|  | /* | 
|  | * TI EDMA DMA engine driver | 
|  | * | 
|  | * Copyright 2012 Texas Instruments | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation version 2. | 
|  | * | 
|  | * This program is distributed "as is" WITHOUT ANY WARRANTY of any | 
|  | * kind, whether express or implied; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | #include <linux/platform_data/edma.h> | 
|  |  | 
|  | #include "dmaengine.h" | 
|  | #include "virt-dma.h" | 
|  |  | 
|  | /* | 
|  | * This will go away when the private EDMA API is folded | 
|  | * into this driver and the platform device(s) are | 
|  | * instantiated in the arch code. We can only get away | 
|  | * with this simplification because DA8XX may not be built | 
|  | * in the same kernel image with other DaVinci parts. This | 
|  | * avoids having to sprinkle dmaengine driver platform devices | 
|  | * and data throughout all the existing board files. | 
|  | */ | 
|  | #ifdef CONFIG_ARCH_DAVINCI_DA8XX | 
|  | #define EDMA_CTLRS	2 | 
|  | #define EDMA_CHANS	32 | 
|  | #else | 
|  | #define EDMA_CTLRS	1 | 
|  | #define EDMA_CHANS	64 | 
|  | #endif /* CONFIG_ARCH_DAVINCI_DA8XX */ | 
|  |  | 
|  | /* | 
|  | * Max of 20 segments per channel to conserve PaRAM slots | 
|  | * Also note that MAX_NR_SG should be atleast the no.of periods | 
|  | * that are required for ASoC, otherwise DMA prep calls will | 
|  | * fail. Today davinci-pcm is the only user of this driver and | 
|  | * requires atleast 17 slots, so we setup the default to 20. | 
|  | */ | 
|  | #define MAX_NR_SG		20 | 
|  | #define EDMA_MAX_SLOTS		MAX_NR_SG | 
|  | #define EDMA_DESCRIPTORS	16 | 
|  |  | 
|  | struct edma_desc { | 
|  | struct virt_dma_desc		vdesc; | 
|  | struct list_head		node; | 
|  | int				cyclic; | 
|  | int				absync; | 
|  | int				pset_nr; | 
|  | int				processed; | 
|  | struct edmacc_param		pset[0]; | 
|  | }; | 
|  |  | 
|  | struct edma_cc; | 
|  |  | 
|  | struct edma_chan { | 
|  | struct virt_dma_chan		vchan; | 
|  | struct list_head		node; | 
|  | struct edma_desc		*edesc; | 
|  | struct edma_cc			*ecc; | 
|  | int				ch_num; | 
|  | bool				alloced; | 
|  | int				slot[EDMA_MAX_SLOTS]; | 
|  | int				missed; | 
|  | struct dma_slave_config		cfg; | 
|  | }; | 
|  |  | 
|  | struct edma_cc { | 
|  | int				ctlr; | 
|  | struct dma_device		dma_slave; | 
|  | struct edma_chan		slave_chans[EDMA_CHANS]; | 
|  | int				num_slave_chans; | 
|  | int				dummy_slot; | 
|  | }; | 
|  |  | 
|  | static inline struct edma_cc *to_edma_cc(struct dma_device *d) | 
|  | { | 
|  | return container_of(d, struct edma_cc, dma_slave); | 
|  | } | 
|  |  | 
|  | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) | 
|  | { | 
|  | return container_of(c, struct edma_chan, vchan.chan); | 
|  | } | 
|  |  | 
|  | static inline struct edma_desc | 
|  | *to_edma_desc(struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | return container_of(tx, struct edma_desc, vdesc.tx); | 
|  | } | 
|  |  | 
|  | static void edma_desc_free(struct virt_dma_desc *vdesc) | 
|  | { | 
|  | kfree(container_of(vdesc, struct edma_desc, vdesc)); | 
|  | } | 
|  |  | 
|  | /* Dispatch a queued descriptor to the controller (caller holds lock) */ | 
|  | static void edma_execute(struct edma_chan *echan) | 
|  | { | 
|  | struct virt_dma_desc *vdesc; | 
|  | struct edma_desc *edesc; | 
|  | struct device *dev = echan->vchan.chan.device->dev; | 
|  | int i, j, left, nslots; | 
|  |  | 
|  | /* If either we processed all psets or we're still not started */ | 
|  | if (!echan->edesc || | 
|  | echan->edesc->pset_nr == echan->edesc->processed) { | 
|  | /* Get next vdesc */ | 
|  | vdesc = vchan_next_desc(&echan->vchan); | 
|  | if (!vdesc) { | 
|  | echan->edesc = NULL; | 
|  | return; | 
|  | } | 
|  | list_del(&vdesc->node); | 
|  | echan->edesc = to_edma_desc(&vdesc->tx); | 
|  | } | 
|  |  | 
|  | edesc = echan->edesc; | 
|  |  | 
|  | /* Find out how many left */ | 
|  | left = edesc->pset_nr - edesc->processed; | 
|  | nslots = min(MAX_NR_SG, left); | 
|  |  | 
|  | /* Write descriptor PaRAM set(s) */ | 
|  | for (i = 0; i < nslots; i++) { | 
|  | j = i + edesc->processed; | 
|  | edma_write_slot(echan->slot[i], &edesc->pset[j]); | 
|  | dev_dbg(echan->vchan.chan.device->dev, | 
|  | "\n pset[%d]:\n" | 
|  | "  chnum\t%d\n" | 
|  | "  slot\t%d\n" | 
|  | "  opt\t%08x\n" | 
|  | "  src\t%08x\n" | 
|  | "  dst\t%08x\n" | 
|  | "  abcnt\t%08x\n" | 
|  | "  ccnt\t%08x\n" | 
|  | "  bidx\t%08x\n" | 
|  | "  cidx\t%08x\n" | 
|  | "  lkrld\t%08x\n", | 
|  | j, echan->ch_num, echan->slot[i], | 
|  | edesc->pset[j].opt, | 
|  | edesc->pset[j].src, | 
|  | edesc->pset[j].dst, | 
|  | edesc->pset[j].a_b_cnt, | 
|  | edesc->pset[j].ccnt, | 
|  | edesc->pset[j].src_dst_bidx, | 
|  | edesc->pset[j].src_dst_cidx, | 
|  | edesc->pset[j].link_bcntrld); | 
|  | /* Link to the previous slot if not the last set */ | 
|  | if (i != (nslots - 1)) | 
|  | edma_link(echan->slot[i], echan->slot[i+1]); | 
|  | } | 
|  |  | 
|  | edesc->processed += nslots; | 
|  |  | 
|  | /* | 
|  | * If this is either the last set in a set of SG-list transactions | 
|  | * then setup a link to the dummy slot, this results in all future | 
|  | * events being absorbed and that's OK because we're done | 
|  | */ | 
|  | if (edesc->processed == edesc->pset_nr) { | 
|  | if (edesc->cyclic) | 
|  | edma_link(echan->slot[nslots-1], echan->slot[1]); | 
|  | else | 
|  | edma_link(echan->slot[nslots-1], | 
|  | echan->ecc->dummy_slot); | 
|  | } | 
|  |  | 
|  | edma_resume(echan->ch_num); | 
|  |  | 
|  | if (edesc->processed <= MAX_NR_SG) { | 
|  | dev_dbg(dev, "first transfer starting %d\n", echan->ch_num); | 
|  | edma_start(echan->ch_num); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This happens due to setup times between intermediate transfers | 
|  | * in long SG lists which have to be broken up into transfers of | 
|  | * MAX_NR_SG | 
|  | */ | 
|  | if (echan->missed) { | 
|  | dev_dbg(dev, "missed event in execute detected\n"); | 
|  | edma_clean_channel(echan->ch_num); | 
|  | edma_stop(echan->ch_num); | 
|  | edma_start(echan->ch_num); | 
|  | edma_trigger_channel(echan->ch_num); | 
|  | echan->missed = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int edma_terminate_all(struct edma_chan *echan) | 
|  | { | 
|  | unsigned long flags; | 
|  | LIST_HEAD(head); | 
|  |  | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  |  | 
|  | /* | 
|  | * Stop DMA activity: we assume the callback will not be called | 
|  | * after edma_dma() returns (even if it does, it will see | 
|  | * echan->edesc is NULL and exit.) | 
|  | */ | 
|  | if (echan->edesc) { | 
|  | echan->edesc = NULL; | 
|  | edma_stop(echan->ch_num); | 
|  | } | 
|  |  | 
|  | vchan_get_all_descriptors(&echan->vchan, &head); | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  | vchan_dma_desc_free_list(&echan->vchan, &head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int edma_slave_config(struct edma_chan *echan, | 
|  | struct dma_slave_config *cfg) | 
|  | { | 
|  | if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || | 
|  | cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, | 
|  | unsigned long arg) | 
|  | { | 
|  | int ret = 0; | 
|  | struct dma_slave_config *config; | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  |  | 
|  | switch (cmd) { | 
|  | case DMA_TERMINATE_ALL: | 
|  | edma_terminate_all(echan); | 
|  | break; | 
|  | case DMA_SLAVE_CONFIG: | 
|  | config = (struct dma_slave_config *)arg; | 
|  | ret = edma_slave_config(echan, config); | 
|  | break; | 
|  | default: | 
|  | ret = -ENOSYS; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A PaRAM set configuration abstraction used by other modes | 
|  | * @chan: Channel who's PaRAM set we're configuring | 
|  | * @pset: PaRAM set to initialize and setup. | 
|  | * @src_addr: Source address of the DMA | 
|  | * @dst_addr: Destination address of the DMA | 
|  | * @burst: In units of dev_width, how much to send | 
|  | * @dev_width: How much is the dev_width | 
|  | * @dma_length: Total length of the DMA transfer | 
|  | * @direction: Direction of the transfer | 
|  | */ | 
|  | static int edma_config_pset(struct dma_chan *chan, struct edmacc_param *pset, | 
|  | dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, | 
|  | enum dma_slave_buswidth dev_width, unsigned int dma_length, | 
|  | enum dma_transfer_direction direction) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | int acnt, bcnt, ccnt, cidx; | 
|  | int src_bidx, dst_bidx, src_cidx, dst_cidx; | 
|  | int absync; | 
|  |  | 
|  | acnt = dev_width; | 
|  | /* | 
|  | * If the maxburst is equal to the fifo width, use | 
|  | * A-synced transfers. This allows for large contiguous | 
|  | * buffer transfers using only one PaRAM set. | 
|  | */ | 
|  | if (burst == 1) { | 
|  | /* | 
|  | * For the A-sync case, bcnt and ccnt are the remainder | 
|  | * and quotient respectively of the division of: | 
|  | * (dma_length / acnt) by (SZ_64K -1). This is so | 
|  | * that in case bcnt over flows, we have ccnt to use. | 
|  | * Note: In A-sync tranfer only, bcntrld is used, but it | 
|  | * only applies for sg_dma_len(sg) >= SZ_64K. | 
|  | * In this case, the best way adopted is- bccnt for the | 
|  | * first frame will be the remainder below. Then for | 
|  | * every successive frame, bcnt will be SZ_64K-1. This | 
|  | * is assured as bcntrld = 0xffff in end of function. | 
|  | */ | 
|  | absync = false; | 
|  | ccnt = dma_length / acnt / (SZ_64K - 1); | 
|  | bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); | 
|  | /* | 
|  | * If bcnt is non-zero, we have a remainder and hence an | 
|  | * extra frame to transfer, so increment ccnt. | 
|  | */ | 
|  | if (bcnt) | 
|  | ccnt++; | 
|  | else | 
|  | bcnt = SZ_64K - 1; | 
|  | cidx = acnt; | 
|  | } else { | 
|  | /* | 
|  | * If maxburst is greater than the fifo address_width, | 
|  | * use AB-synced transfers where A count is the fifo | 
|  | * address_width and B count is the maxburst. In this | 
|  | * case, we are limited to transfers of C count frames | 
|  | * of (address_width * maxburst) where C count is limited | 
|  | * to SZ_64K-1. This places an upper bound on the length | 
|  | * of an SG segment that can be handled. | 
|  | */ | 
|  | absync = true; | 
|  | bcnt = burst; | 
|  | ccnt = dma_length / (acnt * bcnt); | 
|  | if (ccnt > (SZ_64K - 1)) { | 
|  | dev_err(dev, "Exceeded max SG segment size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | cidx = acnt * bcnt; | 
|  | } | 
|  |  | 
|  | if (direction == DMA_MEM_TO_DEV) { | 
|  | src_bidx = acnt; | 
|  | src_cidx = cidx; | 
|  | dst_bidx = 0; | 
|  | dst_cidx = 0; | 
|  | } else if (direction == DMA_DEV_TO_MEM)  { | 
|  | src_bidx = 0; | 
|  | src_cidx = 0; | 
|  | dst_bidx = acnt; | 
|  | dst_cidx = cidx; | 
|  | } else { | 
|  | dev_err(dev, "%s: direction not implemented yet\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | pset->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); | 
|  | /* Configure A or AB synchronized transfers */ | 
|  | if (absync) | 
|  | pset->opt |= SYNCDIM; | 
|  |  | 
|  | pset->src = src_addr; | 
|  | pset->dst = dst_addr; | 
|  |  | 
|  | pset->src_dst_bidx = (dst_bidx << 16) | src_bidx; | 
|  | pset->src_dst_cidx = (dst_cidx << 16) | src_cidx; | 
|  |  | 
|  | pset->a_b_cnt = bcnt << 16 | acnt; | 
|  | pset->ccnt = ccnt; | 
|  | /* | 
|  | * Only time when (bcntrld) auto reload is required is for | 
|  | * A-sync case, and in this case, a requirement of reload value | 
|  | * of SZ_64K-1 only is assured. 'link' is initially set to NULL | 
|  | * and then later will be populated by edma_execute. | 
|  | */ | 
|  | pset->link_bcntrld = 0xffffffff; | 
|  | return absync; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *edma_prep_slave_sg( | 
|  | struct dma_chan *chan, struct scatterlist *sgl, | 
|  | unsigned int sg_len, enum dma_transfer_direction direction, | 
|  | unsigned long tx_flags, void *context) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | struct edma_desc *edesc; | 
|  | dma_addr_t src_addr = 0, dst_addr = 0; | 
|  | enum dma_slave_buswidth dev_width; | 
|  | u32 burst; | 
|  | struct scatterlist *sg; | 
|  | int i, nslots, ret; | 
|  |  | 
|  | if (unlikely(!echan || !sgl || !sg_len)) | 
|  | return NULL; | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) { | 
|  | src_addr = echan->cfg.src_addr; | 
|  | dev_width = echan->cfg.src_addr_width; | 
|  | burst = echan->cfg.src_maxburst; | 
|  | } else if (direction == DMA_MEM_TO_DEV) { | 
|  | dst_addr = echan->cfg.dst_addr; | 
|  | dev_width = echan->cfg.dst_addr_width; | 
|  | burst = echan->cfg.dst_maxburst; | 
|  | } else { | 
|  | dev_err(dev, "%s: bad direction?\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
|  | dev_err(dev, "Undefined slave buswidth\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc = kzalloc(sizeof(*edesc) + sg_len * | 
|  | sizeof(edesc->pset[0]), GFP_ATOMIC); | 
|  | if (!edesc) { | 
|  | dev_dbg(dev, "Failed to allocate a descriptor\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc->pset_nr = sg_len; | 
|  |  | 
|  | /* Allocate a PaRAM slot, if needed */ | 
|  | nslots = min_t(unsigned, MAX_NR_SG, sg_len); | 
|  |  | 
|  | for (i = 0; i < nslots; i++) { | 
|  | if (echan->slot[i] < 0) { | 
|  | echan->slot[i] = | 
|  | edma_alloc_slot(EDMA_CTLR(echan->ch_num), | 
|  | EDMA_SLOT_ANY); | 
|  | if (echan->slot[i] < 0) { | 
|  | kfree(edesc); | 
|  | dev_err(dev, "Failed to allocate slot\n"); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure PaRAM sets for each SG */ | 
|  | for_each_sg(sgl, sg, sg_len, i) { | 
|  | /* Get address for each SG */ | 
|  | if (direction == DMA_DEV_TO_MEM) | 
|  | dst_addr = sg_dma_address(sg); | 
|  | else | 
|  | src_addr = sg_dma_address(sg); | 
|  |  | 
|  | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | 
|  | dst_addr, burst, dev_width, | 
|  | sg_dma_len(sg), direction); | 
|  | if (ret < 0) { | 
|  | kfree(edesc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc->absync = ret; | 
|  |  | 
|  | /* If this is the last in a current SG set of transactions, | 
|  | enable interrupts so that next set is processed */ | 
|  | if (!((i+1) % MAX_NR_SG)) | 
|  | edesc->pset[i].opt |= TCINTEN; | 
|  |  | 
|  | /* If this is the last set, enable completion interrupt flag */ | 
|  | if (i == sg_len - 1) | 
|  | edesc->pset[i].opt |= TCINTEN; | 
|  | } | 
|  |  | 
|  | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( | 
|  | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, | 
|  | size_t period_len, enum dma_transfer_direction direction, | 
|  | unsigned long tx_flags, void *context) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | struct edma_desc *edesc; | 
|  | dma_addr_t src_addr, dst_addr; | 
|  | enum dma_slave_buswidth dev_width; | 
|  | u32 burst; | 
|  | int i, ret, nslots; | 
|  |  | 
|  | if (unlikely(!echan || !buf_len || !period_len)) | 
|  | return NULL; | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) { | 
|  | src_addr = echan->cfg.src_addr; | 
|  | dst_addr = buf_addr; | 
|  | dev_width = echan->cfg.src_addr_width; | 
|  | burst = echan->cfg.src_maxburst; | 
|  | } else if (direction == DMA_MEM_TO_DEV) { | 
|  | src_addr = buf_addr; | 
|  | dst_addr = echan->cfg.dst_addr; | 
|  | dev_width = echan->cfg.dst_addr_width; | 
|  | burst = echan->cfg.dst_maxburst; | 
|  | } else { | 
|  | dev_err(dev, "%s: bad direction?\n", __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
|  | dev_err(dev, "Undefined slave buswidth\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (unlikely(buf_len % period_len)) { | 
|  | dev_err(dev, "Period should be multiple of Buffer length\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | nslots = (buf_len / period_len) + 1; | 
|  |  | 
|  | /* | 
|  | * Cyclic DMA users such as audio cannot tolerate delays introduced | 
|  | * by cases where the number of periods is more than the maximum | 
|  | * number of SGs the EDMA driver can handle at a time. For DMA types | 
|  | * such as Slave SGs, such delays are tolerable and synchronized, | 
|  | * but the synchronization is difficult to achieve with Cyclic and | 
|  | * cannot be guaranteed, so we error out early. | 
|  | */ | 
|  | if (nslots > MAX_NR_SG) | 
|  | return NULL; | 
|  |  | 
|  | edesc = kzalloc(sizeof(*edesc) + nslots * | 
|  | sizeof(edesc->pset[0]), GFP_ATOMIC); | 
|  | if (!edesc) { | 
|  | dev_dbg(dev, "Failed to allocate a descriptor\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | edesc->cyclic = 1; | 
|  | edesc->pset_nr = nslots; | 
|  |  | 
|  | dev_dbg(dev, "%s: nslots=%d\n", __func__, nslots); | 
|  | dev_dbg(dev, "%s: period_len=%d\n", __func__, period_len); | 
|  | dev_dbg(dev, "%s: buf_len=%d\n", __func__, buf_len); | 
|  |  | 
|  | for (i = 0; i < nslots; i++) { | 
|  | /* Allocate a PaRAM slot, if needed */ | 
|  | if (echan->slot[i] < 0) { | 
|  | echan->slot[i] = | 
|  | edma_alloc_slot(EDMA_CTLR(echan->ch_num), | 
|  | EDMA_SLOT_ANY); | 
|  | if (echan->slot[i] < 0) { | 
|  | dev_err(dev, "Failed to allocate slot\n"); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == nslots - 1) { | 
|  | memcpy(&edesc->pset[i], &edesc->pset[0], | 
|  | sizeof(edesc->pset[0])); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, | 
|  | dst_addr, burst, dev_width, period_len, | 
|  | direction); | 
|  | if (ret < 0) | 
|  | return NULL; | 
|  |  | 
|  | if (direction == DMA_DEV_TO_MEM) | 
|  | dst_addr += period_len; | 
|  | else | 
|  | src_addr += period_len; | 
|  |  | 
|  | dev_dbg(dev, "%s: Configure period %d of buf:\n", __func__, i); | 
|  | dev_dbg(dev, | 
|  | "\n pset[%d]:\n" | 
|  | "  chnum\t%d\n" | 
|  | "  slot\t%d\n" | 
|  | "  opt\t%08x\n" | 
|  | "  src\t%08x\n" | 
|  | "  dst\t%08x\n" | 
|  | "  abcnt\t%08x\n" | 
|  | "  ccnt\t%08x\n" | 
|  | "  bidx\t%08x\n" | 
|  | "  cidx\t%08x\n" | 
|  | "  lkrld\t%08x\n", | 
|  | i, echan->ch_num, echan->slot[i], | 
|  | edesc->pset[i].opt, | 
|  | edesc->pset[i].src, | 
|  | edesc->pset[i].dst, | 
|  | edesc->pset[i].a_b_cnt, | 
|  | edesc->pset[i].ccnt, | 
|  | edesc->pset[i].src_dst_bidx, | 
|  | edesc->pset[i].src_dst_cidx, | 
|  | edesc->pset[i].link_bcntrld); | 
|  |  | 
|  | edesc->absync = ret; | 
|  |  | 
|  | /* | 
|  | * Enable interrupts for every period because callback | 
|  | * has to be called for every period. | 
|  | */ | 
|  | edesc->pset[i].opt |= TCINTEN; | 
|  | } | 
|  |  | 
|  | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); | 
|  | } | 
|  |  | 
|  | static void edma_callback(unsigned ch_num, u16 ch_status, void *data) | 
|  | { | 
|  | struct edma_chan *echan = data; | 
|  | struct device *dev = echan->vchan.chan.device->dev; | 
|  | struct edma_desc *edesc; | 
|  | unsigned long flags; | 
|  | struct edmacc_param p; | 
|  |  | 
|  | edesc = echan->edesc; | 
|  |  | 
|  | /* Pause the channel for non-cyclic */ | 
|  | if (!edesc || (edesc && !edesc->cyclic)) | 
|  | edma_pause(echan->ch_num); | 
|  |  | 
|  | switch (ch_status) { | 
|  | case EDMA_DMA_COMPLETE: | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  |  | 
|  | if (edesc) { | 
|  | if (edesc->cyclic) { | 
|  | vchan_cyclic_callback(&edesc->vdesc); | 
|  | } else if (edesc->processed == edesc->pset_nr) { | 
|  | dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num); | 
|  | edma_stop(echan->ch_num); | 
|  | vchan_cookie_complete(&edesc->vdesc); | 
|  | edma_execute(echan); | 
|  | } else { | 
|  | dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num); | 
|  | edma_execute(echan); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  |  | 
|  | break; | 
|  | case EDMA_DMA_CC_ERROR: | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  |  | 
|  | edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p); | 
|  |  | 
|  | /* | 
|  | * Issue later based on missed flag which will be sure | 
|  | * to happen as: | 
|  | * (1) we finished transmitting an intermediate slot and | 
|  | *     edma_execute is coming up. | 
|  | * (2) or we finished current transfer and issue will | 
|  | *     call edma_execute. | 
|  | * | 
|  | * Important note: issuing can be dangerous here and | 
|  | * lead to some nasty recursion when we are in a NULL | 
|  | * slot. So we avoid doing so and set the missed flag. | 
|  | */ | 
|  | if (p.a_b_cnt == 0 && p.ccnt == 0) { | 
|  | dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n"); | 
|  | echan->missed = 1; | 
|  | } else { | 
|  | /* | 
|  | * The slot is already programmed but the event got | 
|  | * missed, so its safe to issue it here. | 
|  | */ | 
|  | dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n"); | 
|  | edma_clean_channel(echan->ch_num); | 
|  | edma_stop(echan->ch_num); | 
|  | edma_start(echan->ch_num); | 
|  | edma_trigger_channel(echan->ch_num); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  |  | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Alloc channel resources */ | 
|  | static int edma_alloc_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | int ret; | 
|  | int a_ch_num; | 
|  | LIST_HEAD(descs); | 
|  |  | 
|  | a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, | 
|  | chan, EVENTQ_DEFAULT); | 
|  |  | 
|  | if (a_ch_num < 0) { | 
|  | ret = -ENODEV; | 
|  | goto err_no_chan; | 
|  | } | 
|  |  | 
|  | if (a_ch_num != echan->ch_num) { | 
|  | dev_err(dev, "failed to allocate requested channel %u:%u\n", | 
|  | EDMA_CTLR(echan->ch_num), | 
|  | EDMA_CHAN_SLOT(echan->ch_num)); | 
|  | ret = -ENODEV; | 
|  | goto err_wrong_chan; | 
|  | } | 
|  |  | 
|  | echan->alloced = true; | 
|  | echan->slot[0] = echan->ch_num; | 
|  |  | 
|  | dev_dbg(dev, "allocated channel for %u:%u\n", | 
|  | EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_wrong_chan: | 
|  | edma_free_channel(a_ch_num); | 
|  | err_no_chan: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Free channel resources */ | 
|  | static void edma_free_chan_resources(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct device *dev = chan->device->dev; | 
|  | int i; | 
|  |  | 
|  | /* Terminate transfers */ | 
|  | edma_stop(echan->ch_num); | 
|  |  | 
|  | vchan_free_chan_resources(&echan->vchan); | 
|  |  | 
|  | /* Free EDMA PaRAM slots */ | 
|  | for (i = 1; i < EDMA_MAX_SLOTS; i++) { | 
|  | if (echan->slot[i] >= 0) { | 
|  | edma_free_slot(echan->slot[i]); | 
|  | echan->slot[i] = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free EDMA channel */ | 
|  | if (echan->alloced) { | 
|  | edma_free_channel(echan->ch_num); | 
|  | echan->alloced = false; | 
|  | } | 
|  |  | 
|  | dev_dbg(dev, "freeing channel for %u\n", echan->ch_num); | 
|  | } | 
|  |  | 
|  | /* Send pending descriptor to hardware */ | 
|  | static void edma_issue_pending(struct dma_chan *chan) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  | if (vchan_issue_pending(&echan->vchan) && !echan->edesc) | 
|  | edma_execute(echan); | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  | } | 
|  |  | 
|  | static size_t edma_desc_size(struct edma_desc *edesc) | 
|  | { | 
|  | int i; | 
|  | size_t size; | 
|  |  | 
|  | if (edesc->absync) | 
|  | for (size = i = 0; i < edesc->pset_nr; i++) | 
|  | size += (edesc->pset[i].a_b_cnt & 0xffff) * | 
|  | (edesc->pset[i].a_b_cnt >> 16) * | 
|  | edesc->pset[i].ccnt; | 
|  | else | 
|  | size = (edesc->pset[0].a_b_cnt & 0xffff) * | 
|  | (edesc->pset[0].a_b_cnt >> 16) + | 
|  | (edesc->pset[0].a_b_cnt & 0xffff) * | 
|  | (SZ_64K - 1) * edesc->pset[0].ccnt; | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | /* Check request completion status */ | 
|  | static enum dma_status edma_tx_status(struct dma_chan *chan, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *txstate) | 
|  | { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | struct virt_dma_desc *vdesc; | 
|  | enum dma_status ret; | 
|  | unsigned long flags; | 
|  |  | 
|  | ret = dma_cookie_status(chan, cookie, txstate); | 
|  | if (ret == DMA_COMPLETE || !txstate) | 
|  | return ret; | 
|  |  | 
|  | spin_lock_irqsave(&echan->vchan.lock, flags); | 
|  | vdesc = vchan_find_desc(&echan->vchan, cookie); | 
|  | if (vdesc) { | 
|  | txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx)); | 
|  | } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { | 
|  | struct edma_desc *edesc = echan->edesc; | 
|  | txstate->residue = edma_desc_size(edesc); | 
|  | } | 
|  | spin_unlock_irqrestore(&echan->vchan.lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __init edma_chan_init(struct edma_cc *ecc, | 
|  | struct dma_device *dma, | 
|  | struct edma_chan *echans) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < EDMA_CHANS; i++) { | 
|  | struct edma_chan *echan = &echans[i]; | 
|  | echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); | 
|  | echan->ecc = ecc; | 
|  | echan->vchan.desc_free = edma_desc_free; | 
|  |  | 
|  | vchan_init(&echan->vchan, dma); | 
|  |  | 
|  | INIT_LIST_HEAD(&echan->node); | 
|  | for (j = 0; j < EDMA_MAX_SLOTS; j++) | 
|  | echan->slot[j] = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, | 
|  | struct device *dev) | 
|  | { | 
|  | dma->device_prep_slave_sg = edma_prep_slave_sg; | 
|  | dma->device_prep_dma_cyclic = edma_prep_dma_cyclic; | 
|  | dma->device_alloc_chan_resources = edma_alloc_chan_resources; | 
|  | dma->device_free_chan_resources = edma_free_chan_resources; | 
|  | dma->device_issue_pending = edma_issue_pending; | 
|  | dma->device_tx_status = edma_tx_status; | 
|  | dma->device_control = edma_control; | 
|  | dma->dev = dev; | 
|  |  | 
|  | INIT_LIST_HEAD(&dma->channels); | 
|  | } | 
|  |  | 
|  | static int edma_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct edma_cc *ecc; | 
|  | int ret; | 
|  |  | 
|  | ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); | 
|  | if (!ecc) { | 
|  | dev_err(&pdev->dev, "Can't allocate controller\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ecc->ctlr = pdev->id; | 
|  | ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); | 
|  | if (ecc->dummy_slot < 0) { | 
|  | dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dma_cap_zero(ecc->dma_slave.cap_mask); | 
|  | dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); | 
|  |  | 
|  | edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); | 
|  |  | 
|  | edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); | 
|  |  | 
|  | ret = dma_async_device_register(&ecc->dma_slave); | 
|  | if (ret) | 
|  | goto err_reg1; | 
|  |  | 
|  | platform_set_drvdata(pdev, ecc); | 
|  |  | 
|  | dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_reg1: | 
|  | edma_free_slot(ecc->dummy_slot); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int edma_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct edma_cc *ecc = dev_get_drvdata(dev); | 
|  |  | 
|  | dma_async_device_unregister(&ecc->dma_slave); | 
|  | edma_free_slot(ecc->dummy_slot); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver edma_driver = { | 
|  | .probe		= edma_probe, | 
|  | .remove		= edma_remove, | 
|  | .driver = { | 
|  | .name = "edma-dma-engine", | 
|  | .owner = THIS_MODULE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | bool edma_filter_fn(struct dma_chan *chan, void *param) | 
|  | { | 
|  | if (chan->device->dev->driver == &edma_driver.driver) { | 
|  | struct edma_chan *echan = to_edma_chan(chan); | 
|  | unsigned ch_req = *(unsigned *)param; | 
|  | return ch_req == echan->ch_num; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_filter_fn); | 
|  |  | 
|  | static struct platform_device *pdev0, *pdev1; | 
|  |  | 
|  | static const struct platform_device_info edma_dev_info0 = { | 
|  | .name = "edma-dma-engine", | 
|  | .id = 0, | 
|  | .dma_mask = DMA_BIT_MASK(32), | 
|  | }; | 
|  |  | 
|  | static const struct platform_device_info edma_dev_info1 = { | 
|  | .name = "edma-dma-engine", | 
|  | .id = 1, | 
|  | .dma_mask = DMA_BIT_MASK(32), | 
|  | }; | 
|  |  | 
|  | static int edma_init(void) | 
|  | { | 
|  | int ret = platform_driver_register(&edma_driver); | 
|  |  | 
|  | if (ret == 0) { | 
|  | pdev0 = platform_device_register_full(&edma_dev_info0); | 
|  | if (IS_ERR(pdev0)) { | 
|  | platform_driver_unregister(&edma_driver); | 
|  | ret = PTR_ERR(pdev0); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EDMA_CTLRS == 2) { | 
|  | pdev1 = platform_device_register_full(&edma_dev_info1); | 
|  | if (IS_ERR(pdev1)) { | 
|  | platform_driver_unregister(&edma_driver); | 
|  | platform_device_unregister(pdev0); | 
|  | ret = PTR_ERR(pdev1); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | subsys_initcall(edma_init); | 
|  |  | 
|  | static void __exit edma_exit(void) | 
|  | { | 
|  | platform_device_unregister(pdev0); | 
|  | if (pdev1) | 
|  | platform_device_unregister(pdev1); | 
|  | platform_driver_unregister(&edma_driver); | 
|  | } | 
|  | module_exit(edma_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); | 
|  | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); | 
|  | MODULE_LICENSE("GPL v2"); |