|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * linux/arch/arm/mach-at91/at91rm9200_time.c | 
|  | * | 
|  | *  Copyright (C) 2003 SAN People | 
|  | *  Copyright (C) 2003 ATMEL | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mfd/syscon.h> | 
|  | #include <linux/mfd/syscon/atmel-st.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/regmap.h> | 
|  |  | 
|  | static unsigned long last_crtr; | 
|  | static u32 irqmask; | 
|  | static struct clock_event_device clkevt; | 
|  | static struct regmap *regmap_st; | 
|  | static int timer_latch; | 
|  |  | 
|  | /* | 
|  | * The ST_CRTR is updated asynchronously to the master clock ... but | 
|  | * the updates as seen by the CPU don't seem to be strictly monotonic. | 
|  | * Waiting until we read the same value twice avoids glitching. | 
|  | */ | 
|  | static inline unsigned long read_CRTR(void) | 
|  | { | 
|  | unsigned int x1, x2; | 
|  |  | 
|  | regmap_read(regmap_st, AT91_ST_CRTR, &x1); | 
|  | do { | 
|  | regmap_read(regmap_st, AT91_ST_CRTR, &x2); | 
|  | if (x1 == x2) | 
|  | break; | 
|  | x1 = x2; | 
|  | } while (1); | 
|  | return x1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRQ handler for the timer. | 
|  | */ | 
|  | static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | u32 sr; | 
|  |  | 
|  | regmap_read(regmap_st, AT91_ST_SR, &sr); | 
|  | sr &= irqmask; | 
|  |  | 
|  | /* | 
|  | * irqs should be disabled here, but as the irq is shared they are only | 
|  | * guaranteed to be off if the timer irq is registered first. | 
|  | */ | 
|  | WARN_ON_ONCE(!irqs_disabled()); | 
|  |  | 
|  | /* simulate "oneshot" timer with alarm */ | 
|  | if (sr & AT91_ST_ALMS) { | 
|  | clkevt.event_handler(&clkevt); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* periodic mode should handle delayed ticks */ | 
|  | if (sr & AT91_ST_PITS) { | 
|  | u32	crtr = read_CRTR(); | 
|  |  | 
|  | while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) { | 
|  | last_crtr += timer_latch; | 
|  | clkevt.event_handler(&clkevt); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* this irq is shared ... */ | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | static u64 read_clk32k(struct clocksource *cs) | 
|  | { | 
|  | return read_CRTR(); | 
|  | } | 
|  |  | 
|  | static struct clocksource clk32k = { | 
|  | .name		= "32k_counter", | 
|  | .rating		= 150, | 
|  | .read		= read_clk32k, | 
|  | .mask		= CLOCKSOURCE_MASK(20), | 
|  | .flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | static void clkdev32k_disable_and_flush_irq(void) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | /* Disable and flush pending timer interrupts */ | 
|  | regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS); | 
|  | regmap_read(regmap_st, AT91_ST_SR, &val); | 
|  | last_crtr = read_CRTR(); | 
|  | } | 
|  |  | 
|  | static int clkevt32k_shutdown(struct clock_event_device *evt) | 
|  | { | 
|  | clkdev32k_disable_and_flush_irq(); | 
|  | irqmask = 0; | 
|  | regmap_write(regmap_st, AT91_ST_IER, irqmask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int clkevt32k_set_oneshot(struct clock_event_device *dev) | 
|  | { | 
|  | clkdev32k_disable_and_flush_irq(); | 
|  |  | 
|  | /* | 
|  | * ALM for oneshot irqs, set by next_event() | 
|  | * before 32 seconds have passed. | 
|  | */ | 
|  | irqmask = AT91_ST_ALMS; | 
|  | regmap_write(regmap_st, AT91_ST_RTAR, last_crtr); | 
|  | regmap_write(regmap_st, AT91_ST_IER, irqmask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int clkevt32k_set_periodic(struct clock_event_device *dev) | 
|  | { | 
|  | clkdev32k_disable_and_flush_irq(); | 
|  |  | 
|  | /* PIT for periodic irqs; fixed rate of 1/HZ */ | 
|  | irqmask = AT91_ST_PITS; | 
|  | regmap_write(regmap_st, AT91_ST_PIMR, timer_latch); | 
|  | regmap_write(regmap_st, AT91_ST_IER, irqmask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev) | 
|  | { | 
|  | u32		alm; | 
|  | unsigned int	val; | 
|  |  | 
|  | BUG_ON(delta < 2); | 
|  |  | 
|  | /* The alarm IRQ uses absolute time (now+delta), not the relative | 
|  | * time (delta) in our calling convention.  Like all clockevents | 
|  | * using such "match" hardware, we have a race to defend against. | 
|  | * | 
|  | * Our defense here is to have set up the clockevent device so the | 
|  | * delta is at least two.  That way we never end up writing RTAR | 
|  | * with the value then held in CRTR ... which would mean the match | 
|  | * wouldn't trigger until 32 seconds later, after CRTR wraps. | 
|  | */ | 
|  | alm = read_CRTR(); | 
|  |  | 
|  | /* Cancel any pending alarm; flush any pending IRQ */ | 
|  | regmap_write(regmap_st, AT91_ST_RTAR, alm); | 
|  | regmap_read(regmap_st, AT91_ST_SR, &val); | 
|  |  | 
|  | /* Schedule alarm by writing RTAR. */ | 
|  | alm += delta; | 
|  | regmap_write(regmap_st, AT91_ST_RTAR, alm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct clock_event_device clkevt = { | 
|  | .name			= "at91_tick", | 
|  | .features		= CLOCK_EVT_FEAT_PERIODIC | | 
|  | CLOCK_EVT_FEAT_ONESHOT, | 
|  | .rating			= 150, | 
|  | .set_next_event		= clkevt32k_next_event, | 
|  | .set_state_shutdown	= clkevt32k_shutdown, | 
|  | .set_state_periodic	= clkevt32k_set_periodic, | 
|  | .set_state_oneshot	= clkevt32k_set_oneshot, | 
|  | .tick_resume		= clkevt32k_shutdown, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * ST (system timer) module supports both clockevents and clocksource. | 
|  | */ | 
|  | static int __init atmel_st_timer_init(struct device_node *node) | 
|  | { | 
|  | struct clk *sclk; | 
|  | unsigned int sclk_rate, val; | 
|  | int irq, ret; | 
|  |  | 
|  | regmap_st = syscon_node_to_regmap(node); | 
|  | if (IS_ERR(regmap_st)) { | 
|  | pr_err("Unable to get regmap\n"); | 
|  | return PTR_ERR(regmap_st); | 
|  | } | 
|  |  | 
|  | /* Disable all timer interrupts, and clear any pending ones */ | 
|  | regmap_write(regmap_st, AT91_ST_IDR, | 
|  | AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS); | 
|  | regmap_read(regmap_st, AT91_ST_SR, &val); | 
|  |  | 
|  | /* Get the interrupts property */ | 
|  | irq  = irq_of_parse_and_map(node, 0); | 
|  | if (!irq) { | 
|  | pr_err("Unable to get IRQ from DT\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Make IRQs happen for the system timer */ | 
|  | ret = request_irq(irq, at91rm9200_timer_interrupt, | 
|  | IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL, | 
|  | "at91_tick", regmap_st); | 
|  | if (ret) { | 
|  | pr_err("Unable to setup IRQ\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sclk = of_clk_get(node, 0); | 
|  | if (IS_ERR(sclk)) { | 
|  | pr_err("Unable to get slow clock\n"); | 
|  | return PTR_ERR(sclk); | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(sclk); | 
|  | if (ret) { | 
|  | pr_err("Could not enable slow clock\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sclk_rate = clk_get_rate(sclk); | 
|  | if (!sclk_rate) { | 
|  | pr_err("Invalid slow clock rate\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | timer_latch = (sclk_rate + HZ / 2) / HZ; | 
|  |  | 
|  | /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used | 
|  | * directly for the clocksource and all clockevents, after adjusting | 
|  | * its prescaler from the 1 Hz default. | 
|  | */ | 
|  | regmap_write(regmap_st, AT91_ST_RTMR, 1); | 
|  |  | 
|  | /* Setup timer clockevent, with minimum of two ticks (important!!) */ | 
|  | clkevt.cpumask = cpumask_of(0); | 
|  | clockevents_config_and_register(&clkevt, sclk_rate, | 
|  | 2, AT91_ST_ALMV); | 
|  |  | 
|  | /* register clocksource */ | 
|  | return clocksource_register_hz(&clk32k, sclk_rate); | 
|  | } | 
|  | TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st", | 
|  | atmel_st_timer_init); |