|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright (C) 2001 Momchil Velikov | 
|  | * Portions Copyright (C) 2001 Christoph Hellwig | 
|  | * Copyright (C) 2005 SGI, Christoph Lameter | 
|  | * Copyright (C) 2006 Nick Piggin | 
|  | * Copyright (C) 2012 Konstantin Khlebnikov | 
|  | * Copyright (C) 2016 Intel, Matthew Wilcox | 
|  | * Copyright (C) 2016 Intel, Ross Zwisler | 
|  | */ | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/preempt.h>		/* in_interrupt() */ | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/xarray.h> | 
|  |  | 
|  | /* | 
|  | * Radix tree node cache. | 
|  | */ | 
|  | struct kmem_cache *radix_tree_node_cachep; | 
|  |  | 
|  | /* | 
|  | * The radix tree is variable-height, so an insert operation not only has | 
|  | * to build the branch to its corresponding item, it also has to build the | 
|  | * branch to existing items if the size has to be increased (by | 
|  | * radix_tree_extend). | 
|  | * | 
|  | * The worst case is a zero height tree with just a single item at index 0, | 
|  | * and then inserting an item at index ULONG_MAX. This requires 2 new branches | 
|  | * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. | 
|  | * Hence: | 
|  | */ | 
|  | #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) | 
|  |  | 
|  | /* | 
|  | * The IDR does not have to be as high as the radix tree since it uses | 
|  | * signed integers, not unsigned longs. | 
|  | */ | 
|  | #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1) | 
|  | #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \ | 
|  | RADIX_TREE_MAP_SHIFT)) | 
|  | #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1) | 
|  |  | 
|  | /* | 
|  | * Per-cpu pool of preloaded nodes | 
|  | */ | 
|  | DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { | 
|  | .lock = INIT_LOCAL_LOCK(lock), | 
|  | }; | 
|  | EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads); | 
|  |  | 
|  | static inline struct radix_tree_node *entry_to_node(void *ptr) | 
|  | { | 
|  | return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); | 
|  | } | 
|  |  | 
|  | static inline void *node_to_entry(void *ptr) | 
|  | { | 
|  | return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); | 
|  | } | 
|  |  | 
|  | #define RADIX_TREE_RETRY	XA_RETRY_ENTRY | 
|  |  | 
|  | static inline unsigned long | 
|  | get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot) | 
|  | { | 
|  | return parent ? slot - parent->slots : 0; | 
|  | } | 
|  |  | 
|  | static unsigned int radix_tree_descend(const struct radix_tree_node *parent, | 
|  | struct radix_tree_node **nodep, unsigned long index) | 
|  | { | 
|  | unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; | 
|  | void __rcu **entry = rcu_dereference_raw(parent->slots[offset]); | 
|  |  | 
|  | *nodep = (void *)entry; | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static inline gfp_t root_gfp_mask(const struct radix_tree_root *root) | 
|  | { | 
|  | return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK); | 
|  | } | 
|  |  | 
|  | static inline void tag_set(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | __set_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | __clear_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline int tag_get(const struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | return test_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_set(struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_clear_all(struct radix_tree_root *root) | 
|  | { | 
|  | root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1); | 
|  | } | 
|  |  | 
|  | static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline unsigned root_tags_get(const struct radix_tree_root *root) | 
|  | { | 
|  | return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline bool is_idr(const struct radix_tree_root *root) | 
|  | { | 
|  | return !!(root->xa_flags & ROOT_IS_IDR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if any slot in the node has this tag set. | 
|  | * Otherwise returns 0. | 
|  | */ | 
|  | static inline int any_tag_set(const struct radix_tree_node *node, | 
|  | unsigned int tag) | 
|  | { | 
|  | unsigned idx; | 
|  | for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { | 
|  | if (node->tags[tag][idx]) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag) | 
|  | { | 
|  | bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_find_next_bit - find the next set bit in a memory region | 
|  | * | 
|  | * @addr: The address to base the search on | 
|  | * @size: The bitmap size in bits | 
|  | * @offset: The bitnumber to start searching at | 
|  | * | 
|  | * Unrollable variant of find_next_bit() for constant size arrays. | 
|  | * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. | 
|  | * Returns next bit offset, or size if nothing found. | 
|  | */ | 
|  | static __always_inline unsigned long | 
|  | radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, | 
|  | unsigned long offset) | 
|  | { | 
|  | const unsigned long *addr = node->tags[tag]; | 
|  |  | 
|  | if (offset < RADIX_TREE_MAP_SIZE) { | 
|  | unsigned long tmp; | 
|  |  | 
|  | addr += offset / BITS_PER_LONG; | 
|  | tmp = *addr >> (offset % BITS_PER_LONG); | 
|  | if (tmp) | 
|  | return __ffs(tmp) + offset; | 
|  | offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); | 
|  | while (offset < RADIX_TREE_MAP_SIZE) { | 
|  | tmp = *++addr; | 
|  | if (tmp) | 
|  | return __ffs(tmp) + offset; | 
|  | offset += BITS_PER_LONG; | 
|  | } | 
|  | } | 
|  | return RADIX_TREE_MAP_SIZE; | 
|  | } | 
|  |  | 
|  | static unsigned int iter_offset(const struct radix_tree_iter *iter) | 
|  | { | 
|  | return iter->index & RADIX_TREE_MAP_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The maximum index which can be stored in a radix tree | 
|  | */ | 
|  | static inline unsigned long shift_maxindex(unsigned int shift) | 
|  | { | 
|  | return (RADIX_TREE_MAP_SIZE << shift) - 1; | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_maxindex(const struct radix_tree_node *node) | 
|  | { | 
|  | return shift_maxindex(node->shift); | 
|  | } | 
|  |  | 
|  | static unsigned long next_index(unsigned long index, | 
|  | const struct radix_tree_node *node, | 
|  | unsigned long offset) | 
|  | { | 
|  | return (index & ~node_maxindex(node)) + (offset << node->shift); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This assumes that the caller has performed appropriate preallocation, and | 
|  | * that the caller has pinned this thread of control to the current CPU. | 
|  | */ | 
|  | static struct radix_tree_node * | 
|  | radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent, | 
|  | struct radix_tree_root *root, | 
|  | unsigned int shift, unsigned int offset, | 
|  | unsigned int count, unsigned int nr_values) | 
|  | { | 
|  | struct radix_tree_node *ret = NULL; | 
|  |  | 
|  | /* | 
|  | * Preload code isn't irq safe and it doesn't make sense to use | 
|  | * preloading during an interrupt anyway as all the allocations have | 
|  | * to be atomic. So just do normal allocation when in interrupt. | 
|  | */ | 
|  | if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { | 
|  | struct radix_tree_preload *rtp; | 
|  |  | 
|  | /* | 
|  | * Even if the caller has preloaded, try to allocate from the | 
|  | * cache first for the new node to get accounted to the memory | 
|  | * cgroup. | 
|  | */ | 
|  | ret = kmem_cache_alloc(radix_tree_node_cachep, | 
|  | gfp_mask | __GFP_NOWARN); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Provided the caller has preloaded here, we will always | 
|  | * succeed in getting a node here (and never reach | 
|  | * kmem_cache_alloc) | 
|  | */ | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | if (rtp->nr) { | 
|  | ret = rtp->nodes; | 
|  | rtp->nodes = ret->parent; | 
|  | rtp->nr--; | 
|  | } | 
|  | /* | 
|  | * Update the allocation stack trace as this is more useful | 
|  | * for debugging. | 
|  | */ | 
|  | kmemleak_update_trace(ret); | 
|  | goto out; | 
|  | } | 
|  | ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); | 
|  | out: | 
|  | BUG_ON(radix_tree_is_internal_node(ret)); | 
|  | if (ret) { | 
|  | ret->shift = shift; | 
|  | ret->offset = offset; | 
|  | ret->count = count; | 
|  | ret->nr_values = nr_values; | 
|  | ret->parent = parent; | 
|  | ret->array = root; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void radix_tree_node_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct radix_tree_node *node = | 
|  | container_of(head, struct radix_tree_node, rcu_head); | 
|  |  | 
|  | /* | 
|  | * Must only free zeroed nodes into the slab.  We can be left with | 
|  | * non-NULL entries by radix_tree_free_nodes, so clear the entries | 
|  | * and tags here. | 
|  | */ | 
|  | memset(node->slots, 0, sizeof(node->slots)); | 
|  | memset(node->tags, 0, sizeof(node->tags)); | 
|  | INIT_LIST_HEAD(&node->private_list); | 
|  |  | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | radix_tree_node_free(struct radix_tree_node *node) | 
|  | { | 
|  | call_rcu(&node->rcu_head, radix_tree_node_rcu_free); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load up this CPU's radix_tree_node buffer with sufficient objects to | 
|  | * ensure that the addition of a single element in the tree cannot fail.  On | 
|  | * success, return zero, with preemption disabled.  On error, return -ENOMEM | 
|  | * with preemption not disabled. | 
|  | * | 
|  | * To make use of this facility, the radix tree must be initialised without | 
|  | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). | 
|  | */ | 
|  | static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr) | 
|  | { | 
|  | struct radix_tree_preload *rtp; | 
|  | struct radix_tree_node *node; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Nodes preloaded by one cgroup can be used by another cgroup, so | 
|  | * they should never be accounted to any particular memory cgroup. | 
|  | */ | 
|  | gfp_mask &= ~__GFP_ACCOUNT; | 
|  |  | 
|  | local_lock(&radix_tree_preloads.lock); | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | while (rtp->nr < nr) { | 
|  | local_unlock(&radix_tree_preloads.lock); | 
|  | node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); | 
|  | if (node == NULL) | 
|  | goto out; | 
|  | local_lock(&radix_tree_preloads.lock); | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | if (rtp->nr < nr) { | 
|  | node->parent = rtp->nodes; | 
|  | rtp->nodes = node; | 
|  | rtp->nr++; | 
|  | } else { | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load up this CPU's radix_tree_node buffer with sufficient objects to | 
|  | * ensure that the addition of a single element in the tree cannot fail.  On | 
|  | * success, return zero, with preemption disabled.  On error, return -ENOMEM | 
|  | * with preemption not disabled. | 
|  | * | 
|  | * To make use of this facility, the radix tree must be initialised without | 
|  | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). | 
|  | */ | 
|  | int radix_tree_preload(gfp_t gfp_mask) | 
|  | { | 
|  | /* Warn on non-sensical use... */ | 
|  | WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); | 
|  | return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_preload); | 
|  |  | 
|  | /* | 
|  | * The same as above function, except we don't guarantee preloading happens. | 
|  | * We do it, if we decide it helps. On success, return zero with preemption | 
|  | * disabled. On error, return -ENOMEM with preemption not disabled. | 
|  | */ | 
|  | int radix_tree_maybe_preload(gfp_t gfp_mask) | 
|  | { | 
|  | if (gfpflags_allow_blocking(gfp_mask)) | 
|  | return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); | 
|  | /* Preloading doesn't help anything with this gfp mask, skip it */ | 
|  | local_lock(&radix_tree_preloads.lock); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_maybe_preload); | 
|  |  | 
|  | static unsigned radix_tree_load_root(const struct radix_tree_root *root, | 
|  | struct radix_tree_node **nodep, unsigned long *maxindex) | 
|  | { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(root->xa_head); | 
|  |  | 
|  | *nodep = node; | 
|  |  | 
|  | if (likely(radix_tree_is_internal_node(node))) { | 
|  | node = entry_to_node(node); | 
|  | *maxindex = node_maxindex(node); | 
|  | return node->shift + RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | *maxindex = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Extend a radix tree so it can store key @index. | 
|  | */ | 
|  | static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, | 
|  | unsigned long index, unsigned int shift) | 
|  | { | 
|  | void *entry; | 
|  | unsigned int maxshift; | 
|  | int tag; | 
|  |  | 
|  | /* Figure out what the shift should be.  */ | 
|  | maxshift = shift; | 
|  | while (index > shift_maxindex(maxshift)) | 
|  | maxshift += RADIX_TREE_MAP_SHIFT; | 
|  |  | 
|  | entry = rcu_dereference_raw(root->xa_head); | 
|  | if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE))) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL, | 
|  | root, shift, 0, 1, 0); | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (is_idr(root)) { | 
|  | all_tag_set(node, IDR_FREE); | 
|  | if (!root_tag_get(root, IDR_FREE)) { | 
|  | tag_clear(node, IDR_FREE, 0); | 
|  | root_tag_set(root, IDR_FREE); | 
|  | } | 
|  | } else { | 
|  | /* Propagate the aggregated tag info to the new child */ | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { | 
|  | if (root_tag_get(root, tag)) | 
|  | tag_set(node, tag, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG_ON(shift > BITS_PER_LONG); | 
|  | if (radix_tree_is_internal_node(entry)) { | 
|  | entry_to_node(entry)->parent = node; | 
|  | } else if (xa_is_value(entry)) { | 
|  | /* Moving a value entry root->xa_head to a node */ | 
|  | node->nr_values = 1; | 
|  | } | 
|  | /* | 
|  | * entry was already in the radix tree, so we do not need | 
|  | * rcu_assign_pointer here | 
|  | */ | 
|  | node->slots[0] = (void __rcu *)entry; | 
|  | entry = node_to_entry(node); | 
|  | rcu_assign_pointer(root->xa_head, entry); | 
|  | shift += RADIX_TREE_MAP_SHIFT; | 
|  | } while (shift <= maxshift); | 
|  | out: | 
|  | return maxshift + RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_shrink    -    shrink radix tree to minimum height | 
|  | *	@root		radix tree root | 
|  | */ | 
|  | static inline bool radix_tree_shrink(struct radix_tree_root *root) | 
|  | { | 
|  | bool shrunk = false; | 
|  |  | 
|  | for (;;) { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(root->xa_head); | 
|  | struct radix_tree_node *child; | 
|  |  | 
|  | if (!radix_tree_is_internal_node(node)) | 
|  | break; | 
|  | node = entry_to_node(node); | 
|  |  | 
|  | /* | 
|  | * The candidate node has more than one child, or its child | 
|  | * is not at the leftmost slot, we cannot shrink. | 
|  | */ | 
|  | if (node->count != 1) | 
|  | break; | 
|  | child = rcu_dereference_raw(node->slots[0]); | 
|  | if (!child) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * For an IDR, we must not shrink entry 0 into the root in | 
|  | * case somebody calls idr_replace() with a pointer that | 
|  | * appears to be an internal entry | 
|  | */ | 
|  | if (!node->shift && is_idr(root)) | 
|  | break; | 
|  |  | 
|  | if (radix_tree_is_internal_node(child)) | 
|  | entry_to_node(child)->parent = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't need rcu_assign_pointer(), since we are simply | 
|  | * moving the node from one part of the tree to another: if it | 
|  | * was safe to dereference the old pointer to it | 
|  | * (node->slots[0]), it will be safe to dereference the new | 
|  | * one (root->xa_head) as far as dependent read barriers go. | 
|  | */ | 
|  | root->xa_head = (void __rcu *)child; | 
|  | if (is_idr(root) && !tag_get(node, IDR_FREE, 0)) | 
|  | root_tag_clear(root, IDR_FREE); | 
|  |  | 
|  | /* | 
|  | * We have a dilemma here. The node's slot[0] must not be | 
|  | * NULLed in case there are concurrent lookups expecting to | 
|  | * find the item. However if this was a bottom-level node, | 
|  | * then it may be subject to the slot pointer being visible | 
|  | * to callers dereferencing it. If item corresponding to | 
|  | * slot[0] is subsequently deleted, these callers would expect | 
|  | * their slot to become empty sooner or later. | 
|  | * | 
|  | * For example, lockless pagecache will look up a slot, deref | 
|  | * the page pointer, and if the page has 0 refcount it means it | 
|  | * was concurrently deleted from pagecache so try the deref | 
|  | * again. Fortunately there is already a requirement for logic | 
|  | * to retry the entire slot lookup -- the indirect pointer | 
|  | * problem (replacing direct root node with an indirect pointer | 
|  | * also results in a stale slot). So tag the slot as indirect | 
|  | * to force callers to retry. | 
|  | */ | 
|  | node->count = 0; | 
|  | if (!radix_tree_is_internal_node(child)) { | 
|  | node->slots[0] = (void __rcu *)RADIX_TREE_RETRY; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!list_empty(&node->private_list)); | 
|  | radix_tree_node_free(node); | 
|  | shrunk = true; | 
|  | } | 
|  |  | 
|  | return shrunk; | 
|  | } | 
|  |  | 
|  | static bool delete_node(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node) | 
|  | { | 
|  | bool deleted = false; | 
|  |  | 
|  | do { | 
|  | struct radix_tree_node *parent; | 
|  |  | 
|  | if (node->count) { | 
|  | if (node_to_entry(node) == | 
|  | rcu_dereference_raw(root->xa_head)) | 
|  | deleted |= radix_tree_shrink(root); | 
|  | return deleted; | 
|  | } | 
|  |  | 
|  | parent = node->parent; | 
|  | if (parent) { | 
|  | parent->slots[node->offset] = NULL; | 
|  | parent->count--; | 
|  | } else { | 
|  | /* | 
|  | * Shouldn't the tags already have all been cleared | 
|  | * by the caller? | 
|  | */ | 
|  | if (!is_idr(root)) | 
|  | root_tag_clear_all(root); | 
|  | root->xa_head = NULL; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!list_empty(&node->private_list)); | 
|  | radix_tree_node_free(node); | 
|  | deleted = true; | 
|  |  | 
|  | node = parent; | 
|  | } while (node); | 
|  |  | 
|  | return deleted; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_create	-	create a slot in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@nodep:		returns node | 
|  | *	@slotp:		returns slot | 
|  | * | 
|  | *	Create, if necessary, and return the node and slot for an item | 
|  | *	at position @index in the radix tree @root. | 
|  | * | 
|  | *	Until there is more than one item in the tree, no nodes are | 
|  | *	allocated and @root->xa_head is used as a direct slot instead of | 
|  | *	pointing to a node, in which case *@nodep will be NULL. | 
|  | * | 
|  | *	Returns -ENOMEM, or 0 for success. | 
|  | */ | 
|  | static int __radix_tree_create(struct radix_tree_root *root, | 
|  | unsigned long index, struct radix_tree_node **nodep, | 
|  | void __rcu ***slotp) | 
|  | { | 
|  | struct radix_tree_node *node = NULL, *child; | 
|  | void __rcu **slot = (void __rcu **)&root->xa_head; | 
|  | unsigned long maxindex; | 
|  | unsigned int shift, offset = 0; | 
|  | unsigned long max = index; | 
|  | gfp_t gfp = root_gfp_mask(root); | 
|  |  | 
|  | shift = radix_tree_load_root(root, &child, &maxindex); | 
|  |  | 
|  | /* Make sure the tree is high enough.  */ | 
|  | if (max > maxindex) { | 
|  | int error = radix_tree_extend(root, gfp, max, shift); | 
|  | if (error < 0) | 
|  | return error; | 
|  | shift = error; | 
|  | child = rcu_dereference_raw(root->xa_head); | 
|  | } | 
|  |  | 
|  | while (shift > 0) { | 
|  | shift -= RADIX_TREE_MAP_SHIFT; | 
|  | if (child == NULL) { | 
|  | /* Have to add a child node.  */ | 
|  | child = radix_tree_node_alloc(gfp, node, root, shift, | 
|  | offset, 0, 0); | 
|  | if (!child) | 
|  | return -ENOMEM; | 
|  | rcu_assign_pointer(*slot, node_to_entry(child)); | 
|  | if (node) | 
|  | node->count++; | 
|  | } else if (!radix_tree_is_internal_node(child)) | 
|  | break; | 
|  |  | 
|  | /* Go a level down */ | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, index); | 
|  | slot = &node->slots[offset]; | 
|  | } | 
|  |  | 
|  | if (nodep) | 
|  | *nodep = node; | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free any nodes below this node.  The tree is presumed to not need | 
|  | * shrinking, and any user data in the tree is presumed to not need a | 
|  | * destructor called on it.  If we need to add a destructor, we can | 
|  | * add that functionality later.  Note that we may not clear tags or | 
|  | * slots from the tree as an RCU walker may still have a pointer into | 
|  | * this subtree.  We could replace the entries with RADIX_TREE_RETRY, | 
|  | * but we'll still have to clear those in rcu_free. | 
|  | */ | 
|  | static void radix_tree_free_nodes(struct radix_tree_node *node) | 
|  | { | 
|  | unsigned offset = 0; | 
|  | struct radix_tree_node *child = entry_to_node(node); | 
|  |  | 
|  | for (;;) { | 
|  | void *entry = rcu_dereference_raw(child->slots[offset]); | 
|  | if (xa_is_node(entry) && child->shift) { | 
|  | child = entry_to_node(entry); | 
|  | offset = 0; | 
|  | continue; | 
|  | } | 
|  | offset++; | 
|  | while (offset == RADIX_TREE_MAP_SIZE) { | 
|  | struct radix_tree_node *old = child; | 
|  | offset = child->offset + 1; | 
|  | child = child->parent; | 
|  | WARN_ON_ONCE(!list_empty(&old->private_list)); | 
|  | radix_tree_node_free(old); | 
|  | if (old == entry_to_node(node)) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int insert_entries(struct radix_tree_node *node, | 
|  | void __rcu **slot, void *item, bool replace) | 
|  | { | 
|  | if (*slot) | 
|  | return -EEXIST; | 
|  | rcu_assign_pointer(*slot, item); | 
|  | if (node) { | 
|  | node->count++; | 
|  | if (xa_is_value(item)) | 
|  | node->nr_values++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_insert    -    insert into a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@item:		item to insert | 
|  | * | 
|  | *	Insert an item into the radix tree at position @index. | 
|  | */ | 
|  | int radix_tree_insert(struct radix_tree_root *root, unsigned long index, | 
|  | void *item) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void __rcu **slot; | 
|  | int error; | 
|  |  | 
|  | BUG_ON(radix_tree_is_internal_node(item)); | 
|  |  | 
|  | error = __radix_tree_create(root, index, &node, &slot); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = insert_entries(node, slot, item, false); | 
|  | if (error < 0) | 
|  | return error; | 
|  |  | 
|  | if (node) { | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | BUG_ON(tag_get(node, 0, offset)); | 
|  | BUG_ON(tag_get(node, 1, offset)); | 
|  | BUG_ON(tag_get(node, 2, offset)); | 
|  | } else { | 
|  | BUG_ON(root_tags_get(root)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_insert); | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_lookup	-	lookup an item in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@nodep:		returns node | 
|  | *	@slotp:		returns slot | 
|  | * | 
|  | *	Lookup and return the item at position @index in the radix | 
|  | *	tree @root. | 
|  | * | 
|  | *	Until there is more than one item in the tree, no nodes are | 
|  | *	allocated and @root->xa_head is used as a direct slot instead of | 
|  | *	pointing to a node, in which case *@nodep will be NULL. | 
|  | */ | 
|  | void *__radix_tree_lookup(const struct radix_tree_root *root, | 
|  | unsigned long index, struct radix_tree_node **nodep, | 
|  | void __rcu ***slotp) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  | void __rcu **slot; | 
|  |  | 
|  | restart: | 
|  | parent = NULL; | 
|  | slot = (void __rcu **)&root->xa_head; | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | slot = parent->slots + offset; | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | goto restart; | 
|  | if (parent->shift == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (nodep) | 
|  | *nodep = parent; | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_lookup_slot    -    lookup a slot in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Returns:  the slot corresponding to the position @index in the | 
|  | *	radix tree @root. This is useful for update-if-exists operations. | 
|  | * | 
|  | *	This function can be called under rcu_read_lock iff the slot is not | 
|  | *	modified by radix_tree_replace_slot, otherwise it must be called | 
|  | *	exclusive from other writers. Any dereference of the slot must be done | 
|  | *	using radix_tree_deref_slot. | 
|  | */ | 
|  | void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root, | 
|  | unsigned long index) | 
|  | { | 
|  | void __rcu **slot; | 
|  |  | 
|  | if (!__radix_tree_lookup(root, index, NULL, &slot)) | 
|  | return NULL; | 
|  | return slot; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_lookup_slot); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_lookup    -    perform lookup operation on a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Lookup the item at the position @index in the radix tree @root. | 
|  | * | 
|  | *	This function can be called under rcu_read_lock, however the caller | 
|  | *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free | 
|  | *	them safely). No RCU barriers are required to access or modify the | 
|  | *	returned item, however. | 
|  | */ | 
|  | void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | return __radix_tree_lookup(root, index, NULL, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_lookup); | 
|  |  | 
|  | static void replace_slot(void __rcu **slot, void *item, | 
|  | struct radix_tree_node *node, int count, int values) | 
|  | { | 
|  | if (node && (count || values)) { | 
|  | node->count += count; | 
|  | node->nr_values += values; | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(*slot, item); | 
|  | } | 
|  |  | 
|  | static bool node_tag_get(const struct radix_tree_root *root, | 
|  | const struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | if (node) | 
|  | return tag_get(node, tag, offset); | 
|  | return root_tag_get(root, tag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IDR users want to be able to store NULL in the tree, so if the slot isn't | 
|  | * free, don't adjust the count, even if it's transitioning between NULL and | 
|  | * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still | 
|  | * have empty bits, but it only stores NULL in slots when they're being | 
|  | * deleted. | 
|  | */ | 
|  | static int calculate_count(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, void __rcu **slot, | 
|  | void *item, void *old) | 
|  | { | 
|  | if (is_idr(root)) { | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | bool free = node_tag_get(root, node, IDR_FREE, offset); | 
|  | if (!free) | 
|  | return 0; | 
|  | if (!old) | 
|  | return 1; | 
|  | } | 
|  | return !!item - !!old; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __radix_tree_replace		- replace item in a slot | 
|  | * @root:		radix tree root | 
|  | * @node:		pointer to tree node | 
|  | * @slot:		pointer to slot in @node | 
|  | * @item:		new item to store in the slot. | 
|  | * | 
|  | * For use with __radix_tree_lookup().  Caller must hold tree write locked | 
|  | * across slot lookup and replacement. | 
|  | */ | 
|  | void __radix_tree_replace(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | void __rcu **slot, void *item) | 
|  | { | 
|  | void *old = rcu_dereference_raw(*slot); | 
|  | int values = !!xa_is_value(item) - !!xa_is_value(old); | 
|  | int count = calculate_count(root, node, slot, item, old); | 
|  |  | 
|  | /* | 
|  | * This function supports replacing value entries and | 
|  | * deleting entries, but that needs accounting against the | 
|  | * node unless the slot is root->xa_head. | 
|  | */ | 
|  | WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) && | 
|  | (count || values)); | 
|  | replace_slot(slot, item, node, count, values); | 
|  |  | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | delete_node(root, node); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_replace_slot	- replace item in a slot | 
|  | * @root:	radix tree root | 
|  | * @slot:	pointer to slot | 
|  | * @item:	new item to store in the slot. | 
|  | * | 
|  | * For use with radix_tree_lookup_slot() and | 
|  | * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked | 
|  | * across slot lookup and replacement. | 
|  | * | 
|  | * NOTE: This cannot be used to switch between non-entries (empty slots), | 
|  | * regular entries, and value entries, as that requires accounting | 
|  | * inside the radix tree node. When switching from one type of entry or | 
|  | * deleting, use __radix_tree_lookup() and __radix_tree_replace() or | 
|  | * radix_tree_iter_replace(). | 
|  | */ | 
|  | void radix_tree_replace_slot(struct radix_tree_root *root, | 
|  | void __rcu **slot, void *item) | 
|  | { | 
|  | __radix_tree_replace(root, NULL, slot, item); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_replace_slot); | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_replace - replace item in a slot | 
|  | * @root:	radix tree root | 
|  | * @slot:	pointer to slot | 
|  | * @item:	new item to store in the slot. | 
|  | * | 
|  | * For use with radix_tree_for_each_slot(). | 
|  | * Caller must hold tree write locked. | 
|  | */ | 
|  | void radix_tree_iter_replace(struct radix_tree_root *root, | 
|  | const struct radix_tree_iter *iter, | 
|  | void __rcu **slot, void *item) | 
|  | { | 
|  | __radix_tree_replace(root, iter->node, slot, item); | 
|  | } | 
|  |  | 
|  | static void node_tag_set(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | while (node) { | 
|  | if (tag_get(node, tag, offset)) | 
|  | return; | 
|  | tag_set(node, tag, offset); | 
|  | offset = node->offset; | 
|  | node = node->parent; | 
|  | } | 
|  |  | 
|  | if (!root_tag_get(root, tag)) | 
|  | root_tag_set(root, tag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tag_set - set a tag on a radix tree node | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@tag:		tag index | 
|  | * | 
|  | *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS) | 
|  | *	corresponding to @index in the radix tree.  From | 
|  | *	the root all the way down to the leaf node. | 
|  | * | 
|  | *	Returns the address of the tagged item.  Setting a tag on a not-present | 
|  | *	item is a bug. | 
|  | */ | 
|  | void *radix_tree_tag_set(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | BUG_ON(index > maxindex); | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | BUG_ON(!node); | 
|  |  | 
|  | if (!tag_get(parent, tag, offset)) | 
|  | tag_set(parent, tag, offset); | 
|  | } | 
|  |  | 
|  | /* set the root's tag bit */ | 
|  | if (!root_tag_get(root, tag)) | 
|  | root_tag_set(root, tag); | 
|  |  | 
|  | return node; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_set); | 
|  |  | 
|  | static void node_tag_clear(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | while (node) { | 
|  | if (!tag_get(node, tag, offset)) | 
|  | return; | 
|  | tag_clear(node, tag, offset); | 
|  | if (any_tag_set(node, tag)) | 
|  | return; | 
|  |  | 
|  | offset = node->offset; | 
|  | node = node->parent; | 
|  | } | 
|  |  | 
|  | /* clear the root's tag bit */ | 
|  | if (root_tag_get(root, tag)) | 
|  | root_tag_clear(root, tag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tag_clear - clear a tag on a radix tree node | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@tag:		tag index | 
|  | * | 
|  | *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) | 
|  | *	corresponding to @index in the radix tree.  If this causes | 
|  | *	the leaf node to have no tags set then clear the tag in the | 
|  | *	next-to-leaf node, etc. | 
|  | * | 
|  | *	Returns the address of the tagged item on success, else NULL.  ie: | 
|  | *	has the same return value and semantics as radix_tree_lookup(). | 
|  | */ | 
|  | void *radix_tree_tag_clear(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  | int offset; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  |  | 
|  | parent = NULL; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | } | 
|  |  | 
|  | if (node) | 
|  | node_tag_clear(root, parent, tag, offset); | 
|  |  | 
|  | return node; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_clear); | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_tag_clear - clear a tag on the current iterator entry | 
|  | * @root: radix tree root | 
|  | * @iter: iterator state | 
|  | * @tag: tag to clear | 
|  | */ | 
|  | void radix_tree_iter_tag_clear(struct radix_tree_root *root, | 
|  | const struct radix_tree_iter *iter, unsigned int tag) | 
|  | { | 
|  | node_tag_clear(root, iter->node, tag, iter_offset(iter)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_tag_get - get a tag on a radix tree node | 
|  | * @root:		radix tree root | 
|  | * @index:		index key | 
|  | * @tag:		tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | * Return values: | 
|  | * | 
|  | *  0: tag not present or not set | 
|  | *  1: tag set | 
|  | * | 
|  | * Note that the return value of this function may not be relied on, even if | 
|  | * the RCU lock is held, unless tag modification and node deletion are excluded | 
|  | * from concurrency. | 
|  | */ | 
|  | int radix_tree_tag_get(const struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  |  | 
|  | if (!root_tag_get(root, tag)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return 0; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  |  | 
|  | if (!tag_get(parent, tag, offset)) | 
|  | return 0; | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_get); | 
|  |  | 
|  | /* Construct iter->tags bit-mask from node->tags[tag] array */ | 
|  | static void set_iter_tags(struct radix_tree_iter *iter, | 
|  | struct radix_tree_node *node, unsigned offset, | 
|  | unsigned tag) | 
|  | { | 
|  | unsigned tag_long = offset / BITS_PER_LONG; | 
|  | unsigned tag_bit  = offset % BITS_PER_LONG; | 
|  |  | 
|  | if (!node) { | 
|  | iter->tags = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iter->tags = node->tags[tag][tag_long] >> tag_bit; | 
|  |  | 
|  | /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ | 
|  | if (tag_long < RADIX_TREE_TAG_LONGS - 1) { | 
|  | /* Pick tags from next element */ | 
|  | if (tag_bit) | 
|  | iter->tags |= node->tags[tag][tag_long + 1] << | 
|  | (BITS_PER_LONG - tag_bit); | 
|  | /* Clip chunk size, here only BITS_PER_LONG tags */ | 
|  | iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __rcu **radix_tree_iter_resume(void __rcu **slot, | 
|  | struct radix_tree_iter *iter) | 
|  | { | 
|  | slot++; | 
|  | iter->index = __radix_tree_iter_add(iter, 1); | 
|  | iter->next_index = iter->index; | 
|  | iter->tags = 0; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_iter_resume); | 
|  |  | 
|  | /** | 
|  | * radix_tree_next_chunk - find next chunk of slots for iteration | 
|  | * | 
|  | * @root:	radix tree root | 
|  | * @iter:	iterator state | 
|  | * @flags:	RADIX_TREE_ITER_* flags and tag index | 
|  | * Returns:	pointer to chunk first slot, or NULL if iteration is over | 
|  | */ | 
|  | void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, unsigned flags) | 
|  | { | 
|  | unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; | 
|  | struct radix_tree_node *node, *child; | 
|  | unsigned long index, offset, maxindex; | 
|  |  | 
|  | if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Catch next_index overflow after ~0UL. iter->index never overflows | 
|  | * during iterating; it can be zero only at the beginning. | 
|  | * And we cannot overflow iter->next_index in a single step, | 
|  | * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. | 
|  | * | 
|  | * This condition also used by radix_tree_next_slot() to stop | 
|  | * contiguous iterating, and forbid switching to the next chunk. | 
|  | */ | 
|  | index = iter->next_index; | 
|  | if (!index && iter->index) | 
|  | return NULL; | 
|  |  | 
|  | restart: | 
|  | radix_tree_load_root(root, &child, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  | if (!child) | 
|  | return NULL; | 
|  |  | 
|  | if (!radix_tree_is_internal_node(child)) { | 
|  | /* Single-slot tree */ | 
|  | iter->index = index; | 
|  | iter->next_index = maxindex + 1; | 
|  | iter->tags = 1; | 
|  | iter->node = NULL; | 
|  | return (void __rcu **)&root->xa_head; | 
|  | } | 
|  |  | 
|  | do { | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, index); | 
|  |  | 
|  | if ((flags & RADIX_TREE_ITER_TAGGED) ? | 
|  | !tag_get(node, tag, offset) : !child) { | 
|  | /* Hole detected */ | 
|  | if (flags & RADIX_TREE_ITER_CONTIG) | 
|  | return NULL; | 
|  |  | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) | 
|  | offset = radix_tree_find_next_bit(node, tag, | 
|  | offset + 1); | 
|  | else | 
|  | while (++offset	< RADIX_TREE_MAP_SIZE) { | 
|  | void *slot = rcu_dereference_raw( | 
|  | node->slots[offset]); | 
|  | if (slot) | 
|  | break; | 
|  | } | 
|  | index &= ~node_maxindex(node); | 
|  | index += offset << node->shift; | 
|  | /* Overflow after ~0UL */ | 
|  | if (!index) | 
|  | return NULL; | 
|  | if (offset == RADIX_TREE_MAP_SIZE) | 
|  | goto restart; | 
|  | child = rcu_dereference_raw(node->slots[offset]); | 
|  | } | 
|  |  | 
|  | if (!child) | 
|  | goto restart; | 
|  | if (child == RADIX_TREE_RETRY) | 
|  | break; | 
|  | } while (node->shift && radix_tree_is_internal_node(child)); | 
|  |  | 
|  | /* Update the iterator state */ | 
|  | iter->index = (index &~ node_maxindex(node)) | offset; | 
|  | iter->next_index = (index | node_maxindex(node)) + 1; | 
|  | iter->node = node; | 
|  |  | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) | 
|  | set_iter_tags(iter, node, offset, tag); | 
|  |  | 
|  | return node->slots + offset; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_next_chunk); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup - perform multiple lookup on a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items.  Places | 
|  | *	them at *@results and returns the number of items which were placed at | 
|  | *	*@results. | 
|  | * | 
|  | *	The implementation is naive. | 
|  | * | 
|  | *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under | 
|  | *	rcu_read_lock. In this case, rather than the returned results being | 
|  | *	an atomic snapshot of the tree at a single point in time, the | 
|  | *	semantics of an RCU protected gang lookup are as though multiple | 
|  | *	radix_tree_lookups have been issued in individual locks, and results | 
|  | *	stored in 'results'. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup(const struct radix_tree_root *root, void **results, | 
|  | unsigned long first_index, unsigned int max_items) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_slot(slot, root, &iter, first_index) { | 
|  | results[ret] = rcu_dereference_raw(*slot); | 
|  | if (!results[ret]) | 
|  | continue; | 
|  | if (radix_tree_is_internal_node(results[ret])) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree | 
|  | *	                             based on a tag | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items which | 
|  | *	have the tag indexed by @tag set.  Places the items at *@results and | 
|  | *	returns the number of items which were placed at *@results. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results, | 
|  | unsigned long first_index, unsigned int max_items, | 
|  | unsigned int tag) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { | 
|  | results[ret] = rcu_dereference_raw(*slot); | 
|  | if (!results[ret]) | 
|  | continue; | 
|  | if (radix_tree_is_internal_node(results[ret])) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_tag); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a | 
|  | *					  radix tree based on a tag | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items which | 
|  | *	have the tag indexed by @tag set.  Places the slots at *@results and | 
|  | *	returns the number of slots which were placed at *@results. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root, | 
|  | void __rcu ***results, unsigned long first_index, | 
|  | unsigned int max_items, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { | 
|  | results[ret] = slot; | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); | 
|  |  | 
|  | static bool __radix_tree_delete(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, void __rcu **slot) | 
|  | { | 
|  | void *old = rcu_dereference_raw(*slot); | 
|  | int values = xa_is_value(old) ? -1 : 0; | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | int tag; | 
|  |  | 
|  | if (is_idr(root)) | 
|  | node_tag_set(root, node, IDR_FREE, offset); | 
|  | else | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | node_tag_clear(root, node, tag, offset); | 
|  |  | 
|  | replace_slot(slot, NULL, node, -1, values); | 
|  | return node && delete_node(root, node); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_delete - delete the entry at this iterator position | 
|  | * @root: radix tree root | 
|  | * @iter: iterator state | 
|  | * @slot: pointer to slot | 
|  | * | 
|  | * Delete the entry at the position currently pointed to by the iterator. | 
|  | * This may result in the current node being freed; if it is, the iterator | 
|  | * is advanced so that it will not reference the freed memory.  This | 
|  | * function may be called without any locking if there are no other threads | 
|  | * which can access this tree. | 
|  | */ | 
|  | void radix_tree_iter_delete(struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, void __rcu **slot) | 
|  | { | 
|  | if (__radix_tree_delete(root, iter->node, slot)) | 
|  | iter->index = iter->next_index; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_iter_delete); | 
|  |  | 
|  | /** | 
|  | * radix_tree_delete_item - delete an item from a radix tree | 
|  | * @root: radix tree root | 
|  | * @index: index key | 
|  | * @item: expected item | 
|  | * | 
|  | * Remove @item at @index from the radix tree rooted at @root. | 
|  | * | 
|  | * Return: the deleted entry, or %NULL if it was not present | 
|  | * or the entry at the given @index was not @item. | 
|  | */ | 
|  | void *radix_tree_delete_item(struct radix_tree_root *root, | 
|  | unsigned long index, void *item) | 
|  | { | 
|  | struct radix_tree_node *node = NULL; | 
|  | void __rcu **slot = NULL; | 
|  | void *entry; | 
|  |  | 
|  | entry = __radix_tree_lookup(root, index, &node, &slot); | 
|  | if (!slot) | 
|  | return NULL; | 
|  | if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE, | 
|  | get_slot_offset(node, slot)))) | 
|  | return NULL; | 
|  |  | 
|  | if (item && entry != item) | 
|  | return NULL; | 
|  |  | 
|  | __radix_tree_delete(root, node, slot); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_delete_item); | 
|  |  | 
|  | /** | 
|  | * radix_tree_delete - delete an entry from a radix tree | 
|  | * @root: radix tree root | 
|  | * @index: index key | 
|  | * | 
|  | * Remove the entry at @index from the radix tree rooted at @root. | 
|  | * | 
|  | * Return: The deleted entry, or %NULL if it was not present. | 
|  | */ | 
|  | void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | return radix_tree_delete_item(root, index, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_delete); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tagged - test whether any items in the tree are tagged | 
|  | *	@root:		radix tree root | 
|  | *	@tag:		tag to test | 
|  | */ | 
|  | int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag) | 
|  | { | 
|  | return root_tag_get(root, tag); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tagged); | 
|  |  | 
|  | /** | 
|  | * idr_preload - preload for idr_alloc() | 
|  | * @gfp_mask: allocation mask to use for preloading | 
|  | * | 
|  | * Preallocate memory to use for the next call to idr_alloc().  This function | 
|  | * returns with preemption disabled.  It will be enabled by idr_preload_end(). | 
|  | */ | 
|  | void idr_preload(gfp_t gfp_mask) | 
|  | { | 
|  | if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE)) | 
|  | local_lock(&radix_tree_preloads.lock); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_preload); | 
|  |  | 
|  | void __rcu **idr_get_free(struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, gfp_t gfp, | 
|  | unsigned long max) | 
|  | { | 
|  | struct radix_tree_node *node = NULL, *child; | 
|  | void __rcu **slot = (void __rcu **)&root->xa_head; | 
|  | unsigned long maxindex, start = iter->next_index; | 
|  | unsigned int shift, offset = 0; | 
|  |  | 
|  | grow: | 
|  | shift = radix_tree_load_root(root, &child, &maxindex); | 
|  | if (!radix_tree_tagged(root, IDR_FREE)) | 
|  | start = max(start, maxindex + 1); | 
|  | if (start > max) | 
|  | return ERR_PTR(-ENOSPC); | 
|  |  | 
|  | if (start > maxindex) { | 
|  | int error = radix_tree_extend(root, gfp, start, shift); | 
|  | if (error < 0) | 
|  | return ERR_PTR(error); | 
|  | shift = error; | 
|  | child = rcu_dereference_raw(root->xa_head); | 
|  | } | 
|  | if (start == 0 && shift == 0) | 
|  | shift = RADIX_TREE_MAP_SHIFT; | 
|  |  | 
|  | while (shift) { | 
|  | shift -= RADIX_TREE_MAP_SHIFT; | 
|  | if (child == NULL) { | 
|  | /* Have to add a child node.  */ | 
|  | child = radix_tree_node_alloc(gfp, node, root, shift, | 
|  | offset, 0, 0); | 
|  | if (!child) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | all_tag_set(child, IDR_FREE); | 
|  | rcu_assign_pointer(*slot, node_to_entry(child)); | 
|  | if (node) | 
|  | node->count++; | 
|  | } else if (!radix_tree_is_internal_node(child)) | 
|  | break; | 
|  |  | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, start); | 
|  | if (!tag_get(node, IDR_FREE, offset)) { | 
|  | offset = radix_tree_find_next_bit(node, IDR_FREE, | 
|  | offset + 1); | 
|  | start = next_index(start, node, offset); | 
|  | if (start > max || start == 0) | 
|  | return ERR_PTR(-ENOSPC); | 
|  | while (offset == RADIX_TREE_MAP_SIZE) { | 
|  | offset = node->offset + 1; | 
|  | node = node->parent; | 
|  | if (!node) | 
|  | goto grow; | 
|  | shift = node->shift; | 
|  | } | 
|  | child = rcu_dereference_raw(node->slots[offset]); | 
|  | } | 
|  | slot = &node->slots[offset]; | 
|  | } | 
|  |  | 
|  | iter->index = start; | 
|  | if (node) | 
|  | iter->next_index = 1 + min(max, (start | node_maxindex(node))); | 
|  | else | 
|  | iter->next_index = 1; | 
|  | iter->node = node; | 
|  | set_iter_tags(iter, node, offset, IDR_FREE); | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idr_destroy - release all internal memory from an IDR | 
|  | * @idr: idr handle | 
|  | * | 
|  | * After this function is called, the IDR is empty, and may be reused or | 
|  | * the data structure containing it may be freed. | 
|  | * | 
|  | * A typical clean-up sequence for objects stored in an idr tree will use | 
|  | * idr_for_each() to free all objects, if necessary, then idr_destroy() to | 
|  | * free the memory used to keep track of those objects. | 
|  | */ | 
|  | void idr_destroy(struct idr *idr) | 
|  | { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head); | 
|  | if (radix_tree_is_internal_node(node)) | 
|  | radix_tree_free_nodes(node); | 
|  | idr->idr_rt.xa_head = NULL; | 
|  | root_tag_set(&idr->idr_rt, IDR_FREE); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_destroy); | 
|  |  | 
|  | static void | 
|  | radix_tree_node_ctor(void *arg) | 
|  | { | 
|  | struct radix_tree_node *node = arg; | 
|  |  | 
|  | memset(node, 0, sizeof(*node)); | 
|  | INIT_LIST_HEAD(&node->private_list); | 
|  | } | 
|  |  | 
|  | static int radix_tree_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct radix_tree_preload *rtp; | 
|  | struct radix_tree_node *node; | 
|  |  | 
|  | /* Free per-cpu pool of preloaded nodes */ | 
|  | rtp = &per_cpu(radix_tree_preloads, cpu); | 
|  | while (rtp->nr) { | 
|  | node = rtp->nodes; | 
|  | rtp->nodes = node->parent; | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | rtp->nr--; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init radix_tree_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32); | 
|  | BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK); | 
|  | BUILD_BUG_ON(XA_CHUNK_SIZE > 255); | 
|  | radix_tree_node_cachep = kmem_cache_create("radix_tree_node", | 
|  | sizeof(struct radix_tree_node), 0, | 
|  | SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, | 
|  | radix_tree_node_ctor); | 
|  | ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", | 
|  | NULL, radix_tree_cpu_dead); | 
|  | WARN_ON(ret < 0); | 
|  | } |