|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Renesas R-Car Gen2/Gen3 DMA Controller Driver | 
|  | * | 
|  | * Copyright (C) 2014-2019 Renesas Electronics Inc. | 
|  | * | 
|  | * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | #include "../dmaengine.h" | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer | 
|  | * @node: entry in the parent's chunks list | 
|  | * @src_addr: device source address | 
|  | * @dst_addr: device destination address | 
|  | * @size: transfer size in bytes | 
|  | */ | 
|  | struct rcar_dmac_xfer_chunk { | 
|  | struct list_head node; | 
|  |  | 
|  | dma_addr_t src_addr; | 
|  | dma_addr_t dst_addr; | 
|  | u32 size; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk | 
|  | * @sar: value of the SAR register (source address) | 
|  | * @dar: value of the DAR register (destination address) | 
|  | * @tcr: value of the TCR register (transfer count) | 
|  | */ | 
|  | struct rcar_dmac_hw_desc { | 
|  | u32 sar; | 
|  | u32 dar; | 
|  | u32 tcr; | 
|  | u32 reserved; | 
|  | } __attribute__((__packed__)); | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor | 
|  | * @async_tx: base DMA asynchronous transaction descriptor | 
|  | * @direction: direction of the DMA transfer | 
|  | * @xfer_shift: log2 of the transfer size | 
|  | * @chcr: value of the channel configuration register for this transfer | 
|  | * @node: entry in the channel's descriptors lists | 
|  | * @chunks: list of transfer chunks for this transfer | 
|  | * @running: the transfer chunk being currently processed | 
|  | * @nchunks: number of transfer chunks for this transfer | 
|  | * @hwdescs.use: whether the transfer descriptor uses hardware descriptors | 
|  | * @hwdescs.mem: hardware descriptors memory for the transfer | 
|  | * @hwdescs.dma: device address of the hardware descriptors memory | 
|  | * @hwdescs.size: size of the hardware descriptors in bytes | 
|  | * @size: transfer size in bytes | 
|  | * @cyclic: when set indicates that the DMA transfer is cyclic | 
|  | */ | 
|  | struct rcar_dmac_desc { | 
|  | struct dma_async_tx_descriptor async_tx; | 
|  | enum dma_transfer_direction direction; | 
|  | unsigned int xfer_shift; | 
|  | u32 chcr; | 
|  |  | 
|  | struct list_head node; | 
|  | struct list_head chunks; | 
|  | struct rcar_dmac_xfer_chunk *running; | 
|  | unsigned int nchunks; | 
|  |  | 
|  | struct { | 
|  | bool use; | 
|  | struct rcar_dmac_hw_desc *mem; | 
|  | dma_addr_t dma; | 
|  | size_t size; | 
|  | } hwdescs; | 
|  |  | 
|  | unsigned int size; | 
|  | bool cyclic; | 
|  | }; | 
|  |  | 
|  | #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx) | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_desc_page - One page worth of descriptors | 
|  | * @node: entry in the channel's pages list | 
|  | * @descs: array of DMA descriptors | 
|  | * @chunks: array of transfer chunk descriptors | 
|  | */ | 
|  | struct rcar_dmac_desc_page { | 
|  | struct list_head node; | 
|  |  | 
|  | union { | 
|  | struct rcar_dmac_desc descs[0]; | 
|  | struct rcar_dmac_xfer_chunk chunks[0]; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | #define RCAR_DMAC_DESCS_PER_PAGE					\ | 
|  | ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\ | 
|  | sizeof(struct rcar_dmac_desc)) | 
|  | #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\ | 
|  | ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\ | 
|  | sizeof(struct rcar_dmac_xfer_chunk)) | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_chan_slave - Slave configuration | 
|  | * @slave_addr: slave memory address | 
|  | * @xfer_size: size (in bytes) of hardware transfers | 
|  | */ | 
|  | struct rcar_dmac_chan_slave { | 
|  | phys_addr_t slave_addr; | 
|  | unsigned int xfer_size; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_chan_map - Map of slave device phys to dma address | 
|  | * @addr: slave dma address | 
|  | * @dir: direction of mapping | 
|  | * @slave: slave configuration that is mapped | 
|  | */ | 
|  | struct rcar_dmac_chan_map { | 
|  | dma_addr_t addr; | 
|  | enum dma_data_direction dir; | 
|  | struct rcar_dmac_chan_slave slave; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel | 
|  | * @chan: base DMA channel object | 
|  | * @iomem: channel I/O memory base | 
|  | * @index: index of this channel in the controller | 
|  | * @irq: channel IRQ | 
|  | * @src: slave memory address and size on the source side | 
|  | * @dst: slave memory address and size on the destination side | 
|  | * @mid_rid: hardware MID/RID for the DMA client using this channel | 
|  | * @lock: protects the channel CHCR register and the desc members | 
|  | * @desc.free: list of free descriptors | 
|  | * @desc.pending: list of pending descriptors (submitted with tx_submit) | 
|  | * @desc.active: list of active descriptors (activated with issue_pending) | 
|  | * @desc.done: list of completed descriptors | 
|  | * @desc.wait: list of descriptors waiting for an ack | 
|  | * @desc.running: the descriptor being processed (a member of the active list) | 
|  | * @desc.chunks_free: list of free transfer chunk descriptors | 
|  | * @desc.pages: list of pages used by allocated descriptors | 
|  | */ | 
|  | struct rcar_dmac_chan { | 
|  | struct dma_chan chan; | 
|  | void __iomem *iomem; | 
|  | unsigned int index; | 
|  | int irq; | 
|  |  | 
|  | struct rcar_dmac_chan_slave src; | 
|  | struct rcar_dmac_chan_slave dst; | 
|  | struct rcar_dmac_chan_map map; | 
|  | int mid_rid; | 
|  |  | 
|  | spinlock_t lock; | 
|  |  | 
|  | struct { | 
|  | struct list_head free; | 
|  | struct list_head pending; | 
|  | struct list_head active; | 
|  | struct list_head done; | 
|  | struct list_head wait; | 
|  | struct rcar_dmac_desc *running; | 
|  |  | 
|  | struct list_head chunks_free; | 
|  |  | 
|  | struct list_head pages; | 
|  | } desc; | 
|  | }; | 
|  |  | 
|  | #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan) | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac - R-Car Gen2 DMA Controller | 
|  | * @engine: base DMA engine object | 
|  | * @dev: the hardware device | 
|  | * @dmac_base: remapped base register block | 
|  | * @chan_base: remapped channel register block (optional) | 
|  | * @n_channels: number of available channels | 
|  | * @channels: array of DMAC channels | 
|  | * @channels_mask: bitfield of which DMA channels are managed by this driver | 
|  | * @modules: bitmask of client modules in use | 
|  | */ | 
|  | struct rcar_dmac { | 
|  | struct dma_device engine; | 
|  | struct device *dev; | 
|  | void __iomem *dmac_base; | 
|  | void __iomem *chan_base; | 
|  |  | 
|  | unsigned int n_channels; | 
|  | struct rcar_dmac_chan *channels; | 
|  | u32 channels_mask; | 
|  |  | 
|  | DECLARE_BITMAP(modules, 256); | 
|  | }; | 
|  |  | 
|  | #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine) | 
|  |  | 
|  | #define for_each_rcar_dmac_chan(i, dmac, chan)						\ | 
|  | for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++)	\ | 
|  | if (!((dmac)->channels_mask & BIT(i))) continue; else | 
|  |  | 
|  | /* | 
|  | * struct rcar_dmac_of_data - This driver's OF data | 
|  | * @chan_offset_base: DMAC channels base offset | 
|  | * @chan_offset_stride: DMAC channels offset stride | 
|  | */ | 
|  | struct rcar_dmac_of_data { | 
|  | u32 chan_offset_base; | 
|  | u32 chan_offset_stride; | 
|  | }; | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Registers | 
|  | */ | 
|  |  | 
|  | #define RCAR_DMAISTA			0x0020 | 
|  | #define RCAR_DMASEC			0x0030 | 
|  | #define RCAR_DMAOR			0x0060 | 
|  | #define RCAR_DMAOR_PRI_FIXED		(0 << 8) | 
|  | #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8) | 
|  | #define RCAR_DMAOR_AE			(1 << 2) | 
|  | #define RCAR_DMAOR_DME			(1 << 0) | 
|  | #define RCAR_DMACHCLR			0x0080	/* Not on R-Car V3U */ | 
|  | #define RCAR_DMADPSEC			0x00a0 | 
|  |  | 
|  | #define RCAR_DMASAR			0x0000 | 
|  | #define RCAR_DMADAR			0x0004 | 
|  | #define RCAR_DMATCR			0x0008 | 
|  | #define RCAR_DMATCR_MASK		0x00ffffff | 
|  | #define RCAR_DMATSR			0x0028 | 
|  | #define RCAR_DMACHCR			0x000c | 
|  | #define RCAR_DMACHCR_CAE		(1 << 31) | 
|  | #define RCAR_DMACHCR_CAIE		(1 << 30) | 
|  | #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28) | 
|  | #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28) | 
|  | #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28) | 
|  | #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28) | 
|  | #define RCAR_DMACHCR_RPT_SAR		(1 << 27) | 
|  | #define RCAR_DMACHCR_RPT_DAR		(1 << 26) | 
|  | #define RCAR_DMACHCR_RPT_TCR		(1 << 25) | 
|  | #define RCAR_DMACHCR_DPB		(1 << 22) | 
|  | #define RCAR_DMACHCR_DSE		(1 << 19) | 
|  | #define RCAR_DMACHCR_DSIE		(1 << 18) | 
|  | #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3)) | 
|  | #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3)) | 
|  | #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3)) | 
|  | #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3)) | 
|  | #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3)) | 
|  | #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3)) | 
|  | #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3)) | 
|  | #define RCAR_DMACHCR_DM_FIXED		(0 << 14) | 
|  | #define RCAR_DMACHCR_DM_INC		(1 << 14) | 
|  | #define RCAR_DMACHCR_DM_DEC		(2 << 14) | 
|  | #define RCAR_DMACHCR_SM_FIXED		(0 << 12) | 
|  | #define RCAR_DMACHCR_SM_INC		(1 << 12) | 
|  | #define RCAR_DMACHCR_SM_DEC		(2 << 12) | 
|  | #define RCAR_DMACHCR_RS_AUTO		(4 << 8) | 
|  | #define RCAR_DMACHCR_RS_DMARS		(8 << 8) | 
|  | #define RCAR_DMACHCR_IE			(1 << 2) | 
|  | #define RCAR_DMACHCR_TE			(1 << 1) | 
|  | #define RCAR_DMACHCR_DE			(1 << 0) | 
|  | #define RCAR_DMATCRB			0x0018 | 
|  | #define RCAR_DMATSRB			0x0038 | 
|  | #define RCAR_DMACHCRB			0x001c | 
|  | #define RCAR_DMACHCRB_DCNT(n)		((n) << 24) | 
|  | #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16) | 
|  | #define RCAR_DMACHCRB_DPTR_SHIFT	16 | 
|  | #define RCAR_DMACHCRB_DRST		(1 << 15) | 
|  | #define RCAR_DMACHCRB_DTS		(1 << 8) | 
|  | #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4) | 
|  | #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4) | 
|  | #define RCAR_DMACHCRB_PRI(n)		((n) << 0) | 
|  | #define RCAR_DMARS			0x0040 | 
|  | #define RCAR_DMABUFCR			0x0048 | 
|  | #define RCAR_DMABUFCR_MBU(n)		((n) << 16) | 
|  | #define RCAR_DMABUFCR_ULB(n)		((n) << 0) | 
|  | #define RCAR_DMADPBASE			0x0050 | 
|  | #define RCAR_DMADPBASE_MASK		0xfffffff0 | 
|  | #define RCAR_DMADPBASE_SEL		(1 << 0) | 
|  | #define RCAR_DMADPCR			0x0054 | 
|  | #define RCAR_DMADPCR_DIPT(n)		((n) << 24) | 
|  | #define RCAR_DMAFIXSAR			0x0010 | 
|  | #define RCAR_DMAFIXDAR			0x0014 | 
|  | #define RCAR_DMAFIXDPBASE		0x0060 | 
|  |  | 
|  | /* For R-Car V3U */ | 
|  | #define RCAR_V3U_DMACHCLR		0x0100 | 
|  |  | 
|  | /* Hardcode the MEMCPY transfer size to 4 bytes. */ | 
|  | #define RCAR_DMAC_MEMCPY_XFER_SIZE	4 | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Device access | 
|  | */ | 
|  |  | 
|  | static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data) | 
|  | { | 
|  | if (reg == RCAR_DMAOR) | 
|  | writew(data, dmac->dmac_base + reg); | 
|  | else | 
|  | writel(data, dmac->dmac_base + reg); | 
|  | } | 
|  |  | 
|  | static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg) | 
|  | { | 
|  | if (reg == RCAR_DMAOR) | 
|  | return readw(dmac->dmac_base + reg); | 
|  | else | 
|  | return readl(dmac->dmac_base + reg); | 
|  | } | 
|  |  | 
|  | static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg) | 
|  | { | 
|  | if (reg == RCAR_DMARS) | 
|  | return readw(chan->iomem + reg); | 
|  | else | 
|  | return readl(chan->iomem + reg); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data) | 
|  | { | 
|  | if (reg == RCAR_DMARS) | 
|  | writew(data, chan->iomem + reg); | 
|  | else | 
|  | writel(data, chan->iomem + reg); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_chan_clear(struct rcar_dmac *dmac, | 
|  | struct rcar_dmac_chan *chan) | 
|  | { | 
|  | if (dmac->chan_base) | 
|  | rcar_dmac_chan_write(chan, RCAR_V3U_DMACHCLR, 1); | 
|  | else | 
|  | rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index)); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac) | 
|  | { | 
|  | struct rcar_dmac_chan *chan; | 
|  | unsigned int i; | 
|  |  | 
|  | if (dmac->chan_base) { | 
|  | for_each_rcar_dmac_chan(i, dmac, chan) | 
|  | rcar_dmac_chan_write(chan, RCAR_V3U_DMACHCLR, 1); | 
|  | } else { | 
|  | rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Initialization and configuration | 
|  | */ | 
|  |  | 
|  | static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); | 
|  |  | 
|  | return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_desc *desc = chan->desc.running; | 
|  | u32 chcr = desc->chcr; | 
|  |  | 
|  | WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan)); | 
|  |  | 
|  | if (chan->mid_rid >= 0) | 
|  | rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid); | 
|  |  | 
|  | if (desc->hwdescs.use) { | 
|  | struct rcar_dmac_xfer_chunk *chunk = | 
|  | list_first_entry(&desc->chunks, | 
|  | struct rcar_dmac_xfer_chunk, node); | 
|  |  | 
|  | dev_dbg(chan->chan.device->dev, | 
|  | "chan%u: queue desc %p: %u@%pad\n", | 
|  | chan->index, desc, desc->nchunks, &desc->hwdescs.dma); | 
|  |  | 
|  | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
|  | rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR, | 
|  | chunk->src_addr >> 32); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR, | 
|  | chunk->dst_addr >> 32); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE, | 
|  | desc->hwdescs.dma >> 32); | 
|  | #endif | 
|  | rcar_dmac_chan_write(chan, RCAR_DMADPBASE, | 
|  | (desc->hwdescs.dma & 0xfffffff0) | | 
|  | RCAR_DMADPBASE_SEL); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMACHCRB, | 
|  | RCAR_DMACHCRB_DCNT(desc->nchunks - 1) | | 
|  | RCAR_DMACHCRB_DRST); | 
|  |  | 
|  | /* | 
|  | * Errata: When descriptor memory is accessed through an IOMMU | 
|  | * the DMADAR register isn't initialized automatically from the | 
|  | * first descriptor at beginning of transfer by the DMAC like it | 
|  | * should. Initialize it manually with the destination address | 
|  | * of the first chunk. | 
|  | */ | 
|  | rcar_dmac_chan_write(chan, RCAR_DMADAR, | 
|  | chunk->dst_addr & 0xffffffff); | 
|  |  | 
|  | /* | 
|  | * Program the descriptor stage interrupt to occur after the end | 
|  | * of the first stage. | 
|  | */ | 
|  | rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1)); | 
|  |  | 
|  | chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR | 
|  | |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB; | 
|  |  | 
|  | /* | 
|  | * If the descriptor isn't cyclic enable normal descriptor mode | 
|  | * and the transfer completion interrupt. | 
|  | */ | 
|  | if (!desc->cyclic) | 
|  | chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE; | 
|  | /* | 
|  | * If the descriptor is cyclic and has a callback enable the | 
|  | * descriptor stage interrupt in infinite repeat mode. | 
|  | */ | 
|  | else if (desc->async_tx.callback) | 
|  | chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE; | 
|  | /* | 
|  | * Otherwise just select infinite repeat mode without any | 
|  | * interrupt. | 
|  | */ | 
|  | else | 
|  | chcr |= RCAR_DMACHCR_DPM_INFINITE; | 
|  | } else { | 
|  | struct rcar_dmac_xfer_chunk *chunk = desc->running; | 
|  |  | 
|  | dev_dbg(chan->chan.device->dev, | 
|  | "chan%u: queue chunk %p: %u@%pad -> %pad\n", | 
|  | chan->index, chunk, chunk->size, &chunk->src_addr, | 
|  | &chunk->dst_addr); | 
|  |  | 
|  | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
|  | rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR, | 
|  | chunk->src_addr >> 32); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR, | 
|  | chunk->dst_addr >> 32); | 
|  | #endif | 
|  | rcar_dmac_chan_write(chan, RCAR_DMASAR, | 
|  | chunk->src_addr & 0xffffffff); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMADAR, | 
|  | chunk->dst_addr & 0xffffffff); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMATCR, | 
|  | chunk->size >> desc->xfer_shift); | 
|  |  | 
|  | chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE; | 
|  | } | 
|  |  | 
|  | rcar_dmac_chan_write(chan, RCAR_DMACHCR, | 
|  | chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE); | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_init(struct rcar_dmac *dmac) | 
|  | { | 
|  | u16 dmaor; | 
|  |  | 
|  | /* Clear all channels and enable the DMAC globally. */ | 
|  | rcar_dmac_chan_clear_all(dmac); | 
|  | rcar_dmac_write(dmac, RCAR_DMAOR, | 
|  | RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME); | 
|  |  | 
|  | dmaor = rcar_dmac_read(dmac, RCAR_DMAOR); | 
|  | if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) { | 
|  | dev_warn(dmac->dev, "DMAOR initialization failed.\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Descriptors submission | 
|  | */ | 
|  |  | 
|  | static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan); | 
|  | struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx); | 
|  | unsigned long flags; | 
|  | dma_cookie_t cookie; | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  |  | 
|  | cookie = dma_cookie_assign(tx); | 
|  |  | 
|  | dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n", | 
|  | chan->index, tx->cookie, desc); | 
|  |  | 
|  | list_add_tail(&desc->node, &chan->desc.pending); | 
|  | desc->running = list_first_entry(&desc->chunks, | 
|  | struct rcar_dmac_xfer_chunk, node); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Descriptors allocation and free | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors | 
|  | * @chan: the DMA channel | 
|  | * @gfp: allocation flags | 
|  | */ | 
|  | static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp) | 
|  | { | 
|  | struct rcar_dmac_desc_page *page; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(list); | 
|  | unsigned int i; | 
|  |  | 
|  | page = (void *)get_zeroed_page(gfp); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) { | 
|  | struct rcar_dmac_desc *desc = &page->descs[i]; | 
|  |  | 
|  | dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); | 
|  | desc->async_tx.tx_submit = rcar_dmac_tx_submit; | 
|  | INIT_LIST_HEAD(&desc->chunks); | 
|  |  | 
|  | list_add_tail(&desc->node, &list); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | list_splice_tail(&list, &chan->desc.free); | 
|  | list_add_tail(&page->node, &chan->desc.pages); | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_dmac_desc_put - Release a DMA transfer descriptor | 
|  | * @chan: the DMA channel | 
|  | * @desc: the descriptor | 
|  | * | 
|  | * Put the descriptor and its transfer chunk descriptors back in the channel's | 
|  | * free descriptors lists. The descriptor's chunks list will be reinitialized to | 
|  | * an empty list as a result. | 
|  | * | 
|  | * The descriptor must have been removed from the channel's lists before calling | 
|  | * this function. | 
|  | */ | 
|  | static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan, | 
|  | struct rcar_dmac_desc *desc) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free); | 
|  | list_add(&desc->node, &chan->desc.free); | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_desc *desc, *_desc; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | /* | 
|  | * We have to temporarily move all descriptors from the wait list to a | 
|  | * local list as iterating over the wait list, even with | 
|  | * list_for_each_entry_safe, isn't safe if we release the channel lock | 
|  | * around the rcar_dmac_desc_put() call. | 
|  | */ | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | list_splice_init(&chan->desc.wait, &list); | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(desc, _desc, &list, node) { | 
|  | if (async_tx_test_ack(&desc->async_tx)) { | 
|  | list_del(&desc->node); | 
|  | rcar_dmac_desc_put(chan, desc); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (list_empty(&list)) | 
|  | return; | 
|  |  | 
|  | /* Put the remaining descriptors back in the wait list. */ | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | list_splice(&list, &chan->desc.wait); | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer | 
|  | * @chan: the DMA channel | 
|  | * | 
|  | * Locking: This function must be called in a non-atomic context. | 
|  | * | 
|  | * Return: A pointer to the allocated descriptor or NULL if no descriptor can | 
|  | * be allocated. | 
|  | */ | 
|  | static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_desc *desc; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | /* Recycle acked descriptors before attempting allocation. */ | 
|  | rcar_dmac_desc_recycle_acked(chan); | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  |  | 
|  | while (list_empty(&chan->desc.free)) { | 
|  | /* | 
|  | * No free descriptors, allocate a page worth of them and try | 
|  | * again, as someone else could race us to get the newly | 
|  | * allocated descriptors. If the allocation fails return an | 
|  | * error. | 
|  | */ | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  | ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT); | 
|  | if (ret < 0) | 
|  | return NULL; | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | } | 
|  |  | 
|  | desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node); | 
|  | list_del(&desc->node); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | return desc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks | 
|  | * @chan: the DMA channel | 
|  | * @gfp: allocation flags | 
|  | */ | 
|  | static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp) | 
|  | { | 
|  | struct rcar_dmac_desc_page *page; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(list); | 
|  | unsigned int i; | 
|  |  | 
|  | page = (void *)get_zeroed_page(gfp); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) { | 
|  | struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i]; | 
|  |  | 
|  | list_add_tail(&chunk->node, &list); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | list_splice_tail(&list, &chan->desc.chunks_free); | 
|  | list_add_tail(&page->node, &chan->desc.pages); | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer | 
|  | * @chan: the DMA channel | 
|  | * | 
|  | * Locking: This function must be called in a non-atomic context. | 
|  | * | 
|  | * Return: A pointer to the allocated transfer chunk descriptor or NULL if no | 
|  | * descriptor can be allocated. | 
|  | */ | 
|  | static struct rcar_dmac_xfer_chunk * | 
|  | rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_xfer_chunk *chunk; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  |  | 
|  | while (list_empty(&chan->desc.chunks_free)) { | 
|  | /* | 
|  | * No free descriptors, allocate a page worth of them and try | 
|  | * again, as someone else could race us to get the newly | 
|  | * allocated descriptors. If the allocation fails return an | 
|  | * error. | 
|  | */ | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  | ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT); | 
|  | if (ret < 0) | 
|  | return NULL; | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  | } | 
|  |  | 
|  | chunk = list_first_entry(&chan->desc.chunks_free, | 
|  | struct rcar_dmac_xfer_chunk, node); | 
|  | list_del(&chunk->node); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan, | 
|  | struct rcar_dmac_desc *desc, size_t size) | 
|  | { | 
|  | /* | 
|  | * dma_alloc_coherent() allocates memory in page size increments. To | 
|  | * avoid reallocating the hardware descriptors when the allocated size | 
|  | * wouldn't change align the requested size to a multiple of the page | 
|  | * size. | 
|  | */ | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | if (desc->hwdescs.size == size) | 
|  | return; | 
|  |  | 
|  | if (desc->hwdescs.mem) { | 
|  | dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size, | 
|  | desc->hwdescs.mem, desc->hwdescs.dma); | 
|  | desc->hwdescs.mem = NULL; | 
|  | desc->hwdescs.size = 0; | 
|  | } | 
|  |  | 
|  | if (!size) | 
|  | return; | 
|  |  | 
|  | desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size, | 
|  | &desc->hwdescs.dma, GFP_NOWAIT); | 
|  | if (!desc->hwdescs.mem) | 
|  | return; | 
|  |  | 
|  | desc->hwdescs.size = size; | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan, | 
|  | struct rcar_dmac_desc *desc) | 
|  | { | 
|  | struct rcar_dmac_xfer_chunk *chunk; | 
|  | struct rcar_dmac_hw_desc *hwdesc; | 
|  |  | 
|  | rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc)); | 
|  |  | 
|  | hwdesc = desc->hwdescs.mem; | 
|  | if (!hwdesc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | list_for_each_entry(chunk, &desc->chunks, node) { | 
|  | hwdesc->sar = chunk->src_addr; | 
|  | hwdesc->dar = chunk->dst_addr; | 
|  | hwdesc->tcr = chunk->size >> desc->xfer_shift; | 
|  | hwdesc++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Stop and reset | 
|  | */ | 
|  | static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | u32 chcr; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Ensure that the setting of the DE bit is actually 0 after | 
|  | * clearing it. | 
|  | */ | 
|  | for (i = 0; i < 1024; i++) { | 
|  | chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); | 
|  | if (!(chcr & RCAR_DMACHCR_DE)) | 
|  | return; | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | dev_err(chan->chan.device->dev, "CHCR DE check error\n"); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); | 
|  |  | 
|  | /* set DE=0 and flush remaining data */ | 
|  | rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE)); | 
|  |  | 
|  | /* make sure all remaining data was flushed */ | 
|  | rcar_dmac_chcr_de_barrier(chan); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); | 
|  |  | 
|  | chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE | | 
|  | RCAR_DMACHCR_TE | RCAR_DMACHCR_DE | | 
|  | RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE); | 
|  | rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr); | 
|  | rcar_dmac_chcr_de_barrier(chan); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_desc *desc, *_desc; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(descs); | 
|  |  | 
|  | spin_lock_irqsave(&chan->lock, flags); | 
|  |  | 
|  | /* Move all non-free descriptors to the local lists. */ | 
|  | list_splice_init(&chan->desc.pending, &descs); | 
|  | list_splice_init(&chan->desc.active, &descs); | 
|  | list_splice_init(&chan->desc.done, &descs); | 
|  | list_splice_init(&chan->desc.wait, &descs); | 
|  |  | 
|  | chan->desc.running = NULL; | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->lock, flags); | 
|  |  | 
|  | list_for_each_entry_safe(desc, _desc, &descs, node) { | 
|  | list_del(&desc->node); | 
|  | rcar_dmac_desc_put(chan, desc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac) | 
|  | { | 
|  | struct rcar_dmac_chan *chan; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Stop all channels. */ | 
|  | for_each_rcar_dmac_chan(i, dmac, chan) { | 
|  | /* Stop and reinitialize the channel. */ | 
|  | spin_lock_irq(&chan->lock); | 
|  | rcar_dmac_chan_halt(chan); | 
|  | spin_unlock_irq(&chan->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_chan_pause(struct dma_chan *chan) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  |  | 
|  | spin_lock_irqsave(&rchan->lock, flags); | 
|  | rcar_dmac_clear_chcr_de(rchan); | 
|  | spin_unlock_irqrestore(&rchan->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Descriptors preparation | 
|  | */ | 
|  |  | 
|  | static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan, | 
|  | struct rcar_dmac_desc *desc) | 
|  | { | 
|  | static const u32 chcr_ts[] = { | 
|  | RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B, | 
|  | RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B, | 
|  | RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B, | 
|  | RCAR_DMACHCR_TS_64B, | 
|  | }; | 
|  |  | 
|  | unsigned int xfer_size; | 
|  | u32 chcr; | 
|  |  | 
|  | switch (desc->direction) { | 
|  | case DMA_DEV_TO_MEM: | 
|  | chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED | 
|  | | RCAR_DMACHCR_RS_DMARS; | 
|  | xfer_size = chan->src.xfer_size; | 
|  | break; | 
|  |  | 
|  | case DMA_MEM_TO_DEV: | 
|  | chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC | 
|  | | RCAR_DMACHCR_RS_DMARS; | 
|  | xfer_size = chan->dst.xfer_size; | 
|  | break; | 
|  |  | 
|  | case DMA_MEM_TO_MEM: | 
|  | default: | 
|  | chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC | 
|  | | RCAR_DMACHCR_RS_AUTO; | 
|  | xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | desc->xfer_shift = ilog2(xfer_size); | 
|  | desc->chcr = chcr | chcr_ts[desc->xfer_shift]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list | 
|  | * | 
|  | * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also | 
|  | * converted to scatter-gather to guarantee consistent locking and a correct | 
|  | * list manipulation. For slave DMA direction carries the usual meaning, and, | 
|  | * logically, the SG list is RAM and the addr variable contains slave address, | 
|  | * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM | 
|  | * and the SG list contains only one element and points at the source buffer. | 
|  | */ | 
|  | static struct dma_async_tx_descriptor * | 
|  | rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, dma_addr_t dev_addr, | 
|  | enum dma_transfer_direction dir, unsigned long dma_flags, | 
|  | bool cyclic) | 
|  | { | 
|  | struct rcar_dmac_xfer_chunk *chunk; | 
|  | struct rcar_dmac_desc *desc; | 
|  | struct scatterlist *sg; | 
|  | unsigned int nchunks = 0; | 
|  | unsigned int max_chunk_size; | 
|  | unsigned int full_size = 0; | 
|  | bool cross_boundary = false; | 
|  | unsigned int i; | 
|  | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
|  | u32 high_dev_addr; | 
|  | u32 high_mem_addr; | 
|  | #endif | 
|  |  | 
|  | desc = rcar_dmac_desc_get(chan); | 
|  | if (!desc) | 
|  | return NULL; | 
|  |  | 
|  | desc->async_tx.flags = dma_flags; | 
|  | desc->async_tx.cookie = -EBUSY; | 
|  |  | 
|  | desc->cyclic = cyclic; | 
|  | desc->direction = dir; | 
|  |  | 
|  | rcar_dmac_chan_configure_desc(chan, desc); | 
|  |  | 
|  | max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift; | 
|  |  | 
|  | /* | 
|  | * Allocate and fill the transfer chunk descriptors. We own the only | 
|  | * reference to the DMA descriptor, there's no need for locking. | 
|  | */ | 
|  | for_each_sg(sgl, sg, sg_len, i) { | 
|  | dma_addr_t mem_addr = sg_dma_address(sg); | 
|  | unsigned int len = sg_dma_len(sg); | 
|  |  | 
|  | full_size += len; | 
|  |  | 
|  | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
|  | if (i == 0) { | 
|  | high_dev_addr = dev_addr >> 32; | 
|  | high_mem_addr = mem_addr >> 32; | 
|  | } | 
|  |  | 
|  | if ((dev_addr >> 32 != high_dev_addr) || | 
|  | (mem_addr >> 32 != high_mem_addr)) | 
|  | cross_boundary = true; | 
|  | #endif | 
|  | while (len) { | 
|  | unsigned int size = min(len, max_chunk_size); | 
|  |  | 
|  | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT | 
|  | /* | 
|  | * Prevent individual transfers from crossing 4GB | 
|  | * boundaries. | 
|  | */ | 
|  | if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) { | 
|  | size = ALIGN(dev_addr, 1ULL << 32) - dev_addr; | 
|  | cross_boundary = true; | 
|  | } | 
|  | if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) { | 
|  | size = ALIGN(mem_addr, 1ULL << 32) - mem_addr; | 
|  | cross_boundary = true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | chunk = rcar_dmac_xfer_chunk_get(chan); | 
|  | if (!chunk) { | 
|  | rcar_dmac_desc_put(chan, desc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dir == DMA_DEV_TO_MEM) { | 
|  | chunk->src_addr = dev_addr; | 
|  | chunk->dst_addr = mem_addr; | 
|  | } else { | 
|  | chunk->src_addr = mem_addr; | 
|  | chunk->dst_addr = dev_addr; | 
|  | } | 
|  |  | 
|  | chunk->size = size; | 
|  |  | 
|  | dev_dbg(chan->chan.device->dev, | 
|  | "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n", | 
|  | chan->index, chunk, desc, i, sg, size, len, | 
|  | &chunk->src_addr, &chunk->dst_addr); | 
|  |  | 
|  | mem_addr += size; | 
|  | if (dir == DMA_MEM_TO_MEM) | 
|  | dev_addr += size; | 
|  |  | 
|  | len -= size; | 
|  |  | 
|  | list_add_tail(&chunk->node, &desc->chunks); | 
|  | nchunks++; | 
|  | } | 
|  | } | 
|  |  | 
|  | desc->nchunks = nchunks; | 
|  | desc->size = full_size; | 
|  |  | 
|  | /* | 
|  | * Use hardware descriptor lists if possible when more than one chunk | 
|  | * needs to be transferred (otherwise they don't make much sense). | 
|  | * | 
|  | * Source/Destination address should be located in same 4GiB region | 
|  | * in the 40bit address space when it uses Hardware descriptor, | 
|  | * and cross_boundary is checking it. | 
|  | */ | 
|  | desc->hwdescs.use = !cross_boundary && nchunks > 1; | 
|  | if (desc->hwdescs.use) { | 
|  | if (rcar_dmac_fill_hwdesc(chan, desc) < 0) | 
|  | desc->hwdescs.use = false; | 
|  | } | 
|  |  | 
|  | return &desc->async_tx; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * DMA engine operations | 
|  | */ | 
|  |  | 
|  | static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | int ret; | 
|  |  | 
|  | INIT_LIST_HEAD(&rchan->desc.chunks_free); | 
|  | INIT_LIST_HEAD(&rchan->desc.pages); | 
|  |  | 
|  | /* Preallocate descriptors. */ | 
|  | ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL); | 
|  | if (ret < 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL); | 
|  | if (ret < 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return pm_runtime_get_sync(chan->device->dev); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | struct rcar_dmac *dmac = to_rcar_dmac(chan->device); | 
|  | struct rcar_dmac_chan_map *map = &rchan->map; | 
|  | struct rcar_dmac_desc_page *page, *_page; | 
|  | struct rcar_dmac_desc *desc; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | /* Protect against ISR */ | 
|  | spin_lock_irq(&rchan->lock); | 
|  | rcar_dmac_chan_halt(rchan); | 
|  | spin_unlock_irq(&rchan->lock); | 
|  |  | 
|  | /* | 
|  | * Now no new interrupts will occur, but one might already be | 
|  | * running. Wait for it to finish before freeing resources. | 
|  | */ | 
|  | synchronize_irq(rchan->irq); | 
|  |  | 
|  | if (rchan->mid_rid >= 0) { | 
|  | /* The caller is holding dma_list_mutex */ | 
|  | clear_bit(rchan->mid_rid, dmac->modules); | 
|  | rchan->mid_rid = -EINVAL; | 
|  | } | 
|  |  | 
|  | list_splice_init(&rchan->desc.free, &list); | 
|  | list_splice_init(&rchan->desc.pending, &list); | 
|  | list_splice_init(&rchan->desc.active, &list); | 
|  | list_splice_init(&rchan->desc.done, &list); | 
|  | list_splice_init(&rchan->desc.wait, &list); | 
|  |  | 
|  | rchan->desc.running = NULL; | 
|  |  | 
|  | list_for_each_entry(desc, &list, node) | 
|  | rcar_dmac_realloc_hwdesc(rchan, desc, 0); | 
|  |  | 
|  | list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) { | 
|  | list_del(&page->node); | 
|  | free_page((unsigned long)page); | 
|  | } | 
|  |  | 
|  | /* Remove slave mapping if present. */ | 
|  | if (map->slave.xfer_size) { | 
|  | dma_unmap_resource(chan->device->dev, map->addr, | 
|  | map->slave.xfer_size, map->dir, 0); | 
|  | map->slave.xfer_size = 0; | 
|  | } | 
|  |  | 
|  | pm_runtime_put(chan->device->dev); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest, | 
|  | dma_addr_t dma_src, size_t len, unsigned long flags) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | struct scatterlist sgl; | 
|  |  | 
|  | if (!len) | 
|  | return NULL; | 
|  |  | 
|  | sg_init_table(&sgl, 1); | 
|  | sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len, | 
|  | offset_in_page(dma_src)); | 
|  | sg_dma_address(&sgl) = dma_src; | 
|  | sg_dma_len(&sgl) = len; | 
|  |  | 
|  | return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest, | 
|  | DMA_MEM_TO_MEM, flags, false); | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_map_slave_addr(struct dma_chan *chan, | 
|  | enum dma_transfer_direction dir) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | struct rcar_dmac_chan_map *map = &rchan->map; | 
|  | phys_addr_t dev_addr; | 
|  | size_t dev_size; | 
|  | enum dma_data_direction dev_dir; | 
|  |  | 
|  | if (dir == DMA_DEV_TO_MEM) { | 
|  | dev_addr = rchan->src.slave_addr; | 
|  | dev_size = rchan->src.xfer_size; | 
|  | dev_dir = DMA_TO_DEVICE; | 
|  | } else { | 
|  | dev_addr = rchan->dst.slave_addr; | 
|  | dev_size = rchan->dst.xfer_size; | 
|  | dev_dir = DMA_FROM_DEVICE; | 
|  | } | 
|  |  | 
|  | /* Reuse current map if possible. */ | 
|  | if (dev_addr == map->slave.slave_addr && | 
|  | dev_size == map->slave.xfer_size && | 
|  | dev_dir == map->dir) | 
|  | return 0; | 
|  |  | 
|  | /* Remove old mapping if present. */ | 
|  | if (map->slave.xfer_size) | 
|  | dma_unmap_resource(chan->device->dev, map->addr, | 
|  | map->slave.xfer_size, map->dir, 0); | 
|  | map->slave.xfer_size = 0; | 
|  |  | 
|  | /* Create new slave address map. */ | 
|  | map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size, | 
|  | dev_dir, 0); | 
|  |  | 
|  | if (dma_mapping_error(chan->device->dev, map->addr)) { | 
|  | dev_err(chan->device->dev, | 
|  | "chan%u: failed to map %zx@%pap", rchan->index, | 
|  | dev_size, &dev_addr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n", | 
|  | rchan->index, dev_size, &dev_addr, &map->addr, | 
|  | dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE"); | 
|  |  | 
|  | map->slave.slave_addr = dev_addr; | 
|  | map->slave.xfer_size = dev_size; | 
|  | map->dir = dev_dir; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_transfer_direction dir, | 
|  | unsigned long flags, void *context) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  |  | 
|  | /* Someone calling slave DMA on a generic channel? */ | 
|  | if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) { | 
|  | dev_warn(chan->device->dev, | 
|  | "%s: bad parameter: len=%d, id=%d\n", | 
|  | __func__, sg_len, rchan->mid_rid); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (rcar_dmac_map_slave_addr(chan, dir)) | 
|  | return NULL; | 
|  |  | 
|  | return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr, | 
|  | dir, flags, false); | 
|  | } | 
|  |  | 
|  | #define RCAR_DMAC_MAX_SG_LEN	32 | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, | 
|  | size_t buf_len, size_t period_len, | 
|  | enum dma_transfer_direction dir, unsigned long flags) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | struct dma_async_tx_descriptor *desc; | 
|  | struct scatterlist *sgl; | 
|  | unsigned int sg_len; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Someone calling slave DMA on a generic channel? */ | 
|  | if (rchan->mid_rid < 0 || buf_len < period_len) { | 
|  | dev_warn(chan->device->dev, | 
|  | "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n", | 
|  | __func__, buf_len, period_len, rchan->mid_rid); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (rcar_dmac_map_slave_addr(chan, dir)) | 
|  | return NULL; | 
|  |  | 
|  | sg_len = buf_len / period_len; | 
|  | if (sg_len > RCAR_DMAC_MAX_SG_LEN) { | 
|  | dev_err(chan->device->dev, | 
|  | "chan%u: sg length %d exceeds limit %d", | 
|  | rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate the sg list dynamically as it would consume too much stack | 
|  | * space. | 
|  | */ | 
|  | sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT); | 
|  | if (!sgl) | 
|  | return NULL; | 
|  |  | 
|  | sg_init_table(sgl, sg_len); | 
|  |  | 
|  | for (i = 0; i < sg_len; ++i) { | 
|  | dma_addr_t src = buf_addr + (period_len * i); | 
|  |  | 
|  | sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len, | 
|  | offset_in_page(src)); | 
|  | sg_dma_address(&sgl[i]) = src; | 
|  | sg_dma_len(&sgl[i]) = period_len; | 
|  | } | 
|  |  | 
|  | desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr, | 
|  | dir, flags, true); | 
|  |  | 
|  | kfree(sgl); | 
|  | return desc; | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_device_config(struct dma_chan *chan, | 
|  | struct dma_slave_config *cfg) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  |  | 
|  | /* | 
|  | * We could lock this, but you shouldn't be configuring the | 
|  | * channel, while using it... | 
|  | */ | 
|  | rchan->src.slave_addr = cfg->src_addr; | 
|  | rchan->dst.slave_addr = cfg->dst_addr; | 
|  | rchan->src.xfer_size = cfg->src_addr_width; | 
|  | rchan->dst.xfer_size = cfg->dst_addr_width; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_chan_terminate_all(struct dma_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rchan->lock, flags); | 
|  | rcar_dmac_chan_halt(rchan); | 
|  | spin_unlock_irqrestore(&rchan->lock, flags); | 
|  |  | 
|  | /* | 
|  | * FIXME: No new interrupt can occur now, but the IRQ thread might still | 
|  | * be running. | 
|  | */ | 
|  |  | 
|  | rcar_dmac_chan_reinit(rchan); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan, | 
|  | dma_cookie_t cookie) | 
|  | { | 
|  | struct rcar_dmac_desc *desc = chan->desc.running; | 
|  | struct rcar_dmac_xfer_chunk *running = NULL; | 
|  | struct rcar_dmac_xfer_chunk *chunk; | 
|  | enum dma_status status; | 
|  | unsigned int residue = 0; | 
|  | unsigned int dptr = 0; | 
|  | unsigned int chcrb; | 
|  | unsigned int tcrb; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!desc) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the cookie corresponds to a descriptor that has been completed | 
|  | * there is no residue. The same check has already been performed by the | 
|  | * caller but without holding the channel lock, so the descriptor could | 
|  | * now be complete. | 
|  | */ | 
|  | status = dma_cookie_status(&chan->chan, cookie, NULL); | 
|  | if (status == DMA_COMPLETE) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If the cookie doesn't correspond to the currently running transfer | 
|  | * then the descriptor hasn't been processed yet, and the residue is | 
|  | * equal to the full descriptor size. | 
|  | * Also, a client driver is possible to call this function before | 
|  | * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running" | 
|  | * will be the next descriptor, and the done list will appear. So, if | 
|  | * the argument cookie matches the done list's cookie, we can assume | 
|  | * the residue is zero. | 
|  | */ | 
|  | if (cookie != desc->async_tx.cookie) { | 
|  | list_for_each_entry(desc, &chan->desc.done, node) { | 
|  | if (cookie == desc->async_tx.cookie) | 
|  | return 0; | 
|  | } | 
|  | list_for_each_entry(desc, &chan->desc.pending, node) { | 
|  | if (cookie == desc->async_tx.cookie) | 
|  | return desc->size; | 
|  | } | 
|  | list_for_each_entry(desc, &chan->desc.active, node) { | 
|  | if (cookie == desc->async_tx.cookie) | 
|  | return desc->size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No descriptor found for the cookie, there's thus no residue. | 
|  | * This shouldn't happen if the calling driver passes a correct | 
|  | * cookie value. | 
|  | */ | 
|  | WARN(1, "No descriptor for cookie!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to read two registers. | 
|  | * Make sure the control register does not skip to next chunk | 
|  | * while reading the counter. | 
|  | * Trying it 3 times should be enough: Initial read, retry, retry | 
|  | * for the paranoid. | 
|  | */ | 
|  | for (i = 0; i < 3; i++) { | 
|  | chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & | 
|  | RCAR_DMACHCRB_DPTR_MASK; | 
|  | tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB); | 
|  | /* Still the same? */ | 
|  | if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & | 
|  | RCAR_DMACHCRB_DPTR_MASK)) | 
|  | break; | 
|  | } | 
|  | WARN_ONCE(i >= 3, "residue might be not continuous!"); | 
|  |  | 
|  | /* | 
|  | * In descriptor mode the descriptor running pointer is not maintained | 
|  | * by the interrupt handler, find the running descriptor from the | 
|  | * descriptor pointer field in the CHCRB register. In non-descriptor | 
|  | * mode just use the running descriptor pointer. | 
|  | */ | 
|  | if (desc->hwdescs.use) { | 
|  | dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT; | 
|  | if (dptr == 0) | 
|  | dptr = desc->nchunks; | 
|  | dptr--; | 
|  | WARN_ON(dptr >= desc->nchunks); | 
|  | } else { | 
|  | running = desc->running; | 
|  | } | 
|  |  | 
|  | /* Compute the size of all chunks still to be transferred. */ | 
|  | list_for_each_entry_reverse(chunk, &desc->chunks, node) { | 
|  | if (chunk == running || ++dptr == desc->nchunks) | 
|  | break; | 
|  |  | 
|  | residue += chunk->size; | 
|  | } | 
|  |  | 
|  | /* Add the residue for the current chunk. */ | 
|  | residue += tcrb << desc->xfer_shift; | 
|  |  | 
|  | return residue; | 
|  | } | 
|  |  | 
|  | static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | enum dma_status status; | 
|  | unsigned long flags; | 
|  | unsigned int residue; | 
|  | bool cyclic; | 
|  |  | 
|  | status = dma_cookie_status(chan, cookie, txstate); | 
|  | if (status == DMA_COMPLETE || !txstate) | 
|  | return status; | 
|  |  | 
|  | spin_lock_irqsave(&rchan->lock, flags); | 
|  | residue = rcar_dmac_chan_get_residue(rchan, cookie); | 
|  | cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false; | 
|  | spin_unlock_irqrestore(&rchan->lock, flags); | 
|  |  | 
|  | /* if there's no residue, the cookie is complete */ | 
|  | if (!residue && !cyclic) | 
|  | return DMA_COMPLETE; | 
|  |  | 
|  | dma_set_residue(txstate, residue); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rchan->lock, flags); | 
|  |  | 
|  | if (list_empty(&rchan->desc.pending)) | 
|  | goto done; | 
|  |  | 
|  | /* Append the pending list to the active list. */ | 
|  | list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active); | 
|  |  | 
|  | /* | 
|  | * If no transfer is running pick the first descriptor from the active | 
|  | * list and start the transfer. | 
|  | */ | 
|  | if (!rchan->desc.running) { | 
|  | struct rcar_dmac_desc *desc; | 
|  |  | 
|  | desc = list_first_entry(&rchan->desc.active, | 
|  | struct rcar_dmac_desc, node); | 
|  | rchan->desc.running = desc; | 
|  |  | 
|  | rcar_dmac_chan_start_xfer(rchan); | 
|  | } | 
|  |  | 
|  | done: | 
|  | spin_unlock_irqrestore(&rchan->lock, flags); | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_device_synchronize(struct dma_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); | 
|  |  | 
|  | synchronize_irq(rchan->irq); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * IRQ handling | 
|  | */ | 
|  |  | 
|  | static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_desc *desc = chan->desc.running; | 
|  | unsigned int stage; | 
|  |  | 
|  | if (WARN_ON(!desc || !desc->cyclic)) { | 
|  | /* | 
|  | * This should never happen, there should always be a running | 
|  | * cyclic descriptor when a descriptor stage end interrupt is | 
|  | * triggered. Warn and return. | 
|  | */ | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* Program the interrupt pointer to the next stage. */ | 
|  | stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & | 
|  | RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT; | 
|  | rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage)); | 
|  |  | 
|  | return IRQ_WAKE_THREAD; | 
|  | } | 
|  |  | 
|  | static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan) | 
|  | { | 
|  | struct rcar_dmac_desc *desc = chan->desc.running; | 
|  | irqreturn_t ret = IRQ_WAKE_THREAD; | 
|  |  | 
|  | if (WARN_ON_ONCE(!desc)) { | 
|  | /* | 
|  | * This should never happen, there should always be a running | 
|  | * descriptor when a transfer end interrupt is triggered. Warn | 
|  | * and return. | 
|  | */ | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The transfer end interrupt isn't generated for each chunk when using | 
|  | * descriptor mode. Only update the running chunk pointer in | 
|  | * non-descriptor mode. | 
|  | */ | 
|  | if (!desc->hwdescs.use) { | 
|  | /* | 
|  | * If we haven't completed the last transfer chunk simply move | 
|  | * to the next one. Only wake the IRQ thread if the transfer is | 
|  | * cyclic. | 
|  | */ | 
|  | if (!list_is_last(&desc->running->node, &desc->chunks)) { | 
|  | desc->running = list_next_entry(desc->running, node); | 
|  | if (!desc->cyclic) | 
|  | ret = IRQ_HANDLED; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've completed the last transfer chunk. If the transfer is | 
|  | * cyclic, move back to the first one. | 
|  | */ | 
|  | if (desc->cyclic) { | 
|  | desc->running = | 
|  | list_first_entry(&desc->chunks, | 
|  | struct rcar_dmac_xfer_chunk, | 
|  | node); | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The descriptor is complete, move it to the done list. */ | 
|  | list_move_tail(&desc->node, &chan->desc.done); | 
|  |  | 
|  | /* Queue the next descriptor, if any. */ | 
|  | if (!list_empty(&chan->desc.active)) | 
|  | chan->desc.running = list_first_entry(&chan->desc.active, | 
|  | struct rcar_dmac_desc, | 
|  | node); | 
|  | else | 
|  | chan->desc.running = NULL; | 
|  |  | 
|  | done: | 
|  | if (chan->desc.running) | 
|  | rcar_dmac_chan_start_xfer(chan); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev) | 
|  | { | 
|  | u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE; | 
|  | struct rcar_dmac_chan *chan = dev; | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  | bool reinit = false; | 
|  | u32 chcr; | 
|  |  | 
|  | spin_lock(&chan->lock); | 
|  |  | 
|  | chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); | 
|  | if (chcr & RCAR_DMACHCR_CAE) { | 
|  | struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device); | 
|  |  | 
|  | /* | 
|  | * We don't need to call rcar_dmac_chan_halt() | 
|  | * because channel is already stopped in error case. | 
|  | * We need to clear register and check DE bit as recovery. | 
|  | */ | 
|  | rcar_dmac_chan_clear(dmac, chan); | 
|  | rcar_dmac_chcr_de_barrier(chan); | 
|  | reinit = true; | 
|  | goto spin_lock_end; | 
|  | } | 
|  |  | 
|  | if (chcr & RCAR_DMACHCR_TE) | 
|  | mask |= RCAR_DMACHCR_DE; | 
|  | rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask); | 
|  | if (mask & RCAR_DMACHCR_DE) | 
|  | rcar_dmac_chcr_de_barrier(chan); | 
|  |  | 
|  | if (chcr & RCAR_DMACHCR_DSE) | 
|  | ret |= rcar_dmac_isr_desc_stage_end(chan); | 
|  |  | 
|  | if (chcr & RCAR_DMACHCR_TE) | 
|  | ret |= rcar_dmac_isr_transfer_end(chan); | 
|  |  | 
|  | spin_lock_end: | 
|  | spin_unlock(&chan->lock); | 
|  |  | 
|  | if (reinit) { | 
|  | dev_err(chan->chan.device->dev, "Channel Address Error\n"); | 
|  |  | 
|  | rcar_dmac_chan_reinit(chan); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev) | 
|  | { | 
|  | struct rcar_dmac_chan *chan = dev; | 
|  | struct rcar_dmac_desc *desc; | 
|  | struct dmaengine_desc_callback cb; | 
|  |  | 
|  | spin_lock_irq(&chan->lock); | 
|  |  | 
|  | /* For cyclic transfers notify the user after every chunk. */ | 
|  | if (chan->desc.running && chan->desc.running->cyclic) { | 
|  | desc = chan->desc.running; | 
|  | dmaengine_desc_get_callback(&desc->async_tx, &cb); | 
|  |  | 
|  | if (dmaengine_desc_callback_valid(&cb)) { | 
|  | spin_unlock_irq(&chan->lock); | 
|  | dmaengine_desc_callback_invoke(&cb, NULL); | 
|  | spin_lock_irq(&chan->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call the callback function for all descriptors on the done list and | 
|  | * move them to the ack wait list. | 
|  | */ | 
|  | while (!list_empty(&chan->desc.done)) { | 
|  | desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc, | 
|  | node); | 
|  | dma_cookie_complete(&desc->async_tx); | 
|  | list_del(&desc->node); | 
|  |  | 
|  | dmaengine_desc_get_callback(&desc->async_tx, &cb); | 
|  | if (dmaengine_desc_callback_valid(&cb)) { | 
|  | spin_unlock_irq(&chan->lock); | 
|  | /* | 
|  | * We own the only reference to this descriptor, we can | 
|  | * safely dereference it without holding the channel | 
|  | * lock. | 
|  | */ | 
|  | dmaengine_desc_callback_invoke(&cb, NULL); | 
|  | spin_lock_irq(&chan->lock); | 
|  | } | 
|  |  | 
|  | list_add_tail(&desc->node, &chan->desc.wait); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&chan->lock); | 
|  |  | 
|  | /* Recycle all acked descriptors. */ | 
|  | rcar_dmac_desc_recycle_acked(chan); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * OF xlate and channel filter | 
|  | */ | 
|  |  | 
|  | static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg) | 
|  | { | 
|  | struct rcar_dmac *dmac = to_rcar_dmac(chan->device); | 
|  | struct of_phandle_args *dma_spec = arg; | 
|  |  | 
|  | /* | 
|  | * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate | 
|  | * function knows from which device it wants to allocate a channel from, | 
|  | * and would be perfectly capable of selecting the channel it wants. | 
|  | * Forcing it to call dma_request_channel() and iterate through all | 
|  | * channels from all controllers is just pointless. | 
|  | */ | 
|  | if (chan->device->device_config != rcar_dmac_device_config) | 
|  | return false; | 
|  |  | 
|  | return !test_and_set_bit(dma_spec->args[0], dmac->modules); | 
|  | } | 
|  |  | 
|  | static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | struct rcar_dmac_chan *rchan; | 
|  | struct dma_chan *chan; | 
|  | dma_cap_mask_t mask; | 
|  |  | 
|  | if (dma_spec->args_count != 1) | 
|  | return NULL; | 
|  |  | 
|  | /* Only slave DMA channels can be allocated via DT */ | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec, | 
|  | ofdma->of_node); | 
|  | if (!chan) | 
|  | return NULL; | 
|  |  | 
|  | rchan = to_rcar_dmac_chan(chan); | 
|  | rchan->mid_rid = dma_spec->args[0]; | 
|  |  | 
|  | return chan; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Power management | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int rcar_dmac_runtime_suspend(struct device *dev) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct rcar_dmac *dmac = dev_get_drvdata(dev); | 
|  |  | 
|  | return rcar_dmac_init(dmac); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct dev_pm_ops rcar_dmac_pm = { | 
|  | /* | 
|  | * TODO for system sleep/resume: | 
|  | *   - Wait for the current transfer to complete and stop the device, | 
|  | *   - Resume transfers, if any. | 
|  | */ | 
|  | SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, | 
|  | pm_runtime_force_resume) | 
|  | SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume, | 
|  | NULL) | 
|  | }; | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Probe and remove | 
|  | */ | 
|  |  | 
|  | static int rcar_dmac_chan_probe(struct rcar_dmac *dmac, | 
|  | struct rcar_dmac_chan *rchan) | 
|  | { | 
|  | struct platform_device *pdev = to_platform_device(dmac->dev); | 
|  | struct dma_chan *chan = &rchan->chan; | 
|  | char pdev_irqname[5]; | 
|  | char *irqname; | 
|  | int ret; | 
|  |  | 
|  | rchan->mid_rid = -EINVAL; | 
|  |  | 
|  | spin_lock_init(&rchan->lock); | 
|  |  | 
|  | INIT_LIST_HEAD(&rchan->desc.free); | 
|  | INIT_LIST_HEAD(&rchan->desc.pending); | 
|  | INIT_LIST_HEAD(&rchan->desc.active); | 
|  | INIT_LIST_HEAD(&rchan->desc.done); | 
|  | INIT_LIST_HEAD(&rchan->desc.wait); | 
|  |  | 
|  | /* Request the channel interrupt. */ | 
|  | sprintf(pdev_irqname, "ch%u", rchan->index); | 
|  | rchan->irq = platform_get_irq_byname(pdev, pdev_irqname); | 
|  | if (rchan->irq < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u", | 
|  | dev_name(dmac->dev), rchan->index); | 
|  | if (!irqname) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Initialize the DMA engine channel and add it to the DMA engine | 
|  | * channels list. | 
|  | */ | 
|  | chan->device = &dmac->engine; | 
|  | dma_cookie_init(chan); | 
|  |  | 
|  | list_add_tail(&chan->device_node, &dmac->engine.channels); | 
|  |  | 
|  | ret = devm_request_threaded_irq(dmac->dev, rchan->irq, | 
|  | rcar_dmac_isr_channel, | 
|  | rcar_dmac_isr_channel_thread, 0, | 
|  | irqname, rchan); | 
|  | if (ret) { | 
|  | dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", | 
|  | rchan->irq, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define RCAR_DMAC_MAX_CHANNELS	32 | 
|  |  | 
|  | static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac) | 
|  | { | 
|  | struct device_node *np = dev->of_node; | 
|  | int ret; | 
|  |  | 
|  | ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "unable to read dma-channels property\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* The hardware and driver don't support more than 32 bits in CHCLR */ | 
|  | if (dmac->n_channels <= 0 || | 
|  | dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) { | 
|  | dev_err(dev, "invalid number of channels %u\n", | 
|  | dmac->n_channels); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the driver is unable to read dma-channel-mask property, | 
|  | * the driver assumes that it can use all channels. | 
|  | */ | 
|  | dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0); | 
|  | of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask); | 
|  |  | 
|  | /* If the property has out-of-channel mask, this driver clears it */ | 
|  | dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_probe(struct platform_device *pdev) | 
|  | { | 
|  | const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE | | 
|  | DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES | | 
|  | DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES | | 
|  | DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES; | 
|  | const struct rcar_dmac_of_data *data; | 
|  | struct rcar_dmac_chan *chan; | 
|  | struct dma_device *engine; | 
|  | void __iomem *chan_base; | 
|  | struct rcar_dmac *dmac; | 
|  | unsigned int i; | 
|  | int ret; | 
|  |  | 
|  | data = of_device_get_match_data(&pdev->dev); | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  |  | 
|  | dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); | 
|  | if (!dmac) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dmac->dev = &pdev->dev; | 
|  | platform_set_drvdata(pdev, dmac); | 
|  | dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK); | 
|  | dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40)); | 
|  |  | 
|  | ret = rcar_dmac_parse_of(&pdev->dev, dmac); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be | 
|  | * flushed correctly, resulting in memory corruption. DMAC 0 channel 0 | 
|  | * is connected to microTLB 0 on currently supported platforms, so we | 
|  | * can't use it with the IPMMU. As the IOMMU API operates at the device | 
|  | * level we can't disable it selectively, so ignore channel 0 for now if | 
|  | * the device is part of an IOMMU group. | 
|  | */ | 
|  | if (device_iommu_mapped(&pdev->dev)) | 
|  | dmac->channels_mask &= ~BIT(0); | 
|  |  | 
|  | dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels, | 
|  | sizeof(*dmac->channels), GFP_KERNEL); | 
|  | if (!dmac->channels) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Request resources. */ | 
|  | dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0); | 
|  | if (IS_ERR(dmac->dmac_base)) | 
|  | return PTR_ERR(dmac->dmac_base); | 
|  |  | 
|  | if (!data->chan_offset_base) { | 
|  | dmac->chan_base = devm_platform_ioremap_resource(pdev, 1); | 
|  | if (IS_ERR(dmac->chan_base)) | 
|  | return PTR_ERR(dmac->chan_base); | 
|  |  | 
|  | chan_base = dmac->chan_base; | 
|  | } else { | 
|  | chan_base = dmac->dmac_base + data->chan_offset_base; | 
|  | } | 
|  |  | 
|  | for_each_rcar_dmac_chan(i, dmac, chan) { | 
|  | chan->index = i; | 
|  | chan->iomem = chan_base + i * data->chan_offset_stride; | 
|  | } | 
|  |  | 
|  | /* Enable runtime PM and initialize the device. */ | 
|  | pm_runtime_enable(&pdev->dev); | 
|  | ret = pm_runtime_resume_and_get(&pdev->dev); | 
|  | if (ret < 0) { | 
|  | dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = rcar_dmac_init(dmac); | 
|  | pm_runtime_put(&pdev->dev); | 
|  |  | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "failed to reset device\n"); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Initialize engine */ | 
|  | engine = &dmac->engine; | 
|  |  | 
|  | dma_cap_set(DMA_MEMCPY, engine->cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, engine->cap_mask); | 
|  |  | 
|  | engine->dev		= &pdev->dev; | 
|  | engine->copy_align	= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE); | 
|  |  | 
|  | engine->src_addr_widths	= widths; | 
|  | engine->dst_addr_widths	= widths; | 
|  | engine->directions	= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); | 
|  | engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
|  |  | 
|  | engine->device_alloc_chan_resources	= rcar_dmac_alloc_chan_resources; | 
|  | engine->device_free_chan_resources	= rcar_dmac_free_chan_resources; | 
|  | engine->device_prep_dma_memcpy		= rcar_dmac_prep_dma_memcpy; | 
|  | engine->device_prep_slave_sg		= rcar_dmac_prep_slave_sg; | 
|  | engine->device_prep_dma_cyclic		= rcar_dmac_prep_dma_cyclic; | 
|  | engine->device_config			= rcar_dmac_device_config; | 
|  | engine->device_pause			= rcar_dmac_chan_pause; | 
|  | engine->device_terminate_all		= rcar_dmac_chan_terminate_all; | 
|  | engine->device_tx_status		= rcar_dmac_tx_status; | 
|  | engine->device_issue_pending		= rcar_dmac_issue_pending; | 
|  | engine->device_synchronize		= rcar_dmac_device_synchronize; | 
|  |  | 
|  | INIT_LIST_HEAD(&engine->channels); | 
|  |  | 
|  | for_each_rcar_dmac_chan(i, dmac, chan) { | 
|  | ret = rcar_dmac_chan_probe(dmac, chan); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* Register the DMAC as a DMA provider for DT. */ | 
|  | ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate, | 
|  | NULL); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | /* | 
|  | * Register the DMA engine device. | 
|  | * | 
|  | * Default transfer size of 32 bytes requires 32-byte alignment. | 
|  | */ | 
|  | ret = dma_async_device_register(engine); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | of_dma_controller_free(pdev->dev.of_node); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rcar_dmac_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct rcar_dmac *dmac = platform_get_drvdata(pdev); | 
|  |  | 
|  | of_dma_controller_free(pdev->dev.of_node); | 
|  | dma_async_device_unregister(&dmac->engine); | 
|  |  | 
|  | pm_runtime_disable(&pdev->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rcar_dmac_shutdown(struct platform_device *pdev) | 
|  | { | 
|  | struct rcar_dmac *dmac = platform_get_drvdata(pdev); | 
|  |  | 
|  | rcar_dmac_stop_all_chan(dmac); | 
|  | } | 
|  |  | 
|  | static const struct rcar_dmac_of_data rcar_dmac_data = { | 
|  | .chan_offset_base	= 0x8000, | 
|  | .chan_offset_stride	= 0x80, | 
|  | }; | 
|  |  | 
|  | static const struct rcar_dmac_of_data rcar_v3u_dmac_data = { | 
|  | .chan_offset_base	= 0x0, | 
|  | .chan_offset_stride	= 0x1000, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id rcar_dmac_of_ids[] = { | 
|  | { | 
|  | .compatible = "renesas,rcar-dmac", | 
|  | .data = &rcar_dmac_data, | 
|  | }, { | 
|  | .compatible = "renesas,dmac-r8a779a0", | 
|  | .data = &rcar_v3u_dmac_data, | 
|  | }, | 
|  | { /* Sentinel */ } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids); | 
|  |  | 
|  | static struct platform_driver rcar_dmac_driver = { | 
|  | .driver		= { | 
|  | .pm	= &rcar_dmac_pm, | 
|  | .name	= "rcar-dmac", | 
|  | .of_match_table = rcar_dmac_of_ids, | 
|  | }, | 
|  | .probe		= rcar_dmac_probe, | 
|  | .remove		= rcar_dmac_remove, | 
|  | .shutdown	= rcar_dmac_shutdown, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(rcar_dmac_driver); | 
|  |  | 
|  | MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver"); | 
|  | MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); | 
|  | MODULE_LICENSE("GPL v2"); |