|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2005-2013 Solarflare Communications Inc. | 
|  | */ | 
|  |  | 
|  | #include <linux/socket.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/iommu.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/checksum.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "filter.h" | 
|  | #include "nic.h" | 
|  | #include "selftest.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /* Preferred number of descriptors to fill at once */ | 
|  | #define EFX_RX_PREFERRED_BATCH 8U | 
|  |  | 
|  | /* Number of RX buffers to recycle pages for.  When creating the RX page recycle | 
|  | * ring, this number is divided by the number of buffers per page to calculate | 
|  | * the number of pages to store in the RX page recycle ring. | 
|  | */ | 
|  | #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 | 
|  | #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) | 
|  |  | 
|  | /* Size of buffer allocated for skb header area. */ | 
|  | #define EFX_SKB_HEADERS  128u | 
|  |  | 
|  | /* This is the percentage fill level below which new RX descriptors | 
|  | * will be added to the RX descriptor ring. | 
|  | */ | 
|  | static unsigned int rx_refill_threshold; | 
|  |  | 
|  | /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ | 
|  | #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ | 
|  | EFX_RX_USR_BUF_SIZE) | 
|  |  | 
|  | /* | 
|  | * RX maximum head room required. | 
|  | * | 
|  | * This must be at least 1 to prevent overflow, plus one packet-worth | 
|  | * to allow pipelined receives. | 
|  | */ | 
|  | #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) | 
|  |  | 
|  | static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) | 
|  | { | 
|  | return page_address(buf->page) + buf->page_offset; | 
|  | } | 
|  |  | 
|  | static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) | 
|  | { | 
|  | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) | 
|  | return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); | 
|  | #else | 
|  | const u8 *data = eh + efx->rx_packet_hash_offset; | 
|  | return (u32)data[0]	  | | 
|  | (u32)data[1] << 8  | | 
|  | (u32)data[2] << 16 | | 
|  | (u32)data[3] << 24; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline struct efx_rx_buffer * | 
|  | efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) | 
|  | return efx_rx_buffer(rx_queue, 0); | 
|  | else | 
|  | return rx_buf + 1; | 
|  | } | 
|  |  | 
|  | static inline void efx_sync_rx_buffer(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | unsigned int len) | 
|  | { | 
|  | dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, | 
|  | DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | void efx_rx_config_page_split(struct efx_nic *efx) | 
|  | { | 
|  | efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align, | 
|  | EFX_RX_BUF_ALIGNMENT); | 
|  | efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : | 
|  | ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / | 
|  | efx->rx_page_buf_step); | 
|  | efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / | 
|  | efx->rx_bufs_per_page; | 
|  | efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, | 
|  | efx->rx_bufs_per_page); | 
|  | } | 
|  |  | 
|  | /* Check the RX page recycle ring for a page that can be reused. */ | 
|  | static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct page *page; | 
|  | struct efx_rx_page_state *state; | 
|  | unsigned index; | 
|  |  | 
|  | index = rx_queue->page_remove & rx_queue->page_ptr_mask; | 
|  | page = rx_queue->page_ring[index]; | 
|  | if (page == NULL) | 
|  | return NULL; | 
|  |  | 
|  | rx_queue->page_ring[index] = NULL; | 
|  | /* page_remove cannot exceed page_add. */ | 
|  | if (rx_queue->page_remove != rx_queue->page_add) | 
|  | ++rx_queue->page_remove; | 
|  |  | 
|  | /* If page_count is 1 then we hold the only reference to this page. */ | 
|  | if (page_count(page) == 1) { | 
|  | ++rx_queue->page_recycle_count; | 
|  | return page; | 
|  | } else { | 
|  | state = page_address(page); | 
|  | dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, | 
|  | PAGE_SIZE << efx->rx_buffer_order, | 
|  | DMA_FROM_DEVICE); | 
|  | put_page(page); | 
|  | ++rx_queue->page_recycle_failed; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers | 
|  | * | 
|  | * @rx_queue:		Efx RX queue | 
|  | * | 
|  | * This allocates a batch of pages, maps them for DMA, and populates | 
|  | * struct efx_rx_buffers for each one. Return a negative error code or | 
|  | * 0 on success. If a single page can be used for multiple buffers, | 
|  | * then the page will either be inserted fully, or not at all. | 
|  | */ | 
|  | static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  | struct page *page; | 
|  | unsigned int page_offset; | 
|  | struct efx_rx_page_state *state; | 
|  | dma_addr_t dma_addr; | 
|  | unsigned index, count; | 
|  |  | 
|  | count = 0; | 
|  | do { | 
|  | page = efx_reuse_page(rx_queue); | 
|  | if (page == NULL) { | 
|  | page = alloc_pages(__GFP_COMP | | 
|  | (atomic ? GFP_ATOMIC : GFP_KERNEL), | 
|  | efx->rx_buffer_order); | 
|  | if (unlikely(page == NULL)) | 
|  | return -ENOMEM; | 
|  | dma_addr = | 
|  | dma_map_page(&efx->pci_dev->dev, page, 0, | 
|  | PAGE_SIZE << efx->rx_buffer_order, | 
|  | DMA_FROM_DEVICE); | 
|  | if (unlikely(dma_mapping_error(&efx->pci_dev->dev, | 
|  | dma_addr))) { | 
|  | __free_pages(page, efx->rx_buffer_order); | 
|  | return -EIO; | 
|  | } | 
|  | state = page_address(page); | 
|  | state->dma_addr = dma_addr; | 
|  | } else { | 
|  | state = page_address(page); | 
|  | dma_addr = state->dma_addr; | 
|  | } | 
|  |  | 
|  | dma_addr += sizeof(struct efx_rx_page_state); | 
|  | page_offset = sizeof(struct efx_rx_page_state); | 
|  |  | 
|  | do { | 
|  | index = rx_queue->added_count & rx_queue->ptr_mask; | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | rx_buf->dma_addr = dma_addr + efx->rx_ip_align; | 
|  | rx_buf->page = page; | 
|  | rx_buf->page_offset = page_offset + efx->rx_ip_align; | 
|  | rx_buf->len = efx->rx_dma_len; | 
|  | rx_buf->flags = 0; | 
|  | ++rx_queue->added_count; | 
|  | get_page(page); | 
|  | dma_addr += efx->rx_page_buf_step; | 
|  | page_offset += efx->rx_page_buf_step; | 
|  | } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); | 
|  |  | 
|  | rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; | 
|  | } while (++count < efx->rx_pages_per_batch); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unmap a DMA-mapped page.  This function is only called for the final RX | 
|  | * buffer in a page. | 
|  | */ | 
|  | static void efx_unmap_rx_buffer(struct efx_nic *efx, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | struct page *page = rx_buf->page; | 
|  |  | 
|  | if (page) { | 
|  | struct efx_rx_page_state *state = page_address(page); | 
|  | dma_unmap_page(&efx->pci_dev->dev, | 
|  | state->dma_addr, | 
|  | PAGE_SIZE << efx->rx_buffer_order, | 
|  | DMA_FROM_DEVICE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | unsigned int num_bufs) | 
|  | { | 
|  | do { | 
|  | if (rx_buf->page) { | 
|  | put_page(rx_buf->page); | 
|  | rx_buf->page = NULL; | 
|  | } | 
|  | rx_buf = efx_rx_buf_next(rx_queue, rx_buf); | 
|  | } while (--num_bufs); | 
|  | } | 
|  |  | 
|  | /* Attempt to recycle the page if there is an RX recycle ring; the page can | 
|  | * only be added if this is the final RX buffer, to prevent pages being used in | 
|  | * the descriptor ring and appearing in the recycle ring simultaneously. | 
|  | */ | 
|  | static void efx_recycle_rx_page(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | struct page *page = rx_buf->page; | 
|  | struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned index; | 
|  |  | 
|  | /* Only recycle the page after processing the final buffer. */ | 
|  | if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) | 
|  | return; | 
|  |  | 
|  | index = rx_queue->page_add & rx_queue->page_ptr_mask; | 
|  | if (rx_queue->page_ring[index] == NULL) { | 
|  | unsigned read_index = rx_queue->page_remove & | 
|  | rx_queue->page_ptr_mask; | 
|  |  | 
|  | /* The next slot in the recycle ring is available, but | 
|  | * increment page_remove if the read pointer currently | 
|  | * points here. | 
|  | */ | 
|  | if (read_index == index) | 
|  | ++rx_queue->page_remove; | 
|  | rx_queue->page_ring[index] = page; | 
|  | ++rx_queue->page_add; | 
|  | return; | 
|  | } | 
|  | ++rx_queue->page_recycle_full; | 
|  | efx_unmap_rx_buffer(efx, rx_buf); | 
|  | put_page(rx_buf->page); | 
|  | } | 
|  |  | 
|  | static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf) | 
|  | { | 
|  | /* Release the page reference we hold for the buffer. */ | 
|  | if (rx_buf->page) | 
|  | put_page(rx_buf->page); | 
|  |  | 
|  | /* If this is the last buffer in a page, unmap and free it. */ | 
|  | if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { | 
|  | efx_unmap_rx_buffer(rx_queue->efx, rx_buf); | 
|  | efx_free_rx_buffers(rx_queue, rx_buf, 1); | 
|  | } | 
|  | rx_buf->page = NULL; | 
|  | } | 
|  |  | 
|  | /* Recycle the pages that are used by buffers that have just been received. */ | 
|  | static void efx_recycle_rx_pages(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | unsigned int n_frags) | 
|  | { | 
|  | struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | do { | 
|  | efx_recycle_rx_page(channel, rx_buf); | 
|  | rx_buf = efx_rx_buf_next(rx_queue, rx_buf); | 
|  | } while (--n_frags); | 
|  | } | 
|  |  | 
|  | static void efx_discard_rx_packet(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | unsigned int n_frags) | 
|  | { | 
|  | struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); | 
|  |  | 
|  | efx_recycle_rx_pages(channel, rx_buf, n_frags); | 
|  |  | 
|  | efx_free_rx_buffers(rx_queue, rx_buf, n_frags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_fast_push_rx_descriptors - push new RX descriptors quickly | 
|  | * @rx_queue:		RX descriptor queue | 
|  | * | 
|  | * This will aim to fill the RX descriptor queue up to | 
|  | * @rx_queue->@max_fill. If there is insufficient atomic | 
|  | * memory to do so, a slow fill will be scheduled. | 
|  | * | 
|  | * The caller must provide serialisation (none is used here). In practise, | 
|  | * this means this function must run from the NAPI handler, or be called | 
|  | * when NAPI is disabled. | 
|  | */ | 
|  | void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned int fill_level, batch_size; | 
|  | int space, rc = 0; | 
|  |  | 
|  | if (!rx_queue->refill_enabled) | 
|  | return; | 
|  |  | 
|  | /* Calculate current fill level, and exit if we don't need to fill */ | 
|  | fill_level = (rx_queue->added_count - rx_queue->removed_count); | 
|  | EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries); | 
|  | if (fill_level >= rx_queue->fast_fill_trigger) | 
|  | goto out; | 
|  |  | 
|  | /* Record minimum fill level */ | 
|  | if (unlikely(fill_level < rx_queue->min_fill)) { | 
|  | if (fill_level) | 
|  | rx_queue->min_fill = fill_level; | 
|  | } | 
|  |  | 
|  | batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; | 
|  | space = rx_queue->max_fill - fill_level; | 
|  | EFX_WARN_ON_ONCE_PARANOID(space < batch_size); | 
|  |  | 
|  | netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | 
|  | "RX queue %d fast-filling descriptor ring from" | 
|  | " level %d to level %d\n", | 
|  | efx_rx_queue_index(rx_queue), fill_level, | 
|  | rx_queue->max_fill); | 
|  |  | 
|  |  | 
|  | do { | 
|  | rc = efx_init_rx_buffers(rx_queue, atomic); | 
|  | if (unlikely(rc)) { | 
|  | /* Ensure that we don't leave the rx queue empty */ | 
|  | efx_schedule_slow_fill(rx_queue); | 
|  | goto out; | 
|  | } | 
|  | } while ((space -= batch_size) >= batch_size); | 
|  |  | 
|  | netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, | 
|  | "RX queue %d fast-filled descriptor ring " | 
|  | "to level %d\n", efx_rx_queue_index(rx_queue), | 
|  | rx_queue->added_count - rx_queue->removed_count); | 
|  |  | 
|  | out: | 
|  | if (rx_queue->notified_count != rx_queue->added_count) | 
|  | efx_nic_notify_rx_desc(rx_queue); | 
|  | } | 
|  |  | 
|  | void efx_rx_slow_fill(struct timer_list *t) | 
|  | { | 
|  | struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill); | 
|  |  | 
|  | /* Post an event to cause NAPI to run and refill the queue */ | 
|  | efx_nic_generate_fill_event(rx_queue); | 
|  | ++rx_queue->slow_fill_count; | 
|  | } | 
|  |  | 
|  | static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | int len) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; | 
|  |  | 
|  | if (likely(len <= max_len)) | 
|  | return; | 
|  |  | 
|  | /* The packet must be discarded, but this is only a fatal error | 
|  | * if the caller indicated it was | 
|  | */ | 
|  | rx_buf->flags |= EFX_RX_PKT_DISCARD; | 
|  |  | 
|  | if (net_ratelimit()) | 
|  | netif_err(efx, rx_err, efx->net_dev, | 
|  | "RX queue %d overlength RX event (%#x > %#x)\n", | 
|  | efx_rx_queue_index(rx_queue), len, max_len); | 
|  |  | 
|  | efx_rx_queue_channel(rx_queue)->n_rx_overlength++; | 
|  | } | 
|  |  | 
|  | /* Pass a received packet up through GRO.  GRO can handle pages | 
|  | * regardless of checksum state and skbs with a good checksum. | 
|  | */ | 
|  | static void | 
|  | efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, | 
|  | unsigned int n_frags, u8 *eh) | 
|  | { | 
|  | struct napi_struct *napi = &channel->napi_str; | 
|  | gro_result_t gro_result; | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = napi_get_frags(napi); | 
|  | if (unlikely(!skb)) { | 
|  | struct efx_rx_queue *rx_queue; | 
|  |  | 
|  | rx_queue = efx_channel_get_rx_queue(channel); | 
|  | efx_free_rx_buffers(rx_queue, rx_buf, n_frags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (efx->net_dev->features & NETIF_F_RXHASH) | 
|  | skb_set_hash(skb, efx_rx_buf_hash(efx, eh), | 
|  | PKT_HASH_TYPE_L3); | 
|  | skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? | 
|  | CHECKSUM_UNNECESSARY : CHECKSUM_NONE); | 
|  | skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); | 
|  |  | 
|  | for (;;) { | 
|  | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | 
|  | rx_buf->page, rx_buf->page_offset, | 
|  | rx_buf->len); | 
|  | rx_buf->page = NULL; | 
|  | skb->len += rx_buf->len; | 
|  | if (skb_shinfo(skb)->nr_frags == n_frags) | 
|  | break; | 
|  |  | 
|  | rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); | 
|  | } | 
|  |  | 
|  | skb->data_len = skb->len; | 
|  | skb->truesize += n_frags * efx->rx_buffer_truesize; | 
|  |  | 
|  | skb_record_rx_queue(skb, channel->rx_queue.core_index); | 
|  |  | 
|  | gro_result = napi_gro_frags(napi); | 
|  | if (gro_result != GRO_DROP) | 
|  | channel->irq_mod_score += 2; | 
|  | } | 
|  |  | 
|  | /* Allocate and construct an SKB around page fragments */ | 
|  | static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | unsigned int n_frags, | 
|  | u8 *eh, int hdr_len) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* Allocate an SKB to store the headers */ | 
|  | skb = netdev_alloc_skb(efx->net_dev, | 
|  | efx->rx_ip_align + efx->rx_prefix_size + | 
|  | hdr_len); | 
|  | if (unlikely(skb == NULL)) { | 
|  | atomic_inc(&efx->n_rx_noskb_drops); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len); | 
|  |  | 
|  | memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, | 
|  | efx->rx_prefix_size + hdr_len); | 
|  | skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); | 
|  | __skb_put(skb, hdr_len); | 
|  |  | 
|  | /* Append the remaining page(s) onto the frag list */ | 
|  | if (rx_buf->len > hdr_len) { | 
|  | rx_buf->page_offset += hdr_len; | 
|  | rx_buf->len -= hdr_len; | 
|  |  | 
|  | for (;;) { | 
|  | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | 
|  | rx_buf->page, rx_buf->page_offset, | 
|  | rx_buf->len); | 
|  | rx_buf->page = NULL; | 
|  | skb->len += rx_buf->len; | 
|  | skb->data_len += rx_buf->len; | 
|  | if (skb_shinfo(skb)->nr_frags == n_frags) | 
|  | break; | 
|  |  | 
|  | rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); | 
|  | } | 
|  | } else { | 
|  | __free_pages(rx_buf->page, efx->rx_buffer_order); | 
|  | rx_buf->page = NULL; | 
|  | n_frags = 0; | 
|  | } | 
|  |  | 
|  | skb->truesize += n_frags * efx->rx_buffer_truesize; | 
|  |  | 
|  | /* Move past the ethernet header */ | 
|  | skb->protocol = eth_type_trans(skb, efx->net_dev); | 
|  |  | 
|  | skb_mark_napi_id(skb, &channel->napi_str); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, | 
|  | unsigned int n_frags, unsigned int len, u16 flags) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); | 
|  | struct efx_rx_buffer *rx_buf; | 
|  |  | 
|  | rx_queue->rx_packets++; | 
|  |  | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | rx_buf->flags |= flags; | 
|  |  | 
|  | /* Validate the number of fragments and completed length */ | 
|  | if (n_frags == 1) { | 
|  | if (!(flags & EFX_RX_PKT_PREFIX_LEN)) | 
|  | efx_rx_packet__check_len(rx_queue, rx_buf, len); | 
|  | } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || | 
|  | unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || | 
|  | unlikely(len > n_frags * efx->rx_dma_len) || | 
|  | unlikely(!efx->rx_scatter)) { | 
|  | /* If this isn't an explicit discard request, either | 
|  | * the hardware or the driver is broken. | 
|  | */ | 
|  | WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); | 
|  | rx_buf->flags |= EFX_RX_PKT_DISCARD; | 
|  | } | 
|  |  | 
|  | netif_vdbg(efx, rx_status, efx->net_dev, | 
|  | "RX queue %d received ids %x-%x len %d %s%s\n", | 
|  | efx_rx_queue_index(rx_queue), index, | 
|  | (index + n_frags - 1) & rx_queue->ptr_mask, len, | 
|  | (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", | 
|  | (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); | 
|  |  | 
|  | /* Discard packet, if instructed to do so.  Process the | 
|  | * previous receive first. | 
|  | */ | 
|  | if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { | 
|  | efx_rx_flush_packet(channel); | 
|  | efx_discard_rx_packet(channel, rx_buf, n_frags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) | 
|  | rx_buf->len = len; | 
|  |  | 
|  | /* Release and/or sync the DMA mapping - assumes all RX buffers | 
|  | * consumed in-order per RX queue. | 
|  | */ | 
|  | efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); | 
|  |  | 
|  | /* Prefetch nice and early so data will (hopefully) be in cache by | 
|  | * the time we look at it. | 
|  | */ | 
|  | prefetch(efx_rx_buf_va(rx_buf)); | 
|  |  | 
|  | rx_buf->page_offset += efx->rx_prefix_size; | 
|  | rx_buf->len -= efx->rx_prefix_size; | 
|  |  | 
|  | if (n_frags > 1) { | 
|  | /* Release/sync DMA mapping for additional fragments. | 
|  | * Fix length for last fragment. | 
|  | */ | 
|  | unsigned int tail_frags = n_frags - 1; | 
|  |  | 
|  | for (;;) { | 
|  | rx_buf = efx_rx_buf_next(rx_queue, rx_buf); | 
|  | if (--tail_frags == 0) | 
|  | break; | 
|  | efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); | 
|  | } | 
|  | rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; | 
|  | efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); | 
|  | } | 
|  |  | 
|  | /* All fragments have been DMA-synced, so recycle pages. */ | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | efx_recycle_rx_pages(channel, rx_buf, n_frags); | 
|  |  | 
|  | /* Pipeline receives so that we give time for packet headers to be | 
|  | * prefetched into cache. | 
|  | */ | 
|  | efx_rx_flush_packet(channel); | 
|  | channel->rx_pkt_n_frags = n_frags; | 
|  | channel->rx_pkt_index = index; | 
|  | } | 
|  |  | 
|  | static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, | 
|  | struct efx_rx_buffer *rx_buf, | 
|  | unsigned int n_frags) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); | 
|  |  | 
|  | skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); | 
|  | if (unlikely(skb == NULL)) { | 
|  | struct efx_rx_queue *rx_queue; | 
|  |  | 
|  | rx_queue = efx_channel_get_rx_queue(channel); | 
|  | efx_free_rx_buffers(rx_queue, rx_buf, n_frags); | 
|  | return; | 
|  | } | 
|  | skb_record_rx_queue(skb, channel->rx_queue.core_index); | 
|  |  | 
|  | /* Set the SKB flags */ | 
|  | skb_checksum_none_assert(skb); | 
|  | if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) { | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); | 
|  | } | 
|  |  | 
|  | efx_rx_skb_attach_timestamp(channel, skb); | 
|  |  | 
|  | if (channel->type->receive_skb) | 
|  | if (channel->type->receive_skb(channel, skb)) | 
|  | return; | 
|  |  | 
|  | /* Pass the packet up */ | 
|  | if (channel->rx_list != NULL) | 
|  | /* Add to list, will pass up later */ | 
|  | list_add_tail(&skb->list, channel->rx_list); | 
|  | else | 
|  | /* No list, so pass it up now */ | 
|  | netif_receive_skb(skb); | 
|  | } | 
|  |  | 
|  | /* Handle a received packet.  Second half: Touches packet payload. */ | 
|  | void __efx_rx_packet(struct efx_channel *channel) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | struct efx_rx_buffer *rx_buf = | 
|  | efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); | 
|  | u8 *eh = efx_rx_buf_va(rx_buf); | 
|  |  | 
|  | /* Read length from the prefix if necessary.  This already | 
|  | * excludes the length of the prefix itself. | 
|  | */ | 
|  | if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) | 
|  | rx_buf->len = le16_to_cpup((__le16 *) | 
|  | (eh + efx->rx_packet_len_offset)); | 
|  |  | 
|  | /* If we're in loopback test, then pass the packet directly to the | 
|  | * loopback layer, and free the rx_buf here | 
|  | */ | 
|  | if (unlikely(efx->loopback_selftest)) { | 
|  | struct efx_rx_queue *rx_queue; | 
|  |  | 
|  | efx_loopback_rx_packet(efx, eh, rx_buf->len); | 
|  | rx_queue = efx_channel_get_rx_queue(channel); | 
|  | efx_free_rx_buffers(rx_queue, rx_buf, | 
|  | channel->rx_pkt_n_frags); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) | 
|  | rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; | 
|  |  | 
|  | if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) | 
|  | efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); | 
|  | else | 
|  | efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); | 
|  | out: | 
|  | channel->rx_pkt_n_frags = 0; | 
|  | } | 
|  |  | 
|  | int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned int entries; | 
|  | int rc; | 
|  |  | 
|  | /* Create the smallest power-of-two aligned ring */ | 
|  | entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); | 
|  | EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); | 
|  | rx_queue->ptr_mask = entries - 1; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "creating RX queue %d size %#x mask %#x\n", | 
|  | efx_rx_queue_index(rx_queue), efx->rxq_entries, | 
|  | rx_queue->ptr_mask); | 
|  |  | 
|  | /* Allocate RX buffers */ | 
|  | rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), | 
|  | GFP_KERNEL); | 
|  | if (!rx_queue->buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = efx_nic_probe_rx(rx_queue); | 
|  | if (rc) { | 
|  | kfree(rx_queue->buffer); | 
|  | rx_queue->buffer = NULL; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void efx_init_rx_recycle_ring(struct efx_nic *efx, | 
|  | struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | unsigned int bufs_in_recycle_ring, page_ring_size; | 
|  |  | 
|  | /* Set the RX recycle ring size */ | 
|  | #ifdef CONFIG_PPC64 | 
|  | bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; | 
|  | #else | 
|  | if (iommu_present(&pci_bus_type)) | 
|  | bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; | 
|  | else | 
|  | bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / | 
|  | efx->rx_bufs_per_page); | 
|  | rx_queue->page_ring = kcalloc(page_ring_size, | 
|  | sizeof(*rx_queue->page_ring), GFP_KERNEL); | 
|  | rx_queue->page_ptr_mask = page_ring_size - 1; | 
|  | } | 
|  |  | 
|  | void efx_init_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | unsigned int max_fill, trigger, max_trigger; | 
|  |  | 
|  | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
|  | "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | /* Initialise ptr fields */ | 
|  | rx_queue->added_count = 0; | 
|  | rx_queue->notified_count = 0; | 
|  | rx_queue->removed_count = 0; | 
|  | rx_queue->min_fill = -1U; | 
|  | efx_init_rx_recycle_ring(efx, rx_queue); | 
|  |  | 
|  | rx_queue->page_remove = 0; | 
|  | rx_queue->page_add = rx_queue->page_ptr_mask + 1; | 
|  | rx_queue->page_recycle_count = 0; | 
|  | rx_queue->page_recycle_failed = 0; | 
|  | rx_queue->page_recycle_full = 0; | 
|  |  | 
|  | /* Initialise limit fields */ | 
|  | max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; | 
|  | max_trigger = | 
|  | max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; | 
|  | if (rx_refill_threshold != 0) { | 
|  | trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; | 
|  | if (trigger > max_trigger) | 
|  | trigger = max_trigger; | 
|  | } else { | 
|  | trigger = max_trigger; | 
|  | } | 
|  |  | 
|  | rx_queue->max_fill = max_fill; | 
|  | rx_queue->fast_fill_trigger = trigger; | 
|  | rx_queue->refill_enabled = true; | 
|  |  | 
|  | /* Set up RX descriptor ring */ | 
|  | efx_nic_init_rx(rx_queue); | 
|  | } | 
|  |  | 
|  | void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | int i; | 
|  | struct efx_nic *efx = rx_queue->efx; | 
|  | struct efx_rx_buffer *rx_buf; | 
|  |  | 
|  | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
|  | "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | del_timer_sync(&rx_queue->slow_fill); | 
|  |  | 
|  | /* Release RX buffers from the current read ptr to the write ptr */ | 
|  | if (rx_queue->buffer) { | 
|  | for (i = rx_queue->removed_count; i < rx_queue->added_count; | 
|  | i++) { | 
|  | unsigned index = i & rx_queue->ptr_mask; | 
|  | rx_buf = efx_rx_buffer(rx_queue, index); | 
|  | efx_fini_rx_buffer(rx_queue, rx_buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unmap and release the pages in the recycle ring. Remove the ring. */ | 
|  | for (i = 0; i <= rx_queue->page_ptr_mask; i++) { | 
|  | struct page *page = rx_queue->page_ring[i]; | 
|  | struct efx_rx_page_state *state; | 
|  |  | 
|  | if (page == NULL) | 
|  | continue; | 
|  |  | 
|  | state = page_address(page); | 
|  | dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, | 
|  | PAGE_SIZE << efx->rx_buffer_order, | 
|  | DMA_FROM_DEVICE); | 
|  | put_page(page); | 
|  | } | 
|  | kfree(rx_queue->page_ring); | 
|  | rx_queue->page_ring = NULL; | 
|  | } | 
|  |  | 
|  | void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) | 
|  | { | 
|  | netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, | 
|  | "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); | 
|  |  | 
|  | efx_nic_remove_rx(rx_queue); | 
|  |  | 
|  | kfree(rx_queue->buffer); | 
|  | rx_queue->buffer = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | module_param(rx_refill_threshold, uint, 0444); | 
|  | MODULE_PARM_DESC(rx_refill_threshold, | 
|  | "RX descriptor ring refill threshold (%)"); | 
|  |  | 
|  | #ifdef CONFIG_RFS_ACCEL | 
|  |  | 
|  | static void efx_filter_rfs_work(struct work_struct *data) | 
|  | { | 
|  | struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, | 
|  | work); | 
|  | struct efx_nic *efx = netdev_priv(req->net_dev); | 
|  | struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); | 
|  | int slot_idx = req - efx->rps_slot; | 
|  | struct efx_arfs_rule *rule; | 
|  | u16 arfs_id = 0; | 
|  | int rc; | 
|  |  | 
|  | rc = efx->type->filter_insert(efx, &req->spec, true); | 
|  | if (rc >= 0) | 
|  | rc %= efx->type->max_rx_ip_filters; | 
|  | if (efx->rps_hash_table) { | 
|  | spin_lock_bh(&efx->rps_hash_lock); | 
|  | rule = efx_rps_hash_find(efx, &req->spec); | 
|  | /* The rule might have already gone, if someone else's request | 
|  | * for the same spec was already worked and then expired before | 
|  | * we got around to our work.  In that case we have nothing | 
|  | * tying us to an arfs_id, meaning that as soon as the filter | 
|  | * is considered for expiry it will be removed. | 
|  | */ | 
|  | if (rule) { | 
|  | if (rc < 0) | 
|  | rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; | 
|  | else | 
|  | rule->filter_id = rc; | 
|  | arfs_id = rule->arfs_id; | 
|  | } | 
|  | spin_unlock_bh(&efx->rps_hash_lock); | 
|  | } | 
|  | if (rc >= 0) { | 
|  | /* Remember this so we can check whether to expire the filter | 
|  | * later. | 
|  | */ | 
|  | mutex_lock(&efx->rps_mutex); | 
|  | channel->rps_flow_id[rc] = req->flow_id; | 
|  | ++channel->rfs_filters_added; | 
|  | mutex_unlock(&efx->rps_mutex); | 
|  |  | 
|  | if (req->spec.ether_type == htons(ETH_P_IP)) | 
|  | netif_info(efx, rx_status, efx->net_dev, | 
|  | "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", | 
|  | (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", | 
|  | req->spec.rem_host, ntohs(req->spec.rem_port), | 
|  | req->spec.loc_host, ntohs(req->spec.loc_port), | 
|  | req->rxq_index, req->flow_id, rc, arfs_id); | 
|  | else | 
|  | netif_info(efx, rx_status, efx->net_dev, | 
|  | "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", | 
|  | (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", | 
|  | req->spec.rem_host, ntohs(req->spec.rem_port), | 
|  | req->spec.loc_host, ntohs(req->spec.loc_port), | 
|  | req->rxq_index, req->flow_id, rc, arfs_id); | 
|  | } | 
|  |  | 
|  | /* Release references */ | 
|  | clear_bit(slot_idx, &efx->rps_slot_map); | 
|  | dev_put(req->net_dev); | 
|  | } | 
|  |  | 
|  | int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, | 
|  | u16 rxq_index, u32 flow_id) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct efx_async_filter_insertion *req; | 
|  | struct efx_arfs_rule *rule; | 
|  | struct flow_keys fk; | 
|  | int slot_idx; | 
|  | bool new; | 
|  | int rc; | 
|  |  | 
|  | /* find a free slot */ | 
|  | for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) | 
|  | if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) | 
|  | break; | 
|  | if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (flow_id == RPS_FLOW_ID_INVALID) { | 
|  | rc = -EINVAL; | 
|  | goto out_clear; | 
|  | } | 
|  |  | 
|  | if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { | 
|  | rc = -EPROTONOSUPPORT; | 
|  | goto out_clear; | 
|  | } | 
|  |  | 
|  | if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { | 
|  | rc = -EPROTONOSUPPORT; | 
|  | goto out_clear; | 
|  | } | 
|  | if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { | 
|  | rc = -EPROTONOSUPPORT; | 
|  | goto out_clear; | 
|  | } | 
|  |  | 
|  | req = efx->rps_slot + slot_idx; | 
|  | efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, | 
|  | efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, | 
|  | rxq_index); | 
|  | req->spec.match_flags = | 
|  | EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | | 
|  | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | | 
|  | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; | 
|  | req->spec.ether_type = fk.basic.n_proto; | 
|  | req->spec.ip_proto = fk.basic.ip_proto; | 
|  |  | 
|  | if (fk.basic.n_proto == htons(ETH_P_IP)) { | 
|  | req->spec.rem_host[0] = fk.addrs.v4addrs.src; | 
|  | req->spec.loc_host[0] = fk.addrs.v4addrs.dst; | 
|  | } else { | 
|  | memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, | 
|  | sizeof(struct in6_addr)); | 
|  | memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, | 
|  | sizeof(struct in6_addr)); | 
|  | } | 
|  |  | 
|  | req->spec.rem_port = fk.ports.src; | 
|  | req->spec.loc_port = fk.ports.dst; | 
|  |  | 
|  | if (efx->rps_hash_table) { | 
|  | /* Add it to ARFS hash table */ | 
|  | spin_lock(&efx->rps_hash_lock); | 
|  | rule = efx_rps_hash_add(efx, &req->spec, &new); | 
|  | if (!rule) { | 
|  | rc = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (new) | 
|  | rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; | 
|  | rc = rule->arfs_id; | 
|  | /* Skip if existing or pending filter already does the right thing */ | 
|  | if (!new && rule->rxq_index == rxq_index && | 
|  | rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) | 
|  | goto out_unlock; | 
|  | rule->rxq_index = rxq_index; | 
|  | rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; | 
|  | spin_unlock(&efx->rps_hash_lock); | 
|  | } else { | 
|  | /* Without an ARFS hash table, we just use arfs_id 0 for all | 
|  | * filters.  This means if multiple flows hash to the same | 
|  | * flow_id, all but the most recently touched will be eligible | 
|  | * for expiry. | 
|  | */ | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | /* Queue the request */ | 
|  | dev_hold(req->net_dev = net_dev); | 
|  | INIT_WORK(&req->work, efx_filter_rfs_work); | 
|  | req->rxq_index = rxq_index; | 
|  | req->flow_id = flow_id; | 
|  | schedule_work(&req->work); | 
|  | return rc; | 
|  | out_unlock: | 
|  | spin_unlock(&efx->rps_hash_lock); | 
|  | out_clear: | 
|  | clear_bit(slot_idx, &efx->rps_slot_map); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota) | 
|  | { | 
|  | bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); | 
|  | unsigned int channel_idx, index, size; | 
|  | u32 flow_id; | 
|  |  | 
|  | if (!mutex_trylock(&efx->rps_mutex)) | 
|  | return false; | 
|  | expire_one = efx->type->filter_rfs_expire_one; | 
|  | channel_idx = efx->rps_expire_channel; | 
|  | index = efx->rps_expire_index; | 
|  | size = efx->type->max_rx_ip_filters; | 
|  | while (quota--) { | 
|  | struct efx_channel *channel = efx_get_channel(efx, channel_idx); | 
|  | flow_id = channel->rps_flow_id[index]; | 
|  |  | 
|  | if (flow_id != RPS_FLOW_ID_INVALID && | 
|  | expire_one(efx, flow_id, index)) { | 
|  | netif_info(efx, rx_status, efx->net_dev, | 
|  | "expired filter %d [queue %u flow %u]\n", | 
|  | index, channel_idx, flow_id); | 
|  | channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; | 
|  | } | 
|  | if (++index == size) { | 
|  | if (++channel_idx == efx->n_channels) | 
|  | channel_idx = 0; | 
|  | index = 0; | 
|  | } | 
|  | } | 
|  | efx->rps_expire_channel = channel_idx; | 
|  | efx->rps_expire_index = index; | 
|  |  | 
|  | mutex_unlock(&efx->rps_mutex); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_RFS_ACCEL */ | 
|  |  | 
|  | /** | 
|  | * efx_filter_is_mc_recipient - test whether spec is a multicast recipient | 
|  | * @spec: Specification to test | 
|  | * | 
|  | * Return: %true if the specification is a non-drop RX filter that | 
|  | * matches a local MAC address I/G bit value of 1 or matches a local | 
|  | * IPv4 or IPv6 address value in the respective multicast address | 
|  | * range.  Otherwise %false. | 
|  | */ | 
|  | bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) | 
|  | { | 
|  | if (!(spec->flags & EFX_FILTER_FLAG_RX) || | 
|  | spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) | 
|  | return false; | 
|  |  | 
|  | if (spec->match_flags & | 
|  | (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && | 
|  | is_multicast_ether_addr(spec->loc_mac)) | 
|  | return true; | 
|  |  | 
|  | if ((spec->match_flags & | 
|  | (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == | 
|  | (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { | 
|  | if (spec->ether_type == htons(ETH_P_IP) && | 
|  | ipv4_is_multicast(spec->loc_host[0])) | 
|  | return true; | 
|  | if (spec->ether_type == htons(ETH_P_IPV6) && | 
|  | ((const u8 *)spec->loc_host)[0] == 0xff) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } |