xfs_perag_put(pag); | 
|  | if (error) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, | 
|  | resblks); | 
|  | if (error) | 
|  | goto error_return; | 
|  | xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  | xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); | 
|  |  | 
|  | xfs_bumplink(tp, sip); | 
|  |  | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the | 
|  | * link transaction goes to disk before returning to | 
|  | * the user. | 
|  | */ | 
|  | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | return xfs_trans_commit(tp); | 
|  |  | 
|  | error_return: | 
|  | xfs_trans_cancel(tp); | 
|  | std_return: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Clear the reflink flag and the cowblocks tag if possible. */ | 
|  | static void | 
|  | xfs_itruncate_clear_reflink_flags( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_ifork	*dfork; | 
|  | struct xfs_ifork	*cfork; | 
|  |  | 
|  | if (!xfs_is_reflink_inode(ip)) | 
|  | return; | 
|  | dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); | 
|  | cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); | 
|  | if (dfork->if_bytes == 0 && cfork->if_bytes == 0) | 
|  | ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; | 
|  | if (cfork->if_bytes == 0) | 
|  | xfs_inode_clear_cowblocks_tag(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up the underlying blocks past new_size.  The new size must be smaller | 
|  | * than the current size.  This routine can be used both for the attribute and | 
|  | * data fork, and does not modify the inode size, which is left to the caller. | 
|  | * | 
|  | * The transaction passed to this routine must have made a permanent log | 
|  | * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the | 
|  | * given transaction and start new ones, so make sure everything involved in | 
|  | * the transaction is tidy before calling here.  Some transaction will be | 
|  | * returned to the caller to be committed.  The incoming transaction must | 
|  | * already include the inode, and both inode locks must be held exclusively. | 
|  | * The inode must also be "held" within the transaction.  On return the inode | 
|  | * will be "held" within the returned transaction.  This routine does NOT | 
|  | * require any disk space to be reserved for it within the transaction. | 
|  | * | 
|  | * If we get an error, we must return with the inode locked and linked into the | 
|  | * current transaction. This keeps things simple for the higher level code, | 
|  | * because it always knows that the inode is locked and held in the transaction | 
|  | * that returns to it whether errors occur or not.  We don't mark the inode | 
|  | * dirty on error so that transactions can be easily aborted if possible. | 
|  | */ | 
|  | int | 
|  | xfs_itruncate_extents_flags( | 
|  | struct xfs_trans	**tpp, | 
|  | struct xfs_inode	*ip, | 
|  | int			whichfork, | 
|  | xfs_fsize_t		new_size, | 
|  | int			flags) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp = *tpp; | 
|  | xfs_fileoff_t		first_unmap_block; | 
|  | xfs_filblks_t		unmap_len; | 
|  | int			error = 0; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
|  | ASSERT(!atomic_read(&VFS_I(ip)->i_count) || | 
|  | xfs_isilocked(ip, XFS_IOLOCK_EXCL)); | 
|  | ASSERT(new_size <= XFS_ISIZE(ip)); | 
|  | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | ASSERT(ip->i_itemp != NULL); | 
|  | ASSERT(ip->i_itemp->ili_lock_flags == 0); | 
|  | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); | 
|  |  | 
|  | trace_xfs_itruncate_extents_start(ip, new_size); | 
|  |  | 
|  | flags |= xfs_bmapi_aflag(whichfork); | 
|  |  | 
|  | /* | 
|  | * Since it is possible for space to become allocated beyond | 
|  | * the end of the file (in a crash where the space is allocated | 
|  | * but the inode size is not yet updated), simply remove any | 
|  | * blocks which show up between the new EOF and the maximum | 
|  | * possible file size. | 
|  | * | 
|  | * We have to free all the blocks to the bmbt maximum offset, even if | 
|  | * the page cache can't scale that far. | 
|  | */ | 
|  | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
|  | if (!xfs_verify_fileoff(mp, first_unmap_block)) { | 
|  | WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1; | 
|  | while (unmap_len > 0) { | 
|  | ASSERT(tp->t_firstblock == NULLFSBLOCK); | 
|  | error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len, | 
|  | flags, XFS_ITRUNC_MAX_EXTENTS); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* free the just unmapped extents */ | 
|  | error = xfs_defer_finish(&tp); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (whichfork == XFS_DATA_FORK) { | 
|  | /* Remove all pending CoW reservations. */ | 
|  | error = xfs_reflink_cancel_cow_blocks(ip, &tp, | 
|  | first_unmap_block, XFS_MAX_FILEOFF, true); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | xfs_itruncate_clear_reflink_flags(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Always re-log the inode so that our permanent transaction can keep | 
|  | * on rolling it forward in the log. | 
|  | */ | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | trace_xfs_itruncate_extents_end(ip, new_size); | 
|  |  | 
|  | out: | 
|  | *tpp = tp; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_release( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | xfs_mount_t	*mp = ip->i_mount; | 
|  | int		error = 0; | 
|  |  | 
|  | if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) | 
|  | return 0; | 
|  |  | 
|  | /* If this is a read-only mount, don't do this (would generate I/O) */ | 
|  | if (mp->m_flags & XFS_MOUNT_RDONLY) | 
|  | return 0; | 
|  |  | 
|  | if (!XFS_FORCED_SHUTDOWN(mp)) { | 
|  | int truncated; | 
|  |  | 
|  | /* | 
|  | * If we previously truncated this file and removed old data | 
|  | * in the process, we want to initiate "early" writeout on | 
|  | * the last close.  This is an attempt to combat the notorious | 
|  | * NULL files problem which is particularly noticeable from a | 
|  | * truncate down, buffered (re-)write (delalloc), followed by | 
|  | * a crash.  What we are effectively doing here is | 
|  | * significantly reducing the time window where we'd otherwise | 
|  | * be exposed to that problem. | 
|  | */ | 
|  | truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); | 
|  | if (truncated) { | 
|  | xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); | 
|  | if (ip->i_delayed_blks > 0) { | 
|  | error = filemap_flush(VFS_I(ip)->i_mapping); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (VFS_I(ip)->i_nlink == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we can't get the iolock just skip truncating the blocks past EOF | 
|  | * because we could deadlock with the mmap_lock otherwise. We'll get | 
|  | * another chance to drop them once the last reference to the inode is | 
|  | * dropped, so we'll never leak blocks permanently. | 
|  | */ | 
|  | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) | 
|  | return 0; | 
|  |  | 
|  | if (xfs_can_free_eofblocks(ip, false)) { | 
|  | /* | 
|  | * Check if the inode is being opened, written and closed | 
|  | * frequently and we have delayed allocation blocks outstanding | 
|  | * (e.g. streaming writes from the NFS server), truncating the | 
|  | * blocks past EOF will cause fragmentation to occur. | 
|  | * | 
|  | * In this case don't do the truncation, but we have to be | 
|  | * careful how we detect this case. Blocks beyond EOF show up as | 
|  | * i_delayed_blks even when the inode is clean, so we need to | 
|  | * truncate them away first before checking for a dirty release. | 
|  | * Hence on the first dirty close we will still remove the | 
|  | * speculative allocation, but after that we will leave it in | 
|  | * place. | 
|  | */ | 
|  | if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) | 
|  | goto out_unlock; | 
|  |  | 
|  | error = xfs_free_eofblocks(ip); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* delalloc blocks after truncation means it really is dirty */ | 
|  | if (ip->i_delayed_blks) | 
|  | xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, XFS_IOLOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_inactive_truncate | 
|  | * | 
|  | * Called to perform a truncate when an inode becomes unlinked. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inactive_truncate( | 
|  | struct xfs_inode *ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); | 
|  | if (error) { | 
|  | ASSERT(XFS_FORCED_SHUTDOWN(mp)); | 
|  | return error; | 
|  | } | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, ip, 0); | 
|  |  | 
|  | /* | 
|  | * Log the inode size first to prevent stale data exposure in the event | 
|  | * of a system crash before the truncate completes. See the related | 
|  | * comment in xfs_vn_setattr_size() for details. | 
|  | */ | 
|  | ip->i_disk_size = 0; | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); | 
|  | if (error) | 
|  | goto error_trans_cancel; | 
|  |  | 
|  | ASSERT(ip->i_df.if_nextents == 0); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto error_unlock; | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return 0; | 
|  |  | 
|  | error_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | error_unlock: | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_inactive_ifree() | 
|  | * | 
|  | * Perform the inode free when an inode is unlinked. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_inactive_ifree( | 
|  | struct xfs_inode *ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * We try to use a per-AG reservation for any block needed by the finobt | 
|  | * tree, but as the finobt feature predates the per-AG reservation | 
|  | * support a degraded file system might not have enough space for the | 
|  | * reservation at mount time.  In that case try to dip into the reserved | 
|  | * pool and pray. | 
|  | * | 
|  | * Send a warning if the reservation does happen to fail, as the inode | 
|  | * now remains allocated and sits on the unlinked list until the fs is | 
|  | * repaired. | 
|  | */ | 
|  | if (unlikely(mp->m_finobt_nores)) { | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, | 
|  | XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, | 
|  | &tp); | 
|  | } else { | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); | 
|  | } | 
|  | if (error) { | 
|  | if (error == -ENOSPC) { | 
|  | xfs_warn_ratelimited(mp, | 
|  | "Failed to remove inode(s) from unlinked list. " | 
|  | "Please free space, unmount and run xfs_repair."); | 
|  | } else { | 
|  | ASSERT(XFS_FORCED_SHUTDOWN(mp)); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do not hold the inode locked across the entire rolling transaction | 
|  | * here. We only need to hold it for the first transaction that | 
|  | * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the | 
|  | * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode | 
|  | * here breaks the relationship between cluster buffer invalidation and | 
|  | * stale inode invalidation on cluster buffer item journal commit | 
|  | * completion, and can result in leaving dirty stale inodes hanging | 
|  | * around in memory. | 
|  | * | 
|  | * We have no need for serialising this inode operation against other | 
|  | * operations - we freed the inode and hence reallocation is required | 
|  | * and that will serialise on reallocating the space the deferops need | 
|  | * to free. Hence we can unlock the inode on the first commit of | 
|  | * the transaction rather than roll it right through the deferops. This | 
|  | * avoids relogging the XFS_ISTALE inode. | 
|  | * | 
|  | * We check that xfs_ifree() hasn't grown an internal transaction roll | 
|  | * by asserting that the inode is still locked when it returns. | 
|  | */ | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | error = xfs_ifree(tp, ip); | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
|  | if (error) { | 
|  | /* | 
|  | * If we fail to free the inode, shut down.  The cancel | 
|  | * might do that, we need to make sure.  Otherwise the | 
|  | * inode might be lost for a long time or forever. | 
|  | */ | 
|  | if (!XFS_FORCED_SHUTDOWN(mp)) { | 
|  | xfs_notice(mp, "%s: xfs_ifree returned error %d", | 
|  | __func__, error); | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | } | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Credit the quota account(s). The inode is gone. | 
|  | */ | 
|  | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); | 
|  |  | 
|  | /* | 
|  | * Just ignore errors at this point.  There is nothing we can do except | 
|  | * to try to keep going. Make sure it's not a silent error. | 
|  | */ | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | xfs_notice(mp, "%s: xfs_trans_commit returned error %d", | 
|  | __func__, error); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_inactive | 
|  | * | 
|  | * This is called when the vnode reference count for the vnode | 
|  | * goes to zero.  If the file has been unlinked, then it must | 
|  | * now be truncated.  Also, we clear all of the read-ahead state | 
|  | * kept for the inode here since the file is now closed. | 
|  | */ | 
|  | void | 
|  | xfs_inactive( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp; | 
|  | int			error; | 
|  | int			truncate = 0; | 
|  |  | 
|  | /* | 
|  | * If the inode is already free, then there can be nothing | 
|  | * to clean up here. | 
|  | */ | 
|  | if (VFS_I(ip)->i_mode == 0) { | 
|  | ASSERT(ip->i_df.if_broot_bytes == 0); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mp = ip->i_mount; | 
|  | ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); | 
|  |  | 
|  | /* If this is a read-only mount, don't do this (would generate I/O) */ | 
|  | if (mp->m_flags & XFS_MOUNT_RDONLY) | 
|  | goto out; | 
|  |  | 
|  | /* Metadata inodes require explicit resource cleanup. */ | 
|  | if (xfs_is_metadata_inode(ip)) | 
|  | goto out; | 
|  |  | 
|  | /* Try to clean out the cow blocks if there are any. */ | 
|  | if (xfs_inode_has_cow_data(ip)) | 
|  | xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); | 
|  |  | 
|  | if (VFS_I(ip)->i_nlink != 0) { | 
|  | /* | 
|  | * force is true because we are evicting an inode from the | 
|  | * cache. Post-eof blocks must be freed, lest we end up with | 
|  | * broken free space accounting. | 
|  | * | 
|  | * Note: don't bother with iolock here since lockdep complains | 
|  | * about acquiring it in reclaim context. We have the only | 
|  | * reference to the inode at this point anyways. | 
|  | */ | 
|  | if (xfs_can_free_eofblocks(ip, true)) | 
|  | xfs_free_eofblocks(ip); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (S_ISREG(VFS_I(ip)->i_mode) && | 
|  | (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 || | 
|  | ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0)) | 
|  | truncate = 1; | 
|  |  | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if (S_ISLNK(VFS_I(ip)->i_mode)) | 
|  | error = xfs_inactive_symlink(ip); | 
|  | else if (truncate) | 
|  | error = xfs_inactive_truncate(ip); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If there are attributes associated with the file then blow them away | 
|  | * now.  The code calls a routine that recursively deconstructs the | 
|  | * attribute fork. If also blows away the in-core attribute fork. | 
|  | */ | 
|  | if (XFS_IFORK_Q(ip)) { | 
|  | error = xfs_attr_inactive(ip); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(!ip->i_afp); | 
|  | ASSERT(ip->i_forkoff == 0); | 
|  |  | 
|  | /* | 
|  | * Free the inode. | 
|  | */ | 
|  | xfs_inactive_ifree(ip); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * We're done making metadata updates for this inode, so we can release | 
|  | * the attached dquots. | 
|  | */ | 
|  | xfs_qm_dqdetach(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In-Core Unlinked List Lookups | 
|  | * ============================= | 
|  | * | 
|  | * Every inode is supposed to be reachable from some other piece of metadata | 
|  | * with the exception of the root directory.  Inodes with a connection to a | 
|  | * file descriptor but not linked from anywhere in the on-disk directory tree | 
|  | * are collectively known as unlinked inodes, though the filesystem itself | 
|  | * maintains links to these inodes so that on-disk metadata are consistent. | 
|  | * | 
|  | * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI | 
|  | * header contains a number of buckets that point to an inode, and each inode | 
|  | * record has a pointer to the next inode in the hash chain.  This | 
|  | * singly-linked list causes scaling problems in the iunlink remove function | 
|  | * because we must walk that list to find the inode that points to the inode | 
|  | * being removed from the unlinked hash bucket list. | 
|  | * | 
|  | * What if we modelled the unlinked list as a collection of records capturing | 
|  | * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd | 
|  | * have a fast way to look up unlinked list predecessors, which avoids the | 
|  | * slow list walk.  That's exactly what we do here (in-core) with a per-AG | 
|  | * rhashtable. | 
|  | * | 
|  | * Because this is a backref cache, we ignore operational failures since the | 
|  | * iunlink code can fall back to the slow bucket walk.  The only errors that | 
|  | * should bubble out are for obviously incorrect situations. | 
|  | * | 
|  | * All users of the backref cache MUST hold the AGI buffer lock to serialize | 
|  | * access or have otherwise provided for concurrency control. | 
|  | */ | 
|  |  | 
|  | /* Capture a "X.next_unlinked = Y" relationship. */ | 
|  | struct xfs_iunlink { | 
|  | struct rhash_head	iu_rhash_head; | 
|  | xfs_agino_t		iu_agino;		/* X */ | 
|  | xfs_agino_t		iu_next_unlinked;	/* Y */ | 
|  | }; | 
|  |  | 
|  | /* Unlinked list predecessor lookup hashtable construction */ | 
|  | static int | 
|  | xfs_iunlink_obj_cmpfn( | 
|  | struct rhashtable_compare_arg	*arg, | 
|  | const void			*obj) | 
|  | { | 
|  | const xfs_agino_t		*key = arg->key; | 
|  | const struct xfs_iunlink	*iu = obj; | 
|  |  | 
|  | if (iu->iu_next_unlinked != *key) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct rhashtable_params xfs_iunlink_hash_params = { | 
|  | .min_size		= XFS_AGI_UNLINKED_BUCKETS, | 
|  | .key_len		= sizeof(xfs_agino_t), | 
|  | .key_offset		= offsetof(struct xfs_iunlink, | 
|  | iu_next_unlinked), | 
|  | .head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head), | 
|  | .automatic_shrinking	= true, | 
|  | .obj_cmpfn		= xfs_iunlink_obj_cmpfn, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such | 
|  | * relation is found. | 
|  | */ | 
|  | static xfs_agino_t | 
|  | xfs_iunlink_lookup_backref( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		agino) | 
|  | { | 
|  | struct xfs_iunlink	*iu; | 
|  |  | 
|  | iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, | 
|  | xfs_iunlink_hash_params); | 
|  | return iu ? iu->iu_agino : NULLAGINO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take ownership of an iunlink cache entry and insert it into the hash table. | 
|  | * If successful, the entry will be owned by the cache; if not, it is freed. | 
|  | * Either way, the caller does not own @iu after this call. | 
|  | */ | 
|  | static int | 
|  | xfs_iunlink_insert_backref( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_iunlink	*iu) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | error = rhashtable_insert_fast(&pag->pagi_unlinked_hash, | 
|  | &iu->iu_rhash_head, xfs_iunlink_hash_params); | 
|  | /* | 
|  | * Fail loudly if there already was an entry because that's a sign of | 
|  | * corruption of in-memory data.  Also fail loudly if we see an error | 
|  | * code we didn't anticipate from the rhashtable code.  Currently we | 
|  | * only anticipate ENOMEM. | 
|  | */ | 
|  | if (error) { | 
|  | WARN(error != -ENOMEM, "iunlink cache insert error %d", error); | 
|  | kmem_free(iu); | 
|  | } | 
|  | /* | 
|  | * Absorb any runtime errors that aren't a result of corruption because | 
|  | * this is a cache and we can always fall back to bucket list scanning. | 
|  | */ | 
|  | if (error != 0 && error != -EEXIST) | 
|  | error = 0; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Remember that @prev_agino.next_unlinked = @this_agino. */ | 
|  | static int | 
|  | xfs_iunlink_add_backref( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		prev_agino, | 
|  | xfs_agino_t		this_agino) | 
|  | { | 
|  | struct xfs_iunlink	*iu; | 
|  |  | 
|  | if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK)) | 
|  | return 0; | 
|  |  | 
|  | iu = kmem_zalloc(sizeof(*iu), KM_NOFS); | 
|  | iu->iu_agino = prev_agino; | 
|  | iu->iu_next_unlinked = this_agino; | 
|  |  | 
|  | return xfs_iunlink_insert_backref(pag, iu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked. | 
|  | * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there | 
|  | * wasn't any such entry then we don't bother. | 
|  | */ | 
|  | static int | 
|  | xfs_iunlink_change_backref( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		agino, | 
|  | xfs_agino_t		next_unlinked) | 
|  | { | 
|  | struct xfs_iunlink	*iu; | 
|  | int			error; | 
|  |  | 
|  | /* Look up the old entry; if there wasn't one then exit. */ | 
|  | iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino, | 
|  | xfs_iunlink_hash_params); | 
|  | if (!iu) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Remove the entry.  This shouldn't ever return an error, but if we | 
|  | * couldn't remove the old entry we don't want to add it again to the | 
|  | * hash table, and if the entry disappeared on us then someone's | 
|  | * violated the locking rules and we need to fail loudly.  Either way | 
|  | * we cannot remove the inode because internal state is or would have | 
|  | * been corrupt. | 
|  | */ | 
|  | error = rhashtable_remove_fast(&pag->pagi_unlinked_hash, | 
|  | &iu->iu_rhash_head, xfs_iunlink_hash_params); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* If there is no new next entry just free our item and return. */ | 
|  | if (next_unlinked == NULLAGINO) { | 
|  | kmem_free(iu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Update the entry and re-add it to the hash table. */ | 
|  | iu->iu_next_unlinked = next_unlinked; | 
|  | return xfs_iunlink_insert_backref(pag, iu); | 
|  | } | 
|  |  | 
|  | /* Set up the in-core predecessor structures. */ | 
|  | int | 
|  | xfs_iunlink_init( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | return rhashtable_init(&pag->pagi_unlinked_hash, | 
|  | &xfs_iunlink_hash_params); | 
|  | } | 
|  |  | 
|  | /* Free the in-core predecessor structures. */ | 
|  | static void | 
|  | xfs_iunlink_free_item( | 
|  | void			*ptr, | 
|  | void			*arg) | 
|  | { | 
|  | struct xfs_iunlink	*iu = ptr; | 
|  | bool			*freed_anything = arg; | 
|  |  | 
|  | *freed_anything = true; | 
|  | kmem_free(iu); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_iunlink_destroy( | 
|  | struct xfs_perag	*pag) | 
|  | { | 
|  | bool			freed_anything = false; | 
|  |  | 
|  | rhashtable_free_and_destroy(&pag->pagi_unlinked_hash, | 
|  | xfs_iunlink_free_item, &freed_anything); | 
|  |  | 
|  | ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Point the AGI unlinked bucket at an inode and log the results.  The caller | 
|  | * is responsible for validating the old value. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iunlink_update_bucket( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_buf		*agibp, | 
|  | unsigned int		bucket_index, | 
|  | xfs_agino_t		new_agino) | 
|  | { | 
|  | struct xfs_agi		*agi = agibp->b_addr; | 
|  | xfs_agino_t		old_value; | 
|  | int			offset; | 
|  |  | 
|  | ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino)); | 
|  |  | 
|  | old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
|  | trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index, | 
|  | old_value, new_agino); | 
|  |  | 
|  | /* | 
|  | * We should never find the head of the list already set to the value | 
|  | * passed in because either we're adding or removing ourselves from the | 
|  | * head of the list. | 
|  | */ | 
|  | if (old_value == new_agino) { | 
|  | xfs_buf_mark_corrupt(agibp); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino); | 
|  | offset = offsetof(struct xfs_agi, agi_unlinked) + | 
|  | (sizeof(xfs_agino_t) * bucket_index); | 
|  | xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set an on-disk inode's next_unlinked pointer. */ | 
|  | STATIC void | 
|  | xfs_iunlink_update_dinode( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		agino, | 
|  | struct xfs_buf		*ibp, | 
|  | struct xfs_dinode	*dip, | 
|  | struct xfs_imap		*imap, | 
|  | xfs_agino_t		next_agino) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | int			offset; | 
|  |  | 
|  | ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); | 
|  |  | 
|  | trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino, | 
|  | be32_to_cpu(dip->di_next_unlinked), next_agino); | 
|  |  | 
|  | dip->di_next_unlinked = cpu_to_be32(next_agino); | 
|  | offset = imap->im_boffset + | 
|  | offsetof(struct xfs_dinode, di_next_unlinked); | 
|  |  | 
|  | /* need to recalc the inode CRC if appropriate */ | 
|  | xfs_dinode_calc_crc(mp, dip); | 
|  | xfs_trans_inode_buf(tp, ibp); | 
|  | xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1); | 
|  | } | 
|  |  | 
|  | /* Set an in-core inode's unlinked pointer and return the old value. */ | 
|  | STATIC int | 
|  | xfs_iunlink_update_inode( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		next_agino, | 
|  | xfs_agino_t		*old_next_agino) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_dinode	*dip; | 
|  | struct xfs_buf		*ibp; | 
|  | xfs_agino_t		old_value; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)); | 
|  |  | 
|  | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp); | 
|  | if (error) | 
|  | return error; | 
|  | dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset); | 
|  |  | 
|  | /* Make sure the old pointer isn't garbage. */ | 
|  | old_value = be32_to_cpu(dip->di_next_unlinked); | 
|  | if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) { | 
|  | xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, | 
|  | sizeof(*dip), __this_address); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since we're updating a linked list, we should never find that the | 
|  | * current pointer is the same as the new value, unless we're | 
|  | * terminating the list. | 
|  | */ | 
|  | *old_next_agino = old_value; | 
|  | if (old_value == next_agino) { | 
|  | if (next_agino != NULLAGINO) { | 
|  | xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, | 
|  | dip, sizeof(*dip), __this_address); | 
|  | error = -EFSCORRUPTED; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Ok, update the new pointer. */ | 
|  | xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino), | 
|  | ibp, dip, &ip->i_imap, next_agino); | 
|  | return 0; | 
|  | out: | 
|  | xfs_trans_brelse(tp, ibp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called when the inode's link count has gone to 0 or we are creating | 
|  | * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0. | 
|  | * | 
|  | * We place the on-disk inode on a list in the AGI.  It will be pulled from this | 
|  | * list when the inode is freed. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iunlink( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_agi		*agi; | 
|  | struct xfs_buf		*agibp; | 
|  | xfs_agino_t		next_agino; | 
|  | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
|  | short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(VFS_I(ip)->i_nlink == 0); | 
|  | ASSERT(VFS_I(ip)->i_mode != 0); | 
|  | trace_xfs_iunlink(ip); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  |  | 
|  | /* Get the agi buffer first.  It ensures lock ordering on the list. */ | 
|  | error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); | 
|  | if (error) | 
|  | goto out; | 
|  | agi = agibp->b_addr; | 
|  |  | 
|  | /* | 
|  | * Get the index into the agi hash table for the list this inode will | 
|  | * go on.  Make sure the pointer isn't garbage and that this inode | 
|  | * isn't already on the list. | 
|  | */ | 
|  | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
|  | if (next_agino == agino || | 
|  | !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) { | 
|  | xfs_buf_mark_corrupt(agibp); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (next_agino != NULLAGINO) { | 
|  | xfs_agino_t		old_agino; | 
|  |  | 
|  | /* | 
|  | * There is already another inode in the bucket, so point this | 
|  | * inode to the current head of the list. | 
|  | */ | 
|  | error = xfs_iunlink_update_inode(tp, ip, pag, next_agino, | 
|  | &old_agino); | 
|  | if (error) | 
|  | goto out; | 
|  | ASSERT(old_agino == NULLAGINO); | 
|  |  | 
|  | /* | 
|  | * agino has been unlinked, add a backref from the next inode | 
|  | * back to agino. | 
|  | */ | 
|  | error = xfs_iunlink_add_backref(pag, agino, next_agino); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Point the head of the list to point to this inode. */ | 
|  | error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino); | 
|  | out: | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Return the imap, dinode pointer, and buffer for an inode. */ | 
|  | STATIC int | 
|  | xfs_iunlink_map_ino( | 
|  | struct xfs_trans	*tp, | 
|  | xfs_agnumber_t		agno, | 
|  | xfs_agino_t		agino, | 
|  | struct xfs_imap		*imap, | 
|  | struct xfs_dinode	**dipp, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | int			error; | 
|  |  | 
|  | imap->im_blkno = 0; | 
|  | error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0); | 
|  | if (error) { | 
|  | xfs_warn(mp, "%s: xfs_imap returned error %d.", | 
|  | __func__, error); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | error = xfs_imap_to_bp(mp, tp, imap, bpp); | 
|  | if (error) { | 
|  | xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", | 
|  | __func__, error); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | *dipp = xfs_buf_offset(*bpp, imap->im_boffset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the unlinked chain from @head_agino until we find the inode that | 
|  | * points to @target_agino.  Return the inode number, map, dinode pointer, | 
|  | * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp. | 
|  | * | 
|  | * @tp, @pag, @head_agino, and @target_agino are input parameters. | 
|  | * @agino, @imap, @dipp, and @bpp are all output parameters. | 
|  | * | 
|  | * Do not call this function if @target_agino is the head of the list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iunlink_map_prev( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agino_t		head_agino, | 
|  | xfs_agino_t		target_agino, | 
|  | xfs_agino_t		*agino, | 
|  | struct xfs_imap		*imap, | 
|  | struct xfs_dinode	**dipp, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | xfs_agino_t		next_agino; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(head_agino != target_agino); | 
|  | *bpp = NULL; | 
|  |  | 
|  | /* See if our backref cache can find it faster. */ | 
|  | *agino = xfs_iunlink_lookup_backref(pag, target_agino); | 
|  | if (*agino != NULLAGINO) { | 
|  | error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap, | 
|  | dipp, bpp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we get here the cache contents were corrupt, so drop the | 
|  | * buffer and fall back to walking the bucket list. | 
|  | */ | 
|  | xfs_trans_brelse(tp, *bpp); | 
|  | *bpp = NULL; | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno); | 
|  |  | 
|  | /* Otherwise, walk the entire bucket until we find it. */ | 
|  | next_agino = head_agino; | 
|  | while (next_agino != target_agino) { | 
|  | xfs_agino_t	unlinked_agino; | 
|  |  | 
|  | if (*bpp) | 
|  | xfs_trans_brelse(tp, *bpp); | 
|  |  | 
|  | *agino = next_agino; | 
|  | error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap, | 
|  | dipp, bpp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked); | 
|  | /* | 
|  | * Make sure this pointer is valid and isn't an obvious | 
|  | * infinite loop. | 
|  | */ | 
|  | if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) || | 
|  | next_agino == unlinked_agino) { | 
|  | XFS_CORRUPTION_ERROR(__func__, | 
|  | XFS_ERRLEVEL_LOW, mp, | 
|  | *dipp, sizeof(**dipp)); | 
|  | error = -EFSCORRUPTED; | 
|  | return error; | 
|  | } | 
|  | next_agino = unlinked_agino; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pull the on-disk inode from the AGI unlinked list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_iunlink_remove( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_agi		*agi; | 
|  | struct xfs_buf		*agibp; | 
|  | struct xfs_buf		*last_ibp; | 
|  | struct xfs_dinode	*last_dip = NULL; | 
|  | xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
|  | xfs_agino_t		next_agino; | 
|  | xfs_agino_t		head_agino; | 
|  | short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_iunlink_remove(ip); | 
|  |  | 
|  | /* Get the agi buffer first.  It ensures lock ordering on the list. */ | 
|  | error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp); | 
|  | if (error) | 
|  | return error; | 
|  | agi = agibp->b_addr; | 
|  |  | 
|  | /* | 
|  | * Get the index into the agi hash table for the list this inode will | 
|  | * go on.  Make sure the head pointer isn't garbage. | 
|  | */ | 
|  | head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); | 
|  | if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) { | 
|  | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, | 
|  | agi, sizeof(*agi)); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set our inode's next_unlinked pointer to NULL and then return | 
|  | * the old pointer value so that we can update whatever was previous | 
|  | * to us in the list to point to whatever was next in the list. | 
|  | */ | 
|  | error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * If there was a backref pointing from the next inode back to this | 
|  | * one, remove it because we've removed this inode from the list. | 
|  | * | 
|  | * Later, if this inode was in the middle of the list we'll update | 
|  | * this inode's backref to point from the next inode. | 
|  | */ | 
|  | if (next_agino != NULLAGINO) { | 
|  | error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (head_agino != agino) { | 
|  | struct xfs_imap	imap; | 
|  | xfs_agino_t	prev_agino; | 
|  |  | 
|  | /* We need to search the list for the inode being freed. */ | 
|  | error = xfs_iunlink_map_prev(tp, pag, head_agino, agino, | 
|  | &prev_agino, &imap, &last_dip, &last_ibp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* Point the previous inode on the list to the next inode. */ | 
|  | xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp, | 
|  | last_dip, &imap, next_agino); | 
|  |  | 
|  | /* | 
|  | * Now we deal with the backref for this inode.  If this inode | 
|  | * pointed at a real inode, change the backref that pointed to | 
|  | * us to point to our old next.  If this inode was the end of | 
|  | * the list, delete the backref that pointed to us.  Note that | 
|  | * change_backref takes care of deleting the backref if | 
|  | * next_agino is NULLAGINO. | 
|  | */ | 
|  | return xfs_iunlink_change_backref(agibp->b_pag, agino, | 
|  | next_agino); | 
|  | } | 
|  |  | 
|  | /* Point the head of the list to the next unlinked inode. */ | 
|  | return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, | 
|  | next_agino); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up the inode number specified and if it is not already marked XFS_ISTALE | 
|  | * mark it stale. We should only find clean inodes in this lookup that aren't | 
|  | * already stale. | 
|  | */ | 
|  | static void | 
|  | xfs_ifree_mark_inode_stale( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*free_ip, | 
|  | xfs_ino_t		inum) | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  | struct xfs_inode_log_item *iip; | 
|  | struct xfs_inode	*ip; | 
|  |  | 
|  | retry: | 
|  | rcu_read_lock(); | 
|  | ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum)); | 
|  |  | 
|  | /* Inode not in memory, nothing to do */ | 
|  | if (!ip) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * because this is an RCU protected lookup, we could find a recently | 
|  | * freed or even reallocated inode during the lookup. We need to check | 
|  | * under the i_flags_lock for a valid inode here. Skip it if it is not | 
|  | * valid, the wrong inode or stale. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) | 
|  | goto out_iflags_unlock; | 
|  |  | 
|  | /* | 
|  | * Don't try to lock/unlock the current inode, but we _cannot_ skip the | 
|  | * other inodes that we did not find in the list attached to the buffer | 
|  | * and are not already marked stale. If we can't lock it, back off and | 
|  | * retry. | 
|  | */ | 
|  | if (ip != free_ip) { | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | delay(1); | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | ip->i_flags |= XFS_ISTALE; | 
|  |  | 
|  | /* | 
|  | * If the inode is flushing, it is already attached to the buffer.  All | 
|  | * we needed to do here is mark the inode stale so buffer IO completion | 
|  | * will remove it from the AIL. | 
|  | */ | 
|  | iip = ip->i_itemp; | 
|  | if (__xfs_iflags_test(ip, XFS_IFLUSHING)) { | 
|  | ASSERT(!list_empty(&iip->ili_item.li_bio_list)); | 
|  | ASSERT(iip->ili_last_fields); | 
|  | goto out_iunlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inodes not attached to the buffer can be released immediately. | 
|  | * Everything else has to go through xfs_iflush_abort() on journal | 
|  | * commit as the flock synchronises removal of the inode from the | 
|  | * cluster buffer against inode reclaim. | 
|  | */ | 
|  | if (!iip || list_empty(&iip->ili_item.li_bio_list)) | 
|  | goto out_iunlock; | 
|  |  | 
|  | __xfs_iflags_set(ip, XFS_IFLUSHING); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* we have a dirty inode in memory that has not yet been flushed. */ | 
|  | spin_lock(&iip->ili_lock); | 
|  | iip->ili_last_fields = iip->ili_fields; | 
|  | iip->ili_fields = 0; | 
|  | iip->ili_fsync_fields = 0; | 
|  | spin_unlock(&iip->ili_lock); | 
|  | ASSERT(iip->ili_last_fields); | 
|  |  | 
|  | if (ip != free_ip) | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return; | 
|  |  | 
|  | out_iunlock: | 
|  | if (ip != free_ip) | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | out_iflags_unlock: | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A big issue when freeing the inode cluster is that we _cannot_ skip any | 
|  | * inodes that are in memory - they all must be marked stale and attached to | 
|  | * the cluster buffer. | 
|  | */ | 
|  | static int | 
|  | xfs_ifree_cluster( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_inode	*free_ip, | 
|  | struct xfs_icluster	*xic) | 
|  | { | 
|  | struct xfs_mount	*mp = free_ip->i_mount; | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
|  | struct xfs_buf		*bp; | 
|  | xfs_daddr_t		blkno; | 
|  | xfs_ino_t		inum = xic->first_ino; | 
|  | int			nbufs; | 
|  | int			i, j; | 
|  | int			ioffset; | 
|  | int			error; | 
|  |  | 
|  | nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster; | 
|  |  | 
|  | for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) { | 
|  | /* | 
|  | * The allocation bitmap tells us which inodes of the chunk were | 
|  | * physically allocated. Skip the cluster if an inode falls into | 
|  | * a sparse region. | 
|  | */ | 
|  | ioffset = inum - xic->first_ino; | 
|  | if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { | 
|  | ASSERT(ioffset % igeo->inodes_per_cluster == 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
|  | XFS_INO_TO_AGBNO(mp, inum)); | 
|  |  | 
|  | /* | 
|  | * We obtain and lock the backing buffer first in the process | 
|  | * here to ensure dirty inodes attached to the buffer remain in | 
|  | * the flushing state while we mark them stale. | 
|  | * | 
|  | * If we scan the in-memory inodes first, then buffer IO can | 
|  | * complete before we get a lock on it, and hence we may fail | 
|  | * to mark all the active inodes on the buffer stale. | 
|  | */ | 
|  | error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | 
|  | mp->m_bsize * igeo->blocks_per_cluster, | 
|  | XBF_UNMAPPED, &bp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * This buffer may not have been correctly initialised as we | 
|  | * didn't read it from disk. That's not important because we are | 
|  | * only using to mark the buffer as stale in the log, and to | 
|  | * attach stale cached inodes on it. That means it will never be | 
|  | * dispatched for IO. If it is, we want to know about it, and we | 
|  | * want it to fail. We can acheive this by adding a write | 
|  | * verifier to the buffer. | 
|  | */ | 
|  | bp->b_ops = &xfs_inode_buf_ops; | 
|  |  | 
|  | /* | 
|  | * Now we need to set all the cached clean inodes as XFS_ISTALE, | 
|  | * too. This requires lookups, and will skip inodes that we've | 
|  | * already marked XFS_ISTALE. | 
|  | */ | 
|  | for (i = 0; i < igeo->inodes_per_cluster; i++) | 
|  | xfs_ifree_mark_inode_stale(pag, free_ip, inum + i); | 
|  |  | 
|  | xfs_trans_stale_inode_buf(tp, bp); | 
|  | xfs_trans_binval(tp, bp); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to return an inode to the inode free list. | 
|  | * The inode should already be truncated to 0 length and have | 
|  | * no pages associated with it.  This routine also assumes that | 
|  | * the inode is already a part of the transaction. | 
|  | * | 
|  | * The on-disk copy of the inode will have been added to the list | 
|  | * of unlinked inodes in the AGI. We need to remove the inode from | 
|  | * that list atomically with respect to freeing it here. | 
|  | */ | 
|  | int | 
|  | xfs_ifree( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_perag	*pag; | 
|  | struct xfs_icluster	xic = { 0 }; | 
|  | struct xfs_inode_log_item *iip = ip->i_itemp; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
|  | ASSERT(VFS_I(ip)->i_nlink == 0); | 
|  | ASSERT(ip->i_df.if_nextents == 0); | 
|  | ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); | 
|  | ASSERT(ip->i_nblocks == 0); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
|  |  | 
|  | /* | 
|  | * Pull the on-disk inode from the AGI unlinked list. | 
|  | */ | 
|  | error = xfs_iunlink_remove(tp, pag, ip); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = xfs_difree(tp, pag, ip->i_ino, &xic); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Free any local-format data sitting around before we reset the | 
|  | * data fork to extents format.  Note that the attr fork data has | 
|  | * already been freed by xfs_attr_inactive. | 
|  | */ | 
|  | if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) { | 
|  | kmem_free(ip->i_df.if_u1.if_data); | 
|  | ip->i_df.if_u1.if_data = NULL; | 
|  | ip->i_df.if_bytes = 0; | 
|  | } | 
|  |  | 
|  | VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */ | 
|  | ip->i_diflags = 0; | 
|  | ip->i_diflags2 = mp->m_ino_geo.new_diflags2; | 
|  | ip->i_forkoff = 0;		/* mark the attr fork not in use */ | 
|  | ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; | 
|  | if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) | 
|  | xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS); | 
|  |  | 
|  | /* Don't attempt to replay owner changes for a deleted inode */ | 
|  | spin_lock(&iip->ili_lock); | 
|  | iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER); | 
|  | spin_unlock(&iip->ili_lock); | 
|  |  | 
|  | /* | 
|  | * Bump the generation count so no one will be confused | 
|  | * by reincarnations of this inode. | 
|  | */ | 
|  | VFS_I(ip)->i_generation++; | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | if (xic.deleted) | 
|  | error = xfs_ifree_cluster(tp, pag, ip, &xic); | 
|  | out: | 
|  | xfs_perag_put(pag); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to unpin an inode.  The caller must have the inode locked | 
|  | * in at least shared mode so that the buffer cannot be subsequently pinned | 
|  | * once someone is waiting for it to be unpinned. | 
|  | */ | 
|  | static void | 
|  | xfs_iunpin( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
|  |  | 
|  | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); | 
|  |  | 
|  | /* Give the log a push to start the unpinning I/O */ | 
|  | xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void | 
|  | __xfs_iunpin_wait( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); | 
|  | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); | 
|  |  | 
|  | xfs_iunpin(ip); | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); | 
|  | if (xfs_ipincount(ip)) | 
|  | io_schedule(); | 
|  | } while (xfs_ipincount(ip)); | 
|  | finish_wait(wq, &wait.wq_entry); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_iunpin_wait( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | if (xfs_ipincount(ip)) | 
|  | __xfs_iunpin_wait(ip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removing an inode from the namespace involves removing the directory entry | 
|  | * and dropping the link count on the inode. Removing the directory entry can | 
|  | * result in locking an AGF (directory blocks were freed) and removing a link | 
|  | * count can result in placing the inode on an unlinked list which results in | 
|  | * locking an AGI. | 
|  | * | 
|  | * The big problem here is that we have an ordering constraint on AGF and AGI | 
|  | * locking - inode allocation locks the AGI, then can allocate a new extent for | 
|  | * new inodes, locking the AGF after the AGI. Similarly, freeing the inode | 
|  | * removes the inode from the unlinked list, requiring that we lock the AGI | 
|  | * first, and then freeing the inode can result in an inode chunk being freed | 
|  | * and hence freeing disk space requiring that we lock an AGF. | 
|  | * | 
|  | * Hence the ordering that is imposed by other parts of the code is AGI before | 
|  | * AGF. This means we cannot remove the directory entry before we drop the inode | 
|  | * reference count and put it on the unlinked list as this results in a lock | 
|  | * order of AGF then AGI, and this can deadlock against inode allocation and | 
|  | * freeing. Therefore we must drop the link counts before we remove the | 
|  | * directory entry. | 
|  | * | 
|  | * This is still safe from a transactional point of view - it is not until we | 
|  | * get to xfs_defer_finish() that we have the possibility of multiple | 
|  | * transactions in this operation. Hence as long as we remove the directory | 
|  | * entry and drop the link count in the first transaction of the remove | 
|  | * operation, there are no transactional constraints on the ordering here. | 
|  | */ | 
|  | int | 
|  | xfs_remove( | 
|  | xfs_inode_t             *dp, | 
|  | struct xfs_name		*name, | 
|  | xfs_inode_t		*ip) | 
|  | { | 
|  | xfs_mount_t		*mp = dp->i_mount; | 
|  | xfs_trans_t             *tp = NULL; | 
|  | int			is_dir = S_ISDIR(VFS_I(ip)->i_mode); | 
|  | int                     error = 0; | 
|  | uint			resblks; | 
|  |  | 
|  | trace_xfs_remove(dp, name); | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | error = xfs_qm_dqattach(dp); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | error = xfs_qm_dqattach(ip); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | /* | 
|  | * We try to get the real space reservation first, | 
|  | * allowing for directory btree deletion(s) implying | 
|  | * possible bmap insert(s).  If we can't get the space | 
|  | * reservation then we use 0 instead, and avoid the bmap | 
|  | * btree insert(s) in the directory code by, if the bmap | 
|  | * insert tries to happen, instead trimming the LAST | 
|  | * block from the directory. | 
|  | */ | 
|  | resblks = XFS_REMOVE_SPACE_RES(mp); | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); | 
|  | if (error == -ENOSPC) { | 
|  | resblks = 0; | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, | 
|  | &tp); | 
|  | } | 
|  | if (error) { | 
|  | ASSERT(error != -ENOSPC); | 
|  | goto std_return; | 
|  | } | 
|  |  | 
|  | xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * If we're removing a directory perform some additional validation. | 
|  | */ | 
|  | if (is_dir) { | 
|  | ASSERT(VFS_I(ip)->i_nlink >= 2); | 
|  | if (VFS_I(ip)->i_nlink != 2) { | 
|  | error = -ENOTEMPTY; | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | if (!xfs_dir_isempty(ip)) { | 
|  | error = -ENOTEMPTY; | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* Drop the link from ip's "..".  */ | 
|  | error = xfs_droplink(tp, dp); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* Drop the "." link from ip to self.  */ | 
|  | error = xfs_droplink(tp, ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * Point the unlinked child directory's ".." entry to the root | 
|  | * directory to eliminate back-references to inodes that may | 
|  | * get freed before the child directory is closed.  If the fs | 
|  | * gets shrunk, this can lead to dirent inode validation errors. | 
|  | */ | 
|  | if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) { | 
|  | error = xfs_dir_replace(tp, ip, &xfs_name_dotdot, | 
|  | tp->t_mountp->m_sb.sb_rootino, 0); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * When removing a non-directory we need to log the parent | 
|  | * inode here.  For a directory this is done implicitly | 
|  | * by the xfs_droplink call for the ".." entry. | 
|  | */ | 
|  | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); | 
|  | } | 
|  | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  |  | 
|  | /* Drop the link from dp to ip. */ | 
|  | error = xfs_droplink(tp, ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); | 
|  | if (error) { | 
|  | ASSERT(error != -ENOENT); | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the | 
|  | * remove transaction goes to disk before returning to | 
|  | * the user. | 
|  | */ | 
|  | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) | 
|  | goto std_return; | 
|  |  | 
|  | if (is_dir && xfs_inode_is_filestream(ip)) | 
|  | xfs_filestream_deassociate(ip); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | std_return: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enter all inodes for a rename transaction into a sorted array. | 
|  | */ | 
|  | #define __XFS_SORT_INODES	5 | 
|  | STATIC void | 
|  | xfs_sort_for_rename( | 
|  | struct xfs_inode	*dp1,	/* in: old (source) directory inode */ | 
|  | struct xfs_inode	*dp2,	/* in: new (target) directory inode */ | 
|  | struct xfs_inode	*ip1,	/* in: inode of old entry */ | 
|  | struct xfs_inode	*ip2,	/* in: inode of new entry */ | 
|  | struct xfs_inode	*wip,	/* in: whiteout inode */ | 
|  | struct xfs_inode	**i_tab,/* out: sorted array of inodes */ | 
|  | int			*num_inodes)  /* in/out: inodes in array */ | 
|  | { | 
|  | int			i, j; | 
|  |  | 
|  | ASSERT(*num_inodes == __XFS_SORT_INODES); | 
|  | memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); | 
|  |  | 
|  | /* | 
|  | * i_tab contains a list of pointers to inodes.  We initialize | 
|  | * the table here & we'll sort it.  We will then use it to | 
|  | * order the acquisition of the inode locks. | 
|  | * | 
|  | * Note that the table may contain duplicates.  e.g., dp1 == dp2. | 
|  | */ | 
|  | i = 0; | 
|  | i_tab[i++] = dp1; | 
|  | i_tab[i++] = dp2; | 
|  | i_tab[i++] = ip1; | 
|  | if (ip2) | 
|  | i_tab[i++] = ip2; | 
|  | if (wip) | 
|  | i_tab[i++] = wip; | 
|  | *num_inodes = i; | 
|  |  | 
|  | /* | 
|  | * Sort the elements via bubble sort.  (Remember, there are at | 
|  | * most 5 elements to sort, so this is adequate.) | 
|  | */ | 
|  | for (i = 0; i < *num_inodes; i++) { | 
|  | for (j = 1; j < *num_inodes; j++) { | 
|  | if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { | 
|  | struct xfs_inode *temp = i_tab[j]; | 
|  | i_tab[j] = i_tab[j-1]; | 
|  | i_tab[j-1] = temp; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_finish_rename( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | /* | 
|  | * If this is a synchronous mount, make sure that the rename transaction | 
|  | * goes to disk before returning to the user. | 
|  | */ | 
|  | if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) | 
|  | xfs_trans_set_sync(tp); | 
|  |  | 
|  | return xfs_trans_commit(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_cross_rename() | 
|  | * | 
|  | * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall | 
|  | */ | 
|  | STATIC int | 
|  | xfs_cross_rename( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_inode	*dp1, | 
|  | struct xfs_name		*name1, | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*dp2, | 
|  | struct xfs_name		*name2, | 
|  | struct xfs_inode	*ip2, | 
|  | int			spaceres) | 
|  | { | 
|  | int		error = 0; | 
|  | int		ip1_flags = 0; | 
|  | int		ip2_flags = 0; | 
|  | int		dp2_flags = 0; | 
|  |  | 
|  | /* Swap inode number for dirent in first parent */ | 
|  | error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); | 
|  | if (error) | 
|  | goto out_trans_abort; | 
|  |  | 
|  | /* Swap inode number for dirent in second parent */ | 
|  | error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); | 
|  | if (error) | 
|  | goto out_trans_abort; | 
|  |  | 
|  | /* | 
|  | * If we're renaming one or more directories across different parents, | 
|  | * update the respective ".." entries (and link counts) to match the new | 
|  | * parents. | 
|  | */ | 
|  | if (dp1 != dp2) { | 
|  | dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
|  |  | 
|  | if (S_ISDIR(VFS_I(ip2)->i_mode)) { | 
|  | error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, | 
|  | dp1->i_ino, spaceres); | 
|  | if (error) | 
|  | goto out_trans_abort; | 
|  |  | 
|  | /* transfer ip2 ".." reference to dp1 */ | 
|  | if (!S_ISDIR(VFS_I(ip1)->i_mode)) { | 
|  | error = xfs_droplink(tp, dp2); | 
|  | if (error) | 
|  | goto out_trans_abort; | 
|  | xfs_bumplink(tp, dp1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Although ip1 isn't changed here, userspace needs | 
|  | * to be warned about the change, so that applications | 
|  | * relying on it (like backup ones), will properly | 
|  | * notify the change | 
|  | */ | 
|  | ip1_flags |= XFS_ICHGTIME_CHG; | 
|  | ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
|  | } | 
|  |  | 
|  | if (S_ISDIR(VFS_I(ip1)->i_mode)) { | 
|  | error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, | 
|  | dp2->i_ino, spaceres); | 
|  | if (error) | 
|  | goto out_trans_abort; | 
|  |  | 
|  | /* transfer ip1 ".." reference to dp2 */ | 
|  | if (!S_ISDIR(VFS_I(ip2)->i_mode)) { | 
|  | error = xfs_droplink(tp, dp1); | 
|  | if (error) | 
|  | goto out_trans_abort; | 
|  | xfs_bumplink(tp, dp2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Although ip2 isn't changed here, userspace needs | 
|  | * to be warned about the change, so that applications | 
|  | * relying on it (like backup ones), will properly | 
|  | * notify the change | 
|  | */ | 
|  | ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; | 
|  | ip2_flags |= XFS_ICHGTIME_CHG; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ip1_flags) { | 
|  | xfs_trans_ichgtime(tp, ip1, ip1_flags); | 
|  | xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); | 
|  | } | 
|  | if (ip2_flags) { | 
|  | xfs_trans_ichgtime(tp, ip2, ip2_flags); | 
|  | xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); | 
|  | } | 
|  | if (dp2_flags) { | 
|  | xfs_trans_ichgtime(tp, dp2, dp2_flags); | 
|  | xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); | 
|  | } | 
|  | xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  | xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); | 
|  | return xfs_finish_rename(tp); | 
|  |  | 
|  | out_trans_abort: | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_rename_alloc_whiteout() | 
|  | * | 
|  | * Return a referenced, unlinked, unlocked inode that can be used as a | 
|  | * whiteout in a rename transaction. We use a tmpfile inode here so that if we | 
|  | * crash between allocating the inode and linking it into the rename transaction | 
|  | * recovery will free the inode and we won't leak it. | 
|  | */ | 
|  | static int | 
|  | xfs_rename_alloc_whiteout( | 
|  | struct user_namespace	*mnt_userns, | 
|  | struct xfs_inode	*dp, | 
|  | struct xfs_inode	**wip) | 
|  | { | 
|  | struct xfs_inode	*tmpfile; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE, | 
|  | &tmpfile); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * Prepare the tmpfile inode as if it were created through the VFS. | 
|  | * Complete the inode setup and flag it as linkable.  nlink is already | 
|  | * zero, so we can skip the drop_nlink. | 
|  | */ | 
|  | xfs_setup_iops(tmpfile); | 
|  | xfs_finish_inode_setup(tmpfile); | 
|  | VFS_I(tmpfile)->i_state |= I_LINKABLE; | 
|  |  | 
|  | *wip = tmpfile; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_rename | 
|  | */ | 
|  | int | 
|  | xfs_rename( | 
|  | struct user_namespace	*mnt_userns, | 
|  | struct xfs_inode	*src_dp, | 
|  | struct xfs_name		*src_name, | 
|  | struct xfs_inode	*src_ip, | 
|  | struct xfs_inode	*target_dp, | 
|  | struct xfs_name		*target_name, | 
|  | struct xfs_inode	*target_ip, | 
|  | unsigned int		flags) | 
|  | { | 
|  | struct xfs_mount	*mp = src_dp->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | struct xfs_inode	*wip = NULL;		/* whiteout inode */ | 
|  | struct xfs_inode	*inodes[__XFS_SORT_INODES]; | 
|  | int			i; | 
|  | int			num_inodes = __XFS_SORT_INODES; | 
|  | bool			new_parent = (src_dp != target_dp); | 
|  | bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); | 
|  | int			spaceres; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_rename(src_dp, target_dp, src_name, target_name); | 
|  |  | 
|  | if ((flags & RENAME_EXCHANGE) && !target_ip) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * If we are doing a whiteout operation, allocate the whiteout inode | 
|  | * we will be placing at the target and ensure the type is set | 
|  | * appropriately. | 
|  | */ | 
|  | if (flags & RENAME_WHITEOUT) { | 
|  | ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); | 
|  | error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* setup target dirent info as whiteout */ | 
|  | src_name->type = XFS_DIR3_FT_CHRDEV; | 
|  | } | 
|  |  | 
|  | xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, | 
|  | inodes, &num_inodes); | 
|  |  | 
|  | spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); | 
|  | if (error == -ENOSPC) { | 
|  | spaceres = 0; | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, | 
|  | &tp); | 
|  | } | 
|  | if (error) | 
|  | goto out_release_wip; | 
|  |  | 
|  | /* | 
|  | * Attach the dquots to the inodes | 
|  | */ | 
|  | error = xfs_qm_vop_rename_dqattach(inodes); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * Lock all the participating inodes. Depending upon whether | 
|  | * the target_name exists in the target directory, and | 
|  | * whether the target directory is the same as the source | 
|  | * directory, we can lock from 2 to 4 inodes. | 
|  | */ | 
|  | xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Join all the inodes to the transaction. From this point on, | 
|  | * we can rely on either trans_commit or trans_cancel to unlock | 
|  | * them. | 
|  | */ | 
|  | xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); | 
|  | if (new_parent) | 
|  | xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); | 
|  | xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); | 
|  | if (target_ip) | 
|  | xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); | 
|  | if (wip) | 
|  | xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * If we are using project inheritance, we only allow renames | 
|  | * into our tree when the project IDs are the same; else the | 
|  | * tree quota mechanism would be circumvented. | 
|  | */ | 
|  | if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) && | 
|  | target_dp->i_projid != src_ip->i_projid)) { | 
|  | error = -EXDEV; | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* RENAME_EXCHANGE is unique from here on. */ | 
|  | if (flags & RENAME_EXCHANGE) | 
|  | return xfs_cross_rename(tp, src_dp, src_name, src_ip, | 
|  | target_dp, target_name, target_ip, | 
|  | spaceres); | 
|  |  | 
|  | /* | 
|  | * Check for expected errors before we dirty the transaction | 
|  | * so we can return an error without a transaction abort. | 
|  | * | 
|  | * Extent count overflow check: | 
|  | * | 
|  | * From the perspective of src_dp, a rename operation is essentially a | 
|  | * directory entry remove operation. Hence the only place where we check | 
|  | * for extent count overflow for src_dp is in | 
|  | * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns | 
|  | * -ENOSPC when it detects a possible extent count overflow and in | 
|  | * response, the higher layers of directory handling code do the | 
|  | * following: | 
|  | * 1. Data/Free blocks: XFS lets these blocks linger until a | 
|  | *    future remove operation removes them. | 
|  | * 2. Dabtree blocks: XFS swaps the blocks with the last block in the | 
|  | *    Leaf space and unmaps the last block. | 
|  | * | 
|  | * For target_dp, there are two cases depending on whether the | 
|  | * destination directory entry exists or not. | 
|  | * | 
|  | * When destination directory entry does not exist (i.e. target_ip == | 
|  | * NULL), extent count overflow check is performed only when transaction | 
|  | * has a non-zero sized space reservation associated with it.  With a | 
|  | * zero-sized space reservation, XFS allows a rename operation to | 
|  | * continue only when the directory has sufficient free space in its | 
|  | * data/leaf/free space blocks to hold the new entry. | 
|  | * | 
|  | * When destination directory entry exists (i.e. target_ip != NULL), all | 
|  | * we need to do is change the inode number associated with the already | 
|  | * existing entry. Hence there is no need to perform an extent count | 
|  | * overflow check. | 
|  | */ | 
|  | if (target_ip == NULL) { | 
|  | /* | 
|  | * If there's no space reservation, check the entry will | 
|  | * fit before actually inserting it. | 
|  | */ | 
|  | if (!spaceres) { | 
|  | error = xfs_dir_canenter(tp, target_dp, target_name); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } else { | 
|  | error = xfs_iext_count_may_overflow(target_dp, | 
|  | XFS_DATA_FORK, | 
|  | XFS_IEXT_DIR_MANIP_CNT(mp)); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * If target exists and it's a directory, check that whether | 
|  | * it can be destroyed. | 
|  | */ | 
|  | if (S_ISDIR(VFS_I(target_ip)->i_mode) && | 
|  | (!xfs_dir_isempty(target_ip) || | 
|  | (VFS_I(target_ip)->i_nlink > 2))) { | 
|  | error = -EEXIST; | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock the AGI buffers we need to handle bumping the nlink of the | 
|  | * whiteout inode off the unlinked list and to handle dropping the | 
|  | * nlink of the target inode.  Per locking order rules, do this in | 
|  | * increasing AG order and before directory block allocation tries to | 
|  | * grab AGFs because we grab AGIs before AGFs. | 
|  | * | 
|  | * The (vfs) caller must ensure that if src is a directory then | 
|  | * target_ip is either null or an empty directory. | 
|  | */ | 
|  | for (i = 0; i < num_inodes && inodes[i] != NULL; i++) { | 
|  | if (inodes[i] == wip || | 
|  | (inodes[i] == target_ip && | 
|  | (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) { | 
|  | struct xfs_buf	*bp; | 
|  | xfs_agnumber_t	agno; | 
|  |  | 
|  | agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino); | 
|  | error = xfs_read_agi(mp, tp, agno, &bp); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Directory entry creation below may acquire the AGF. Remove | 
|  | * the whiteout from the unlinked list first to preserve correct | 
|  | * AGI/AGF locking order. This dirties the transaction so failures | 
|  | * after this point will abort and log recovery will clean up the | 
|  | * mess. | 
|  | * | 
|  | * For whiteouts, we need to bump the link count on the whiteout | 
|  | * inode. After this point, we have a real link, clear the tmpfile | 
|  | * state flag from the inode so it doesn't accidentally get misused | 
|  | * in future. | 
|  | */ | 
|  | if (wip) { | 
|  | struct xfs_perag	*pag; | 
|  |  | 
|  | ASSERT(VFS_I(wip)->i_nlink == 0); | 
|  |  | 
|  | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino)); | 
|  | error = xfs_iunlink_remove(tp, pag, wip); | 
|  | xfs_perag_put(pag); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | xfs_bumplink(tp, wip); | 
|  | VFS_I(wip)->i_state &= ~I_LINKABLE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the target. | 
|  | */ | 
|  | if (target_ip == NULL) { | 
|  | /* | 
|  | * If target does not exist and the rename crosses | 
|  | * directories, adjust the target directory link count | 
|  | * to account for the ".." reference from the new entry. | 
|  | */ | 
|  | error = xfs_dir_createname(tp, target_dp, target_name, | 
|  | src_ip->i_ino, spaceres); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | xfs_trans_ichgtime(tp, target_dp, | 
|  | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  |  | 
|  | if (new_parent && src_is_directory) { | 
|  | xfs_bumplink(tp, target_dp); | 
|  | } | 
|  | } else { /* target_ip != NULL */ | 
|  | /* | 
|  | * Link the source inode under the target name. | 
|  | * If the source inode is a directory and we are moving | 
|  | * it across directories, its ".." entry will be | 
|  | * inconsistent until we replace that down below. | 
|  | * | 
|  | * In case there is already an entry with the same | 
|  | * name at the destination directory, remove it first. | 
|  | */ | 
|  | error = xfs_dir_replace(tp, target_dp, target_name, | 
|  | src_ip->i_ino, spaceres); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | xfs_trans_ichgtime(tp, target_dp, | 
|  | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  |  | 
|  | /* | 
|  | * Decrement the link count on the target since the target | 
|  | * dir no longer points to it. | 
|  | */ | 
|  | error = xfs_droplink(tp, target_ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | if (src_is_directory) { | 
|  | /* | 
|  | * Drop the link from the old "." entry. | 
|  | */ | 
|  | error = xfs_droplink(tp, target_ip); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  | } /* target_ip != NULL */ | 
|  |  | 
|  | /* | 
|  | * Remove the source. | 
|  | */ | 
|  | if (new_parent && src_is_directory) { | 
|  | /* | 
|  | * Rewrite the ".." entry to point to the new | 
|  | * directory. | 
|  | */ | 
|  | error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, | 
|  | target_dp->i_ino, spaceres); | 
|  | ASSERT(error != -EEXIST); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We always want to hit the ctime on the source inode. | 
|  | * | 
|  | * This isn't strictly required by the standards since the source | 
|  | * inode isn't really being changed, but old unix file systems did | 
|  | * it and some incremental backup programs won't work without it. | 
|  | */ | 
|  | xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); | 
|  | xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); | 
|  |  | 
|  | /* | 
|  | * Adjust the link count on src_dp.  This is necessary when | 
|  | * renaming a directory, either within one parent when | 
|  | * the target existed, or across two parent directories. | 
|  | */ | 
|  | if (src_is_directory && (new_parent || target_ip != NULL)) { | 
|  |  | 
|  | /* | 
|  | * Decrement link count on src_directory since the | 
|  | * entry that's moved no longer points to it. | 
|  | */ | 
|  | error = xfs_droplink(tp, src_dp); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For whiteouts, we only need to update the source dirent with the | 
|  | * inode number of the whiteout inode rather than removing it | 
|  | * altogether. | 
|  | */ | 
|  | if (wip) { | 
|  | error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, | 
|  | spaceres); | 
|  | } else { | 
|  | /* | 
|  | * NOTE: We don't need to check for extent count overflow here | 
|  | * because the dir remove name code will leave the dir block in | 
|  | * place if the extent count would overflow. | 
|  | */ | 
|  | error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, | 
|  | spaceres); | 
|  | } | 
|  |  | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); | 
|  | xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); | 
|  | if (new_parent) | 
|  | xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); | 
|  |  | 
|  | error = xfs_finish_rename(tp); | 
|  | if (wip) | 
|  | xfs_irele(wip); | 
|  | return error; | 
|  |  | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | out_release_wip: | 
|  | if (wip) | 
|  | xfs_irele(wip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_iflush( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_inode_log_item *iip = ip->i_itemp; | 
|  | struct xfs_dinode	*dip; | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); | 
|  | ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING)); | 
|  | ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || | 
|  | ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); | 
|  | ASSERT(iip->ili_item.li_buf == bp); | 
|  |  | 
|  | dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); | 
|  |  | 
|  | /* | 
|  | * We don't flush the inode if any of the following checks fail, but we | 
|  | * do still update the log item and attach to the backing buffer as if | 
|  | * the flush happened. This is a formality to facilitate predictable | 
|  | * error handling as the caller will shutdown and fail the buffer. | 
|  | */ | 
|  | error = -EFSCORRUPTED; | 
|  | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), | 
|  | mp, XFS_ERRTAG_IFLUSH_1)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); | 
|  | goto flush_out; | 
|  | } | 
|  | if (S_ISREG(VFS_I(ip)->i_mode)) { | 
|  | if (XFS_TEST_ERROR( | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_BTREE, | 
|  | mp, XFS_ERRTAG_IFLUSH_3)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad regular inode %Lu, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | } else if (S_ISDIR(VFS_I(ip)->i_mode)) { | 
|  | if (XFS_TEST_ERROR( | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS && | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_BTREE && | 
|  | ip->i_df.if_format != XFS_DINODE_FMT_LOCAL, | 
|  | mp, XFS_ERRTAG_IFLUSH_4)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: Bad directory inode %Lu, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | } | 
|  | if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) > | 
|  | ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: detected corrupt incore inode %Lu, " | 
|  | "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, | 
|  | ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp), | 
|  | ip->i_nblocks, ip); | 
|  | goto flush_out; | 
|  | } | 
|  | if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize, | 
|  | mp, XFS_ERRTAG_IFLUSH_6)) { | 
|  | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, | 
|  | "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, | 
|  | __func__, ip->i_ino, ip->i_forkoff, ip); | 
|  | goto flush_out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inode item log recovery for v2 inodes are dependent on the flushiter | 
|  | * count for correct sequencing.  We bump the flush iteration count so | 
|  | * we can detect flushes which postdate a log record during recovery. | 
|  | * This is redundant as we now log every change and hence this can't | 
|  | * happen but we need to still do it to ensure backwards compatibility | 
|  | * with old kernels that predate logging all inode changes. | 
|  | */ | 
|  | if (!xfs_sb_version_has_v3inode(&mp->m_sb)) | 
|  | ip->i_flushiter++; | 
|  |  | 
|  | /* | 
|  | * If there are inline format data / attr forks attached to this inode, | 
|  | * make sure they are not corrupt. | 
|  | */ | 
|  | if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL && | 
|  | xfs_ifork_verify_local_data(ip)) | 
|  | goto flush_out; | 
|  | if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL && | 
|  | xfs_ifork_verify_local_attr(ip)) | 
|  | goto flush_out; | 
|  |  | 
|  | /* | 
|  | * Copy the dirty parts of the inode into the on-disk inode.  We always | 
|  | * copy out the core of the inode, because if the inode is dirty at all | 
|  | * the core must be. | 
|  | */ | 
|  | xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); | 
|  |  | 
|  | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
|  | if (!xfs_sb_version_has_v3inode(&mp->m_sb)) { | 
|  | if (ip->i_flushiter == DI_MAX_FLUSH) | 
|  | ip->i_flushiter = 0; | 
|  | } | 
|  |  | 
|  | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); | 
|  | if (XFS_IFORK_Q(ip)) | 
|  | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); | 
|  |  | 
|  | /* | 
|  | * We've recorded everything logged in the inode, so we'd like to clear | 
|  | * the ili_fields bits so we don't log and flush things unnecessarily. | 
|  | * However, we can't stop logging all this information until the data | 
|  | * we've copied into the disk buffer is written to disk.  If we did we | 
|  | * might overwrite the copy of the inode in the log with all the data | 
|  | * after re-logging only part of it, and in the face of a crash we | 
|  | * wouldn't have all the data we need to recover. | 
|  | * | 
|  | * What we do is move the bits to the ili_last_fields field.  When | 
|  | * logging the inode, these bits are moved back to the ili_fields field. | 
|  | * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since | 
|  | * we know that the information those bits represent is permanently on | 
|  | * disk.  As long as the flush completes before the inode is logged | 
|  | * again, then both ili_fields and ili_last_fields will be cleared. | 
|  | */ | 
|  | error = 0; | 
|  | flush_out: | 
|  | spin_lock(&iip->ili_lock); | 
|  | iip->ili_last_fields = iip->ili_fields; | 
|  | iip->ili_fields = 0; | 
|  | iip->ili_fsync_fields = 0; | 
|  | spin_unlock(&iip->ili_lock); | 
|  |  | 
|  | /* | 
|  | * Store the current LSN of the inode so that we can tell whether the | 
|  | * item has moved in the AIL from xfs_buf_inode_iodone(). | 
|  | */ | 
|  | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, | 
|  | &iip->ili_item.li_lsn); | 
|  |  | 
|  | /* generate the checksum. */ | 
|  | xfs_dinode_calc_crc(mp, dip); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-blocking flush of dirty inode metadata into the backing buffer. | 
|  | * | 
|  | * The caller must have a reference to the inode and hold the cluster buffer | 
|  | * locked. The function will walk across all the inodes on the cluster buffer it | 
|  | * can find and lock without blocking, and flush them to the cluster buffer. | 
|  | * | 
|  | * On successful flushing of at least one inode, the caller must write out the | 
|  | * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and | 
|  | * the caller needs to release the buffer. On failure, the filesystem will be | 
|  | * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED | 
|  | * will be returned. | 
|  | */ | 
|  | int | 
|  | xfs_iflush_cluster( | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_mount	*mp = bp->b_mount; | 
|  | struct xfs_log_item	*lip, *n; | 
|  | struct xfs_inode	*ip; | 
|  | struct xfs_inode_log_item *iip; | 
|  | int			clcount = 0; | 
|  | int			error = 0; | 
|  |  | 
|  | /* | 
|  | * We must use the safe variant here as on shutdown xfs_iflush_abort() | 
|  | * can remove itself from the list. | 
|  | */ | 
|  | list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { | 
|  | iip = (struct xfs_inode_log_item *)lip; | 
|  | ip = iip->ili_inode; | 
|  |  | 
|  | /* | 
|  | * Quick and dirty check to avoid locks if possible. | 
|  | */ | 
|  | if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) | 
|  | continue; | 
|  | if (xfs_ipincount(ip)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * The inode is still attached to the buffer, which means it is | 
|  | * dirty but reclaim might try to grab it. Check carefully for | 
|  | * that, and grab the ilock while still holding the i_flags_lock | 
|  | * to guarantee reclaim will not be able to reclaim this inode | 
|  | * once we drop the i_flags_lock. | 
|  | */ | 
|  | spin_lock(&ip->i_flags_lock); | 
|  | ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); | 
|  | if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ILOCK will pin the inode against reclaim and prevent | 
|  | * concurrent transactions modifying the inode while we are | 
|  | * flushing the inode. If we get the lock, set the flushing | 
|  | * state before we drop the i_flags_lock. | 
|  | */ | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  | continue; | 
|  | } | 
|  | __xfs_iflags_set(ip, XFS_IFLUSHING); | 
|  | spin_unlock(&ip->i_flags_lock); | 
|  |  | 
|  | /* | 
|  | * Abort flushing this inode if we are shut down because the | 
|  | * inode may not currently be in the AIL. This can occur when | 
|  | * log I/O failure unpins the inode without inserting into the | 
|  | * AIL, leaving a dirty/unpinned inode attached to the buffer | 
|  | * that otherwise looks like it should be flushed. | 
|  | */ | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | xfs_iunpin_wait(ip); | 
|  | xfs_iflush_abort(ip); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | error = -EIO; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* don't block waiting on a log force to unpin dirty inodes */ | 
|  | if (xfs_ipincount(ip)) { | 
|  | xfs_iflags_clear(ip, XFS_IFLUSHING); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!xfs_inode_clean(ip)) | 
|  | error = xfs_iflush(ip, bp); | 
|  | else | 
|  | xfs_iflags_clear(ip, XFS_IFLUSHING); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | if (error) | 
|  | break; | 
|  | clcount++; | 
|  | } | 
|  |  | 
|  | if (error) { | 
|  | bp->b_flags |= XBF_ASYNC; | 
|  | xfs_buf_ioend_fail(bp); | 
|  | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (!clcount) | 
|  | return -EAGAIN; | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_icluster_flushcnt); | 
|  | XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Release an inode. */ | 
|  | void | 
|  | xfs_irele( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | trace_xfs_irele(ip, _RET_IP_); | 
|  | iput(VFS_I(ip)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure all commited transactions touching the inode are written to the log. | 
|  | */ | 
|  | int | 
|  | xfs_log_force_inode( | 
|  | struct xfs_inode	*ip) | 
|  | { | 
|  | xfs_csn_t		seq = 0; | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | if (xfs_ipincount(ip)) | 
|  | seq = ip->i_itemp->ili_commit_seq; | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | if (!seq) | 
|  | return 0; | 
|  | return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grab the exclusive iolock for a data copy from src to dest, making sure to | 
|  | * abide vfs locking order (lowest pointer value goes first) and breaking the | 
|  | * layout leases before proceeding.  The loop is needed because we cannot call | 
|  | * the blocking break_layout() with the iolocks held, and therefore have to | 
|  | * back out both locks. | 
|  | */ | 
|  | static int | 
|  | xfs_iolock_two_inodes_and_break_layout( | 
|  | struct inode		*src, | 
|  | struct inode		*dest) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | if (src > dest) | 
|  | swap(src, dest); | 
|  |  | 
|  | retry: | 
|  | /* Wait to break both inodes' layouts before we start locking. */ | 
|  | error = break_layout(src, true); | 
|  | if (error) | 
|  | return error; | 
|  | if (src != dest) { | 
|  | error = break_layout(dest, true); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Lock one inode and make sure nobody got in and leased it. */ | 
|  | inode_lock(src); | 
|  | error = break_layout(src, false); | 
|  | if (error) { | 
|  | inode_unlock(src); | 
|  | if (error == -EWOULDBLOCK) | 
|  | goto retry; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (src == dest) | 
|  | return 0; | 
|  |  | 
|  | /* Lock the other inode and make sure nobody got in and leased it. */ | 
|  | inode_lock_nested(dest, I_MUTEX_NONDIR2); | 
|  | error = break_layout(dest, false); | 
|  | if (error) { | 
|  | inode_unlock(src); | 
|  | inode_unlock(dest); | 
|  | if (error == -EWOULDBLOCK) | 
|  | goto retry; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock two inodes so that userspace cannot initiate I/O via file syscalls or | 
|  | * mmap activity. | 
|  | */ | 
|  | int | 
|  | xfs_ilock2_io_mmap( | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*ip2) | 
|  | { | 
|  | int			ret; | 
|  |  | 
|  | ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2)); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (ip1 == ip2) | 
|  | xfs_ilock(ip1, XFS_MMAPLOCK_EXCL); | 
|  | else | 
|  | xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL, | 
|  | ip2, XFS_MMAPLOCK_EXCL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unlock both inodes to allow IO and mmap activity. */ | 
|  | void | 
|  | xfs_iunlock2_io_mmap( | 
|  | struct xfs_inode	*ip1, | 
|  | struct xfs_inode	*ip2) | 
|  | { | 
|  | bool			same_inode = (ip1 == ip2); | 
|  |  | 
|  | xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL); | 
|  | if (!same_inode) | 
|  | xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL); | 
|  | inode_unlock(VFS_I(ip2)); | 
|  | if (!same_inode) | 
|  | inode_unlock(VFS_I(ip1)); | 
|  | } |