|  | /************************************************************************** | 
|  | * | 
|  | * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. | 
|  | * Copyright 2016 Intel Corporation | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the | 
|  | * "Software"), to deal in the Software without restriction, including | 
|  | * without limitation the rights to use, copy, modify, merge, publish, | 
|  | * distribute, sub license, and/or sell copies of the Software, and to | 
|  | * permit persons to whom the Software is furnished to do so, subject to | 
|  | * the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice (including the | 
|  | * next paragraph) shall be included in all copies or substantial portions | 
|  | * of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, | 
|  | * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR | 
|  | * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE | 
|  | * USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|  | * | 
|  | * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Generic simple memory manager implementation. Intended to be used as a base | 
|  | * class implementation for more advanced memory managers. | 
|  | * | 
|  | * Note that the algorithm used is quite simple and there might be substantial | 
|  | * performance gains if a smarter free list is implemented. Currently it is | 
|  | * just an unordered stack of free regions. This could easily be improved if | 
|  | * an RB-tree is used instead. At least if we expect heavy fragmentation. | 
|  | * | 
|  | * Aligned allocations can also see improvement. | 
|  | * | 
|  | * Authors: | 
|  | * Thomas Hellström <thomas-at-tungstengraphics-dot-com> | 
|  | */ | 
|  |  | 
|  | #include <drm/drmP.h> | 
|  | #include <drm/drm_mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/interval_tree_generic.h> | 
|  |  | 
|  | /** | 
|  | * DOC: Overview | 
|  | * | 
|  | * drm_mm provides a simple range allocator. The drivers are free to use the | 
|  | * resource allocator from the linux core if it suits them, the upside of drm_mm | 
|  | * is that it's in the DRM core. Which means that it's easier to extend for | 
|  | * some of the crazier special purpose needs of gpus. | 
|  | * | 
|  | * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. | 
|  | * Drivers are free to embed either of them into their own suitable | 
|  | * datastructures. drm_mm itself will not do any memory allocations of its own, | 
|  | * so if drivers choose not to embed nodes they need to still allocate them | 
|  | * themselves. | 
|  | * | 
|  | * The range allocator also supports reservation of preallocated blocks. This is | 
|  | * useful for taking over initial mode setting configurations from the firmware, | 
|  | * where an object needs to be created which exactly matches the firmware's | 
|  | * scanout target. As long as the range is still free it can be inserted anytime | 
|  | * after the allocator is initialized, which helps with avoiding looped | 
|  | * dependencies in the driver load sequence. | 
|  | * | 
|  | * drm_mm maintains a stack of most recently freed holes, which of all | 
|  | * simplistic datastructures seems to be a fairly decent approach to clustering | 
|  | * allocations and avoiding too much fragmentation. This means free space | 
|  | * searches are O(num_holes). Given that all the fancy features drm_mm supports | 
|  | * something better would be fairly complex and since gfx thrashing is a fairly | 
|  | * steep cliff not a real concern. Removing a node again is O(1). | 
|  | * | 
|  | * drm_mm supports a few features: Alignment and range restrictions can be | 
|  | * supplied. Furthermore every &drm_mm_node has a color value (which is just an | 
|  | * opaque unsigned long) which in conjunction with a driver callback can be used | 
|  | * to implement sophisticated placement restrictions. The i915 DRM driver uses | 
|  | * this to implement guard pages between incompatible caching domains in the | 
|  | * graphics TT. | 
|  | * | 
|  | * Two behaviors are supported for searching and allocating: bottom-up and | 
|  | * top-down. The default is bottom-up. Top-down allocation can be used if the | 
|  | * memory area has different restrictions, or just to reduce fragmentation. | 
|  | * | 
|  | * Finally iteration helpers to walk all nodes and all holes are provided as are | 
|  | * some basic allocator dumpers for debugging. | 
|  | * | 
|  | * Note that this range allocator is not thread-safe, drivers need to protect | 
|  | * modifications with their on locking. The idea behind this is that for a full | 
|  | * memory manager additional data needs to be protected anyway, hence internal | 
|  | * locking would be fully redundant. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_DRM_DEBUG_MM | 
|  | #include <linux/stackdepot.h> | 
|  |  | 
|  | #define STACKDEPTH 32 | 
|  | #define BUFSZ 4096 | 
|  |  | 
|  | static noinline void save_stack(struct drm_mm_node *node) | 
|  | { | 
|  | unsigned long entries[STACKDEPTH]; | 
|  | struct stack_trace trace = { | 
|  | .entries = entries, | 
|  | .max_entries = STACKDEPTH, | 
|  | .skip = 1 | 
|  | }; | 
|  |  | 
|  | save_stack_trace(&trace); | 
|  | if (trace.nr_entries != 0 && | 
|  | trace.entries[trace.nr_entries-1] == ULONG_MAX) | 
|  | trace.nr_entries--; | 
|  |  | 
|  | /* May be called under spinlock, so avoid sleeping */ | 
|  | node->stack = depot_save_stack(&trace, GFP_NOWAIT); | 
|  | } | 
|  |  | 
|  | static void show_leaks(struct drm_mm *mm) | 
|  | { | 
|  | struct drm_mm_node *node; | 
|  | unsigned long entries[STACKDEPTH]; | 
|  | char *buf; | 
|  |  | 
|  | buf = kmalloc(BUFSZ, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(node, drm_mm_nodes(mm), node_list) { | 
|  | struct stack_trace trace = { | 
|  | .entries = entries, | 
|  | .max_entries = STACKDEPTH | 
|  | }; | 
|  |  | 
|  | if (!node->stack) { | 
|  | DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", | 
|  | node->start, node->size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | depot_fetch_stack(node->stack, &trace); | 
|  | snprint_stack_trace(buf, BUFSZ, &trace, 0); | 
|  | DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", | 
|  | node->start, node->size, buf); | 
|  | } | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | #undef STACKDEPTH | 
|  | #undef BUFSZ | 
|  | #else | 
|  | static void save_stack(struct drm_mm_node *node) { } | 
|  | static void show_leaks(struct drm_mm *mm) { } | 
|  | #endif | 
|  |  | 
|  | #define START(node) ((node)->start) | 
|  | #define LAST(node)  ((node)->start + (node)->size - 1) | 
|  |  | 
|  | INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, | 
|  | u64, __subtree_last, | 
|  | START, LAST, static inline, drm_mm_interval_tree) | 
|  |  | 
|  | struct drm_mm_node * | 
|  | __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) | 
|  | { | 
|  | return drm_mm_interval_tree_iter_first((struct rb_root *)&mm->interval_tree, | 
|  | start, last) ?: (struct drm_mm_node *)&mm->head_node; | 
|  | } | 
|  | EXPORT_SYMBOL(__drm_mm_interval_first); | 
|  |  | 
|  | static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, | 
|  | struct drm_mm_node *node) | 
|  | { | 
|  | struct drm_mm *mm = hole_node->mm; | 
|  | struct rb_node **link, *rb; | 
|  | struct drm_mm_node *parent; | 
|  |  | 
|  | node->__subtree_last = LAST(node); | 
|  |  | 
|  | if (hole_node->allocated) { | 
|  | rb = &hole_node->rb; | 
|  | while (rb) { | 
|  | parent = rb_entry(rb, struct drm_mm_node, rb); | 
|  | if (parent->__subtree_last >= node->__subtree_last) | 
|  | break; | 
|  |  | 
|  | parent->__subtree_last = node->__subtree_last; | 
|  | rb = rb_parent(rb); | 
|  | } | 
|  |  | 
|  | rb = &hole_node->rb; | 
|  | link = &hole_node->rb.rb_right; | 
|  | } else { | 
|  | rb = NULL; | 
|  | link = &mm->interval_tree.rb_node; | 
|  | } | 
|  |  | 
|  | while (*link) { | 
|  | rb = *link; | 
|  | parent = rb_entry(rb, struct drm_mm_node, rb); | 
|  | if (parent->__subtree_last < node->__subtree_last) | 
|  | parent->__subtree_last = node->__subtree_last; | 
|  | if (node->start < parent->start) | 
|  | link = &parent->rb.rb_left; | 
|  | else | 
|  | link = &parent->rb.rb_right; | 
|  | } | 
|  |  | 
|  | rb_link_node(&node->rb, rb, link); | 
|  | rb_insert_augmented(&node->rb, | 
|  | &mm->interval_tree, | 
|  | &drm_mm_interval_tree_augment); | 
|  | } | 
|  |  | 
|  | #define RB_INSERT(root, member, expr) do { \ | 
|  | struct rb_node **link = &root.rb_node, *rb = NULL; \ | 
|  | u64 x = expr(node); \ | 
|  | while (*link) { \ | 
|  | rb = *link; \ | 
|  | if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ | 
|  | link = &rb->rb_left; \ | 
|  | else \ | 
|  | link = &rb->rb_right; \ | 
|  | } \ | 
|  | rb_link_node(&node->member, rb, link); \ | 
|  | rb_insert_color(&node->member, &root); \ | 
|  | } while (0) | 
|  |  | 
|  | #define HOLE_SIZE(NODE) ((NODE)->hole_size) | 
|  | #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) | 
|  |  | 
|  | static void add_hole(struct drm_mm_node *node) | 
|  | { | 
|  | struct drm_mm *mm = node->mm; | 
|  |  | 
|  | node->hole_size = | 
|  | __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); | 
|  | DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); | 
|  |  | 
|  | RB_INSERT(mm->holes_size, rb_hole_size, HOLE_SIZE); | 
|  | RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); | 
|  |  | 
|  | list_add(&node->hole_stack, &mm->hole_stack); | 
|  | } | 
|  |  | 
|  | static void rm_hole(struct drm_mm_node *node) | 
|  | { | 
|  | DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); | 
|  |  | 
|  | list_del(&node->hole_stack); | 
|  | rb_erase(&node->rb_hole_size, &node->mm->holes_size); | 
|  | rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); | 
|  | node->hole_size = 0; | 
|  |  | 
|  | DRM_MM_BUG_ON(drm_mm_hole_follows(node)); | 
|  | } | 
|  |  | 
|  | static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) | 
|  | { | 
|  | return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); | 
|  | } | 
|  |  | 
|  | static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) | 
|  | { | 
|  | return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); | 
|  | } | 
|  |  | 
|  | static inline u64 rb_hole_size(struct rb_node *rb) | 
|  | { | 
|  | return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; | 
|  | } | 
|  |  | 
|  | static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) | 
|  | { | 
|  | struct rb_node *best = NULL; | 
|  | struct rb_node **link = &mm->holes_size.rb_node; | 
|  |  | 
|  | while (*link) { | 
|  | struct rb_node *rb = *link; | 
|  |  | 
|  | if (size <= rb_hole_size(rb)) { | 
|  | link = &rb->rb_left; | 
|  | best = rb; | 
|  | } else { | 
|  | link = &rb->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rb_hole_size_to_node(best); | 
|  | } | 
|  |  | 
|  | static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) | 
|  | { | 
|  | struct drm_mm_node *node = NULL; | 
|  | struct rb_node **link = &mm->holes_addr.rb_node; | 
|  |  | 
|  | while (*link) { | 
|  | u64 hole_start; | 
|  |  | 
|  | node = rb_hole_addr_to_node(*link); | 
|  | hole_start = __drm_mm_hole_node_start(node); | 
|  |  | 
|  | if (addr < hole_start) | 
|  | link = &node->rb_hole_addr.rb_left; | 
|  | else if (addr > hole_start + node->hole_size) | 
|  | link = &node->rb_hole_addr.rb_right; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static struct drm_mm_node * | 
|  | first_hole(struct drm_mm *mm, | 
|  | u64 start, u64 end, u64 size, | 
|  | enum drm_mm_insert_mode mode) | 
|  | { | 
|  | if (RB_EMPTY_ROOT(&mm->holes_size)) | 
|  | return NULL; | 
|  |  | 
|  | switch (mode) { | 
|  | default: | 
|  | case DRM_MM_INSERT_BEST: | 
|  | return best_hole(mm, size); | 
|  |  | 
|  | case DRM_MM_INSERT_LOW: | 
|  | return find_hole(mm, start); | 
|  |  | 
|  | case DRM_MM_INSERT_HIGH: | 
|  | return find_hole(mm, end); | 
|  |  | 
|  | case DRM_MM_INSERT_EVICT: | 
|  | return list_first_entry_or_null(&mm->hole_stack, | 
|  | struct drm_mm_node, | 
|  | hole_stack); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct drm_mm_node * | 
|  | next_hole(struct drm_mm *mm, | 
|  | struct drm_mm_node *node, | 
|  | enum drm_mm_insert_mode mode) | 
|  | { | 
|  | switch (mode) { | 
|  | default: | 
|  | case DRM_MM_INSERT_BEST: | 
|  | return rb_hole_size_to_node(rb_next(&node->rb_hole_size)); | 
|  |  | 
|  | case DRM_MM_INSERT_LOW: | 
|  | return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); | 
|  |  | 
|  | case DRM_MM_INSERT_HIGH: | 
|  | return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); | 
|  |  | 
|  | case DRM_MM_INSERT_EVICT: | 
|  | node = list_next_entry(node, hole_stack); | 
|  | return &node->hole_stack == &mm->hole_stack ? NULL : node; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * drm_mm_reserve_node - insert an pre-initialized node | 
|  | * @mm: drm_mm allocator to insert @node into | 
|  | * @node: drm_mm_node to insert | 
|  | * | 
|  | * This functions inserts an already set-up &drm_mm_node into the allocator, | 
|  | * meaning that start, size and color must be set by the caller. All other | 
|  | * fields must be cleared to 0. This is useful to initialize the allocator with | 
|  | * preallocated objects which must be set-up before the range allocator can be | 
|  | * set-up, e.g. when taking over a firmware framebuffer. | 
|  | * | 
|  | * Returns: | 
|  | * 0 on success, -ENOSPC if there's no hole where @node is. | 
|  | */ | 
|  | int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) | 
|  | { | 
|  | u64 end = node->start + node->size; | 
|  | struct drm_mm_node *hole; | 
|  | u64 hole_start, hole_end; | 
|  | u64 adj_start, adj_end; | 
|  |  | 
|  | end = node->start + node->size; | 
|  | if (unlikely(end <= node->start)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* Find the relevant hole to add our node to */ | 
|  | hole = find_hole(mm, node->start); | 
|  | if (!hole) | 
|  | return -ENOSPC; | 
|  |  | 
|  | adj_start = hole_start = __drm_mm_hole_node_start(hole); | 
|  | adj_end = hole_end = hole_start + hole->hole_size; | 
|  |  | 
|  | if (mm->color_adjust) | 
|  | mm->color_adjust(hole, node->color, &adj_start, &adj_end); | 
|  |  | 
|  | if (adj_start > node->start || adj_end < end) | 
|  | return -ENOSPC; | 
|  |  | 
|  | node->mm = mm; | 
|  |  | 
|  | list_add(&node->node_list, &hole->node_list); | 
|  | drm_mm_interval_tree_add_node(hole, node); | 
|  | node->allocated = true; | 
|  | node->hole_size = 0; | 
|  |  | 
|  | rm_hole(hole); | 
|  | if (node->start > hole_start) | 
|  | add_hole(hole); | 
|  | if (end < hole_end) | 
|  | add_hole(node); | 
|  |  | 
|  | save_stack(node); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_reserve_node); | 
|  |  | 
|  | /** | 
|  | * drm_mm_insert_node_in_range - ranged search for space and insert @node | 
|  | * @mm: drm_mm to allocate from | 
|  | * @node: preallocate node to insert | 
|  | * @size: size of the allocation | 
|  | * @alignment: alignment of the allocation | 
|  | * @color: opaque tag value to use for this node | 
|  | * @range_start: start of the allowed range for this node | 
|  | * @range_end: end of the allowed range for this node | 
|  | * @mode: fine-tune the allocation search and placement | 
|  | * | 
|  | * The preallocated @node must be cleared to 0. | 
|  | * | 
|  | * Returns: | 
|  | * 0 on success, -ENOSPC if there's no suitable hole. | 
|  | */ | 
|  | int drm_mm_insert_node_in_range(struct drm_mm * const mm, | 
|  | struct drm_mm_node * const node, | 
|  | u64 size, u64 alignment, | 
|  | unsigned long color, | 
|  | u64 range_start, u64 range_end, | 
|  | enum drm_mm_insert_mode mode) | 
|  | { | 
|  | struct drm_mm_node *hole; | 
|  | u64 remainder_mask; | 
|  |  | 
|  | DRM_MM_BUG_ON(range_start >= range_end); | 
|  |  | 
|  | if (unlikely(size == 0 || range_end - range_start < size)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (alignment <= 1) | 
|  | alignment = 0; | 
|  |  | 
|  | remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; | 
|  | for (hole = first_hole(mm, range_start, range_end, size, mode); hole; | 
|  | hole = next_hole(mm, hole, mode)) { | 
|  | u64 hole_start = __drm_mm_hole_node_start(hole); | 
|  | u64 hole_end = hole_start + hole->hole_size; | 
|  | u64 adj_start, adj_end; | 
|  | u64 col_start, col_end; | 
|  |  | 
|  | if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) | 
|  | break; | 
|  |  | 
|  | if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) | 
|  | break; | 
|  |  | 
|  | col_start = hole_start; | 
|  | col_end = hole_end; | 
|  | if (mm->color_adjust) | 
|  | mm->color_adjust(hole, color, &col_start, &col_end); | 
|  |  | 
|  | adj_start = max(col_start, range_start); | 
|  | adj_end = min(col_end, range_end); | 
|  |  | 
|  | if (adj_end <= adj_start || adj_end - adj_start < size) | 
|  | continue; | 
|  |  | 
|  | if (mode == DRM_MM_INSERT_HIGH) | 
|  | adj_start = adj_end - size; | 
|  |  | 
|  | if (alignment) { | 
|  | u64 rem; | 
|  |  | 
|  | if (likely(remainder_mask)) | 
|  | rem = adj_start & remainder_mask; | 
|  | else | 
|  | div64_u64_rem(adj_start, alignment, &rem); | 
|  | if (rem) { | 
|  | adj_start -= rem; | 
|  | if (mode != DRM_MM_INSERT_HIGH) | 
|  | adj_start += alignment; | 
|  |  | 
|  | if (adj_start < max(col_start, range_start) || | 
|  | min(col_end, range_end) - adj_start < size) | 
|  | continue; | 
|  |  | 
|  | if (adj_end <= adj_start || | 
|  | adj_end - adj_start < size) | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | node->mm = mm; | 
|  | node->size = size; | 
|  | node->start = adj_start; | 
|  | node->color = color; | 
|  | node->hole_size = 0; | 
|  |  | 
|  | list_add(&node->node_list, &hole->node_list); | 
|  | drm_mm_interval_tree_add_node(hole, node); | 
|  | node->allocated = true; | 
|  |  | 
|  | rm_hole(hole); | 
|  | if (adj_start > hole_start) | 
|  | add_hole(hole); | 
|  | if (adj_start + size < hole_end) | 
|  | add_hole(node); | 
|  |  | 
|  | save_stack(node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENOSPC; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_insert_node_in_range); | 
|  |  | 
|  | /** | 
|  | * drm_mm_remove_node - Remove a memory node from the allocator. | 
|  | * @node: drm_mm_node to remove | 
|  | * | 
|  | * This just removes a node from its drm_mm allocator. The node does not need to | 
|  | * be cleared again before it can be re-inserted into this or any other drm_mm | 
|  | * allocator. It is a bug to call this function on a unallocated node. | 
|  | */ | 
|  | void drm_mm_remove_node(struct drm_mm_node *node) | 
|  | { | 
|  | struct drm_mm *mm = node->mm; | 
|  | struct drm_mm_node *prev_node; | 
|  |  | 
|  | DRM_MM_BUG_ON(!node->allocated); | 
|  | DRM_MM_BUG_ON(node->scanned_block); | 
|  |  | 
|  | prev_node = list_prev_entry(node, node_list); | 
|  |  | 
|  | if (drm_mm_hole_follows(node)) | 
|  | rm_hole(node); | 
|  |  | 
|  | drm_mm_interval_tree_remove(node, &mm->interval_tree); | 
|  | list_del(&node->node_list); | 
|  | node->allocated = false; | 
|  |  | 
|  | if (drm_mm_hole_follows(prev_node)) | 
|  | rm_hole(prev_node); | 
|  | add_hole(prev_node); | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_remove_node); | 
|  |  | 
|  | /** | 
|  | * drm_mm_replace_node - move an allocation from @old to @new | 
|  | * @old: drm_mm_node to remove from the allocator | 
|  | * @new: drm_mm_node which should inherit @old's allocation | 
|  | * | 
|  | * This is useful for when drivers embed the drm_mm_node structure and hence | 
|  | * can't move allocations by reassigning pointers. It's a combination of remove | 
|  | * and insert with the guarantee that the allocation start will match. | 
|  | */ | 
|  | void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) | 
|  | { | 
|  | DRM_MM_BUG_ON(!old->allocated); | 
|  |  | 
|  | *new = *old; | 
|  |  | 
|  | list_replace(&old->node_list, &new->node_list); | 
|  | rb_replace_node(&old->rb, &new->rb, &old->mm->interval_tree); | 
|  |  | 
|  | if (drm_mm_hole_follows(old)) { | 
|  | list_replace(&old->hole_stack, &new->hole_stack); | 
|  | rb_replace_node(&old->rb_hole_size, | 
|  | &new->rb_hole_size, | 
|  | &old->mm->holes_size); | 
|  | rb_replace_node(&old->rb_hole_addr, | 
|  | &new->rb_hole_addr, | 
|  | &old->mm->holes_addr); | 
|  | } | 
|  |  | 
|  | old->allocated = false; | 
|  | new->allocated = true; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_replace_node); | 
|  |  | 
|  | /** | 
|  | * DOC: lru scan roster | 
|  | * | 
|  | * Very often GPUs need to have continuous allocations for a given object. When | 
|  | * evicting objects to make space for a new one it is therefore not most | 
|  | * efficient when we simply start to select all objects from the tail of an LRU | 
|  | * until there's a suitable hole: Especially for big objects or nodes that | 
|  | * otherwise have special allocation constraints there's a good chance we evict | 
|  | * lots of (smaller) objects unnecessarily. | 
|  | * | 
|  | * The DRM range allocator supports this use-case through the scanning | 
|  | * interfaces. First a scan operation needs to be initialized with | 
|  | * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds | 
|  | * objects to the roster, probably by walking an LRU list, but this can be | 
|  | * freely implemented. Eviction candiates are added using | 
|  | * drm_mm_scan_add_block() until a suitable hole is found or there are no | 
|  | * further evictable objects. Eviction roster metadata is tracked in &struct | 
|  | * drm_mm_scan. | 
|  | * | 
|  | * The driver must walk through all objects again in exactly the reverse | 
|  | * order to restore the allocator state. Note that while the allocator is used | 
|  | * in the scan mode no other operation is allowed. | 
|  | * | 
|  | * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() | 
|  | * reported true) in the scan, and any overlapping nodes after color adjustment | 
|  | * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and | 
|  | * since freeing a node is also O(1) the overall complexity is | 
|  | * O(scanned_objects). So like the free stack which needs to be walked before a | 
|  | * scan operation even begins this is linear in the number of objects. It | 
|  | * doesn't seem to hurt too badly. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * drm_mm_scan_init_with_range - initialize range-restricted lru scanning | 
|  | * @scan: scan state | 
|  | * @mm: drm_mm to scan | 
|  | * @size: size of the allocation | 
|  | * @alignment: alignment of the allocation | 
|  | * @color: opaque tag value to use for the allocation | 
|  | * @start: start of the allowed range for the allocation | 
|  | * @end: end of the allowed range for the allocation | 
|  | * @mode: fine-tune the allocation search and placement | 
|  | * | 
|  | * This simply sets up the scanning routines with the parameters for the desired | 
|  | * hole. | 
|  | * | 
|  | * Warning: | 
|  | * As long as the scan list is non-empty, no other operations than | 
|  | * adding/removing nodes to/from the scan list are allowed. | 
|  | */ | 
|  | void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, | 
|  | struct drm_mm *mm, | 
|  | u64 size, | 
|  | u64 alignment, | 
|  | unsigned long color, | 
|  | u64 start, | 
|  | u64 end, | 
|  | enum drm_mm_insert_mode mode) | 
|  | { | 
|  | DRM_MM_BUG_ON(start >= end); | 
|  | DRM_MM_BUG_ON(!size || size > end - start); | 
|  | DRM_MM_BUG_ON(mm->scan_active); | 
|  |  | 
|  | scan->mm = mm; | 
|  |  | 
|  | if (alignment <= 1) | 
|  | alignment = 0; | 
|  |  | 
|  | scan->color = color; | 
|  | scan->alignment = alignment; | 
|  | scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; | 
|  | scan->size = size; | 
|  | scan->mode = mode; | 
|  |  | 
|  | DRM_MM_BUG_ON(end <= start); | 
|  | scan->range_start = start; | 
|  | scan->range_end = end; | 
|  |  | 
|  | scan->hit_start = U64_MAX; | 
|  | scan->hit_end = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_scan_init_with_range); | 
|  |  | 
|  | /** | 
|  | * drm_mm_scan_add_block - add a node to the scan list | 
|  | * @scan: the active drm_mm scanner | 
|  | * @node: drm_mm_node to add | 
|  | * | 
|  | * Add a node to the scan list that might be freed to make space for the desired | 
|  | * hole. | 
|  | * | 
|  | * Returns: | 
|  | * True if a hole has been found, false otherwise. | 
|  | */ | 
|  | bool drm_mm_scan_add_block(struct drm_mm_scan *scan, | 
|  | struct drm_mm_node *node) | 
|  | { | 
|  | struct drm_mm *mm = scan->mm; | 
|  | struct drm_mm_node *hole; | 
|  | u64 hole_start, hole_end; | 
|  | u64 col_start, col_end; | 
|  | u64 adj_start, adj_end; | 
|  |  | 
|  | DRM_MM_BUG_ON(node->mm != mm); | 
|  | DRM_MM_BUG_ON(!node->allocated); | 
|  | DRM_MM_BUG_ON(node->scanned_block); | 
|  | node->scanned_block = true; | 
|  | mm->scan_active++; | 
|  |  | 
|  | /* Remove this block from the node_list so that we enlarge the hole | 
|  | * (distance between the end of our previous node and the start of | 
|  | * or next), without poisoning the link so that we can restore it | 
|  | * later in drm_mm_scan_remove_block(). | 
|  | */ | 
|  | hole = list_prev_entry(node, node_list); | 
|  | DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); | 
|  | __list_del_entry(&node->node_list); | 
|  |  | 
|  | hole_start = __drm_mm_hole_node_start(hole); | 
|  | hole_end = __drm_mm_hole_node_end(hole); | 
|  |  | 
|  | col_start = hole_start; | 
|  | col_end = hole_end; | 
|  | if (mm->color_adjust) | 
|  | mm->color_adjust(hole, scan->color, &col_start, &col_end); | 
|  |  | 
|  | adj_start = max(col_start, scan->range_start); | 
|  | adj_end = min(col_end, scan->range_end); | 
|  | if (adj_end <= adj_start || adj_end - adj_start < scan->size) | 
|  | return false; | 
|  |  | 
|  | if (scan->mode == DRM_MM_INSERT_HIGH) | 
|  | adj_start = adj_end - scan->size; | 
|  |  | 
|  | if (scan->alignment) { | 
|  | u64 rem; | 
|  |  | 
|  | if (likely(scan->remainder_mask)) | 
|  | rem = adj_start & scan->remainder_mask; | 
|  | else | 
|  | div64_u64_rem(adj_start, scan->alignment, &rem); | 
|  | if (rem) { | 
|  | adj_start -= rem; | 
|  | if (scan->mode != DRM_MM_INSERT_HIGH) | 
|  | adj_start += scan->alignment; | 
|  | if (adj_start < max(col_start, scan->range_start) || | 
|  | min(col_end, scan->range_end) - adj_start < scan->size) | 
|  | return false; | 
|  |  | 
|  | if (adj_end <= adj_start || | 
|  | adj_end - adj_start < scan->size) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | scan->hit_start = adj_start; | 
|  | scan->hit_end = adj_start + scan->size; | 
|  |  | 
|  | DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); | 
|  | DRM_MM_BUG_ON(scan->hit_start < hole_start); | 
|  | DRM_MM_BUG_ON(scan->hit_end > hole_end); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_scan_add_block); | 
|  |  | 
|  | /** | 
|  | * drm_mm_scan_remove_block - remove a node from the scan list | 
|  | * @scan: the active drm_mm scanner | 
|  | * @node: drm_mm_node to remove | 
|  | * | 
|  | * Nodes **must** be removed in exactly the reverse order from the scan list as | 
|  | * they have been added (e.g. using list_add() as they are added and then | 
|  | * list_for_each() over that eviction list to remove), otherwise the internal | 
|  | * state of the memory manager will be corrupted. | 
|  | * | 
|  | * When the scan list is empty, the selected memory nodes can be freed. An | 
|  | * immediately following drm_mm_insert_node_in_range_generic() or one of the | 
|  | * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return | 
|  | * the just freed block (because its at the top of the free_stack list). | 
|  | * | 
|  | * Returns: | 
|  | * True if this block should be evicted, false otherwise. Will always | 
|  | * return false when no hole has been found. | 
|  | */ | 
|  | bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, | 
|  | struct drm_mm_node *node) | 
|  | { | 
|  | struct drm_mm_node *prev_node; | 
|  |  | 
|  | DRM_MM_BUG_ON(node->mm != scan->mm); | 
|  | DRM_MM_BUG_ON(!node->scanned_block); | 
|  | node->scanned_block = false; | 
|  |  | 
|  | DRM_MM_BUG_ON(!node->mm->scan_active); | 
|  | node->mm->scan_active--; | 
|  |  | 
|  | /* During drm_mm_scan_add_block() we decoupled this node leaving | 
|  | * its pointers intact. Now that the caller is walking back along | 
|  | * the eviction list we can restore this block into its rightful | 
|  | * place on the full node_list. To confirm that the caller is walking | 
|  | * backwards correctly we check that prev_node->next == node->next, | 
|  | * i.e. both believe the same node should be on the other side of the | 
|  | * hole. | 
|  | */ | 
|  | prev_node = list_prev_entry(node, node_list); | 
|  | DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != | 
|  | list_next_entry(node, node_list)); | 
|  | list_add(&node->node_list, &prev_node->node_list); | 
|  |  | 
|  | return (node->start + node->size > scan->hit_start && | 
|  | node->start < scan->hit_end); | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_scan_remove_block); | 
|  |  | 
|  | /** | 
|  | * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole | 
|  | * @scan: drm_mm scan with target hole | 
|  | * | 
|  | * After completing an eviction scan and removing the selected nodes, we may | 
|  | * need to remove a few more nodes from either side of the target hole if | 
|  | * mm.color_adjust is being used. | 
|  | * | 
|  | * Returns: | 
|  | * A node to evict, or NULL if there are no overlapping nodes. | 
|  | */ | 
|  | struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) | 
|  | { | 
|  | struct drm_mm *mm = scan->mm; | 
|  | struct drm_mm_node *hole; | 
|  | u64 hole_start, hole_end; | 
|  |  | 
|  | DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); | 
|  |  | 
|  | if (!mm->color_adjust) | 
|  | return NULL; | 
|  |  | 
|  | hole = list_first_entry(&mm->hole_stack, typeof(*hole), hole_stack); | 
|  | hole_start = __drm_mm_hole_node_start(hole); | 
|  | hole_end = hole_start + hole->hole_size; | 
|  |  | 
|  | DRM_MM_BUG_ON(hole_start > scan->hit_start); | 
|  | DRM_MM_BUG_ON(hole_end < scan->hit_end); | 
|  |  | 
|  | mm->color_adjust(hole, scan->color, &hole_start, &hole_end); | 
|  | if (hole_start > scan->hit_start) | 
|  | return hole; | 
|  | if (hole_end < scan->hit_end) | 
|  | return list_next_entry(hole, node_list); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_scan_color_evict); | 
|  |  | 
|  | /** | 
|  | * drm_mm_init - initialize a drm-mm allocator | 
|  | * @mm: the drm_mm structure to initialize | 
|  | * @start: start of the range managed by @mm | 
|  | * @size: end of the range managed by @mm | 
|  | * | 
|  | * Note that @mm must be cleared to 0 before calling this function. | 
|  | */ | 
|  | void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) | 
|  | { | 
|  | DRM_MM_BUG_ON(start + size <= start); | 
|  |  | 
|  | mm->color_adjust = NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&mm->hole_stack); | 
|  | mm->interval_tree = RB_ROOT; | 
|  | mm->holes_size = RB_ROOT; | 
|  | mm->holes_addr = RB_ROOT; | 
|  |  | 
|  | /* Clever trick to avoid a special case in the free hole tracking. */ | 
|  | INIT_LIST_HEAD(&mm->head_node.node_list); | 
|  | mm->head_node.allocated = false; | 
|  | mm->head_node.mm = mm; | 
|  | mm->head_node.start = start + size; | 
|  | mm->head_node.size = -size; | 
|  | add_hole(&mm->head_node); | 
|  |  | 
|  | mm->scan_active = 0; | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_init); | 
|  |  | 
|  | /** | 
|  | * drm_mm_takedown - clean up a drm_mm allocator | 
|  | * @mm: drm_mm allocator to clean up | 
|  | * | 
|  | * Note that it is a bug to call this function on an allocator which is not | 
|  | * clean. | 
|  | */ | 
|  | void drm_mm_takedown(struct drm_mm *mm) | 
|  | { | 
|  | if (WARN(!drm_mm_clean(mm), | 
|  | "Memory manager not clean during takedown.\n")) | 
|  | show_leaks(mm); | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_takedown); | 
|  |  | 
|  | static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) | 
|  | { | 
|  | u64 start, size; | 
|  |  | 
|  | size = entry->hole_size; | 
|  | if (size) { | 
|  | start = drm_mm_hole_node_start(entry); | 
|  | drm_printf(p, "%#018llx-%#018llx: %llu: free\n", | 
|  | start, start + size, size); | 
|  | } | 
|  |  | 
|  | return size; | 
|  | } | 
|  | /** | 
|  | * drm_mm_print - print allocator state | 
|  | * @mm: drm_mm allocator to print | 
|  | * @p: DRM printer to use | 
|  | */ | 
|  | void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) | 
|  | { | 
|  | const struct drm_mm_node *entry; | 
|  | u64 total_used = 0, total_free = 0, total = 0; | 
|  |  | 
|  | total_free += drm_mm_dump_hole(p, &mm->head_node); | 
|  |  | 
|  | drm_mm_for_each_node(entry, mm) { | 
|  | drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, | 
|  | entry->start + entry->size, entry->size); | 
|  | total_used += entry->size; | 
|  | total_free += drm_mm_dump_hole(p, entry); | 
|  | } | 
|  | total = total_free + total_used; | 
|  |  | 
|  | drm_printf(p, "total: %llu, used %llu free %llu\n", total, | 
|  | total_used, total_free); | 
|  | } | 
|  | EXPORT_SYMBOL(drm_mm_print); |